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Abstract

Transcriptional dysregulation has long been recognized as central to the pathogenesis of Huntington’s disease (HD).
MicroRNAs (miRNAs) represent a major system of post-transcriptional regulation, by either preventing translational initiation
or by targeting transcripts for storage or for degradation. Using next-generation miRNA sequencing in prefrontal cortex
(Brodmann Area 9) of twelve HD and nine controls, we identified five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-
615-3p and miR-1247-5p) up-regulated in HD at genome-wide significance (FDR q-value,0.05). Three of these, miR-196a-
5p, miR-196b-5p and miR-615-3p, were expressed at near zero levels in control brains. Expression was verified for all five
miRNAs using reverse transcription quantitative PCR and all but miR-1247-5p were replicated in an independent sample
(8HD/8C). Ectopic miR-10b-5p expression in PC12 HTT-Q73 cells increased survival by MTT assay and cell viability staining
suggesting increased expression may be a protective response. All of the miRNAs but miR-1247-5p are located in intergenic
regions of Hox clusters. Total mRNA sequencing in the same samples identified fifteen of 55 genes within the Hox cluster
gene regions as differentially expressed in HD, and the Hox genes immediately adjacent to the four Hox cluster miRNAs as
up-regulated. Pathway analysis of mRNA targets of these miRNAs implicated functions for neuronal differentiation, neurite
outgrowth, cell death and survival. In regression models among the HD brains, huntingtin CAG repeat size, onset age and
age at death were independently found to be inversely related to miR-10b-5p levels. CAG repeat size and onset age were
independently inversely related to miR-196a-5p, onset age was inversely related to miR-196b-5p and age at death was
inversely related to miR-615-3p expression. These results suggest these Hox-related miRNAs may be involved in
neuroprotective response in HD. Recently, miRNAs have shown promise as biomarkers for human diseases and given their
relationship to disease expression, these miRNAs are biomarker candidates in HD.
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Introduction

Huntington’s disease (HD) (OMIM: 143100) is an inherited

neurodegenerative disorder characterized by involuntary move-

ment, dementia, and changes in personality. HD is transmitted as

an autosomal dominant disorder, for which an expansion of a

CAG trinucleotide repeat within the coding region of the

huntingtin gene (HTT) is the disease causing mutation [1]. The

CAG repeat codes for a polyglutamine domain in the Htt protein

and results in neuronal cell death predominantly affecting the

caudate nucleus and putamen although neuronal loss is wide-

spread in the HD brain [2,3]. While the biological processes

leading to neurodegeneration in HD are poorly understood,

transcriptional dysregulation has long been proposed as central to

the pathogenesis of HD. Widespread alterations in gene expression

have been reported [4] and several studies suggest that gene

expression may be altered at one or more of the stages of RNA

processing, translation, protein post-translational modification or

trafficking [5,6].

MicroRNAs (miRNAs) are small non-coding RNAs that

function as translational regulators of mRNA expression. miRNAs

may inhibit gene expression either by repressing translation, or by

targeting mRNA for either storage or degradation [7]. Recently,

dysregulation of miRNAs has been linked to neurological and

neurodegenerative disorders [8] and several studies have explored

the role of miRNAs in HD. Marti et al [9] performed miRNA-
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sequencing for two pooled HD samples and two pooled control

samples and reported altered expression for a large number of

miRNAs. Altered expression of miRNAs, quantified using

microarray technology, has been reported in cellular models of

HD [10–12] and in mouse models of HD [12–15] but a

comprehensive study of miRNA and mRNA expression obtained

through next-generation sequencing technology in human HD

samples has not been performed.

In order to investigate (1) the presence of altered miRNA

expression and (2) the potential role of miRNAs on the altered

mRNA expression seen in HD, we performed both miRNA-

sequencing and mRNA sequencing, using Illumina massively

parallel sequencing in twelve HD and nine neurologically normal

control brains. To our knowledge this is the first genome-wide

quantification of miRNA expression comparing human HD and

control brain, and the first to combine total miRNA expression

with total mRNA expression obtained through massively parallel

sequencing.

Results

Selection of prefrontal cortex and BA9
While the striatum is the region most heavily involved

neuropathologically in HD [3], 80% to 90% of the neurons in

that region will have degenerated by the time of death. These

changes, together with the presence of reactive astrocytosis, alter

the cellular composition of the striatum. In contrast, cortical

involvement in HD is well defined [2,16] and while it does not

experience dramatic neuronal degeneration, cortical neurons are

known to exhibit the effects of protein aggregation and nuclear

inclusion bodies characteristic of the disease. Therefore, we

selected the prefrontal cortex for these studies.

Five miRNAs are up-regulated in HD
After removing sample outliers using principal component

analysis filtering, we identified five out of 1,417 detected mature

miRNA species as differentially expressed between twelve HD and

nine control prefrontal cortex samples using the R statistical

package DESeq (Tables 1, 2 and 3; Figure 1). All five miRNAs

were significantly up-regulated in HD. The largest effect between

conditions was seen for miR-10b-5p, with a 28.41 fold increased

expression in HD relative to control samples (mean control

expression = 915.81; mean HD expression = 26,020.05, Figure 1).

miR-1247-5p was expressed at moderate levels in both control

(mean = 49.44) and HD brain (mean = 102.01). Three of the

miRNAs, miR-196a-5p (mean control expression = 1.47; mean

HD expression = 27.49), miR-196b-5p (mean control expres-

sion = 2.49; mean HD expression = 11.01) and miR-615-3p (mean

control expression = 1.09, mean HD expression = 6.66), had near

zero expression levels in all nine control samples.

Validation and replication of miRNA findings
miRNA expression differences were orthogonally validated

using the Exiqon miRCURY LNA technology for reverse

transcription quantitative PCR (RT-qPCR) in eleven of twelve

sequenced HD samples and nine control samples originally studied

for miRNA-seq. All five miRNAs were confirmed to be

significantly up-regulated in HD (Table S1), consistent with our

miRNA-sequencing findings.

To replicate our findings in an independent sample set, we

performed RT-qPCR in an additional eight control and eight HD

prefrontal cortical samples (Tables S2 and S3). Four out of five

miRNA (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p)

were confirmed as significantly increased in expression in HD

(Table S4).

Similar proportion of neurons in HD and control cortical
brain homogenate samples

HD is characterized by progressive cortical atrophy, with

recognizable neuropathologic abnormalities in the neocortical gray

matter [2,16–20] (Table 1). To address whether miRNA

expression changes in HD may be due to altered ratios in brain

cell-type abundance, such as a change in the ratio of neurons to glial

cells, we compared the number of neuronal and non-neuronal

nuclei across conditions. Suspensions of cell nuclei of prefrontal

cortex from 28 HD cases and 19 controls were immunocytochem-

ically labeled with anti-NeuN, a neuron-specific nuclear antigen,

followed by flow cytometric analysis. The mean and range of

NeuN+ ratios for controls and cases were not significantly different

(t = 1.67, p-value = 0.10; Figure S1), suggesting cortical neuron loss

in the BA9 area in HD is relatively modest and does not account for

the dramatic alterations in miRNA levels reported here.

Increased miR-10b-5p expression is not observed in
Parkinson’s disease (PD)

To establish whether miR-10b-5p change is a generalized

response to neurodegeneration, we evaluated this miRNA in PD

prefrontal cortex. While cortical neuronal loss is variable in PD,

both PD and HD are neurodegenerative and caused by protein

inclusions. We selected PD prefrontal cortex samples that

exhibited reported neuron loss on their neuropathological

evaluation (n = 6) and PD samples without reported cortical

neuronal loss (n = 8). From total RNA, RT-qPCR was performed

for miR-10b-5p (Table S5). No difference was seen in miR-10b-

5p expression when stratifying PD based on the extent of neuron

loss (t = 0.59, p-value = 0.58). Additionally, no significant differ-

ence in HD miR-10b-5p expression from qPCR was observed

when stratifying HD cases based on a measure of cortical neuron

loss (f = 0.28, p-value = 0.76).

Next, the relative expression of miR-10b-5p in PD was

compared to all nineteen HD and eighteen control samples

Author Summary

Huntington’s disease (HD) is an inherited fatal neurological
disorder that commonly affects people in midlife. Past
studies have implicated abnormal patterns of gene
expression as a candidate for causing the death of the
brain cells affected in HD. MicroRNAs (miRNAs) are small
molecules that regulate and target transcripts for either
storage or destruction. We measured the levels of miRNAs,
as well as the levels of gene expression (mRNAs) in twelve
HD and nine control brain samples. We found five miRNAs
that had greatly increased expression in the HD brains,
including three that were not expressed in the normal
samples. Four of these were related to important
characteristics of the disease expression, including the
age at disease onset, and the age at death of the
individual. The genes that these miRNAs target for
regulation were also altered in their expression with most
being increased, suggesting they may have been targeted
for storage. One of the miRNAs, miR-196a-5p was
previously implicated in enhancing the survival of brain
cells in HD. When we overexpressed miR-10b-5p in an HD
cell model, the cells survived longer than untreated cells,
suggesting these miRNAs may promote neuron survival
and may hold new clues for treatments in HD.

MicroRNAs in Huntington’s Disease
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Figure 1. Differentially expressed miRNAs in Huntington’s disease. miR-10b-5p, miR-1247-5p, miR-196a-5p, miR-196b-5p, and miR-615-3p
were identified as differentially expressed in Huntington’s disease prefrontal cortex compared to non-neurological disease controls by Illumina
miRNA-sequencing. Normalized expression values quantified from DESeq analysis are shown on the y-axis. miR-196a-5p, miR-196b-5p and miR-615-
3p were essentially not expressed in control samples, while the mean HD expression was 27.49, 11.01 and 6.66 respectively. miR-1247-5p was
expressed at moderate levels in both control (mean = 49.44) and HD brain (mean = 102.01). miR-10b-5p was expressed in control (mean = 915.81) and
highly expressed in HD brain (mean = 26,020.05). For miRNA, *p,0.05 and ***p,0.001, as determined by DESeq, followed by the Benjamini-
Hochberg multiple comparison correction. (HD = Huntington’s disease).
doi:10.1371/journal.pgen.1004188.g001

Table 1. HD brain samples analyzed for mRNA-seq, miRNA-seq and RT-qPCR validation of miR-10b-5p.

Sample ID miRNA-seq RT-qPCR PMI (hr.) RIN or RQN Death age Onset age Duration (yr.) CAG repeat size
Neuron Loss in
Neocortical Gray Matter

HD-01 Passed Y 37 7.1 55 44 11 45 1

HD-02 Passed Y 6 7.5 69 63 6 41 1

HD-03 Passed Y 21 7 71 52 19 43 1

HD-05 Passed Y 19 6.9 48 25 23 48 2

HD-06 Passed Y NA 6.2 40 34 6 51 1

HD-07 Passed Y 8 8.5 72 55 17 41 1

HD-08 Passed Y 21 7.4 43 NA NA 49 1

HD-09 Passed Y 4 7.8 68 45 23 42 1

HD-10 Passed Y 6 8.3 59 35 24 46 1

HD-12 Passed Y 13 6 68 52 16 42 0

HD-13 Passed N 25 6.1 57 40 17 49 1

HD-14 Passed Y 11 7.3 48 38 10 45 1

Mean - - 15.48 7.18 58.17 43.91 15.64 45.17 0.875

All of the HD samples passed mRNA-seq QC.
Scale of neuron loss: 0 = absent, 1 = mild, 2 = moderate.
doi:10.1371/journal.pgen.1004188.t001
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assayed. While no significant difference in miR-10b-5p expression

was observed between control and PD samples (q = 0.05, p = 0.99),

a significant difference was seen in HD compared to PD (q = 7.30,

p,0.0001; Figure 2), suggesting increased miR-10b-5p expres-

sion, independent of neuron loss, is not a generalized response to

neurodegeneration.

Ectopic miR-10b-5p expression protects HD cell lines
from polyglutamine-mediated cytotoxicity

To determine the functional importance of miR-10b-5p up-

regulation in HD, we ectopically expressed miR-10b-5p in PC12

Q73 cells. These cell stably expressed huntingtin fragment derived

from exon 1 (1–90), contain a pathogenic, 73 long polyglutamine

repeat and a MYC epitope for protein identification. PC12 cells

have been shown to terminally differentiate and form neural

processes upon nerve growth factor (NGF) treatment [21], and

HD models of these cells have been highly characterized,

exhibiting phenotypic changes such as aggregate formation and

polyglutamine-dependent cell death [22–26].

PC12 Q73 cells were transfected with miR-10b-5p mimic or a

negative control mimic, cel-miR-67-3p, after 48 hours post-

differentiation. Cell survival was quantified using a MTT cell

viability assay 48 hours post-transfection. Increased survival,

though modest (53.9% versus 48.2%), was statistically higher for

cells transfected with miR-10b-5p compared to cells transfected

with negative control miRNA (q = 4.58, p-value,0.0001;

Figure 3). The enhanced survival via ectopic miR-10b-5p

expression was further substantiated in experiments using viable

fluorescent cell staining, where miR-10b-5p transfected cells

showed increased cell viability over cells transfected with negative

control miRNA (t = 2.381, p-value = 0.018).

Thus, miR-10b-5p may play a protective role in enhancing cell

survival during stress. To model stress, we treated miRNA

transfected cells with 1 uM MG 132, a potent proteasome

inhibitor that increases huntingtin aggregation and cellular

apoptosis in PC12 HD cell lines [27]. As expected, MG 132

treated cells had reduced cell viability as compared to untreated

cells (cel-miR-67-3p, q = 6.52, adjusted p-value,0.0001; miR-

10b-5p, q = 10.88, adjusted p-value,0.0001). However, MG 132

treated miR-10b-5p transfected PC12 Q73 cells exhibited

improved survival over those transfected with negative control

miRNA (q = 3.728, adjusted p-value = 0.045). No statistical

difference was observed when comparing miR-10b-5p levels with

MG 132 treatment to cel-miR-67-3p without treatment, (q = 2.95,

Table 2. Control brain samples analyzed for mRNA-seq,
miRNA-seq and RT-qPCR validation of miR-10b-5p.

Sample ID miRNA-seq RT-qPCR PMI (hr.) RIN or RQN Death age

C-14 Passed Y 21 8 79

C-21 Passed Y 26 7.3 76

C-29 Passed Y 13 6.4 93

C-31 Passed Y 24 7.3 53

C-32 Passed Y 24 8.3 57

C-33 Passed Y 15 7.5 43

C-35 Failed PCA N 21 7.6 46

C-36 Passed Y 17 7.5 40

C-37 Failed PCA N 28 8.3 44

C-38 Passed Y 20 7.7 57

C-39 Passed Y 15 7.3 80

Mean - - 20.36 7.49 60.73

All the control samples passed mRNA-seq QC.
RIN = RNA Integrity Number, RQN = RNA Quality Number.
PMI = Postmortem Interval.
doi:10.1371/journal.pgen.1004188.t002

Table 3. Differentially expressed miRNAs from miRNA-seq.

miRNA Control expression HD expression Fold Change p-value q-value*

miR-196a-5p 1.47 27.49 18.66 2.05E-10 2.91E-07

miR-10b-5p 915.81 26020.05 28.41 1.99E-08 1.41E-05

miR-615-3p 1.09 6.66 6.09 2.73E-05 1.29E-02

miR-1247-5p 49.44 102.01 2.06 7.67E-05 2.72E-02

miR-196b-5p 2.49 11.01 4.41 9.77E-05 2.77E-02

* FDR-adjusted q-value.
doi:10.1371/journal.pgen.1004188.t003

Figure 2. miR-10b-5p expression in control, Parkinson’s
disease and Huntington’s disease prefrontal cortex. Up-regula-
tion of miR-10b-5p was confirmed in HD by performing RT-qPCR,
comparing nineteen Huntington’s disease prefrontal cortex samples to
eighteen non-neurological disease control samples (***p,0.001) or
fourteen Parkinson’s disease samples (***p,0.001). DDCT values of miR-
10b-5p in PD and HD as compared to controls are shown on the y-axis.
The absence of up-regulation in PD frontal cortex suggests that up-
regulation of miR-10b-5p may be HD specific. (CT = cycle threshold; RT-
qPCR = reverse transcription quantitative PCR; PD = Parkinson’s disease;
HD = Huntington’s disease).
doi:10.1371/journal.pgen.1004188.g002
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adjusted p-value = 0.16), suggesting miR-10b-5p may enhance

survival in times of cellular stress.

miRNA expression is related to clinical variables in HD
RNA sequence count data may be non-normally distributed

[28], and tests of normality for miRNA expression levels in HD

found that miR-10b-5p was negatively skewed (see Materials
and Methods). Therefore, to test the relationship of miRNA

expression to clinical variables such as CAG repeat size, age at

onset of motor symptoms, disease duration and age at death, as

well as to the sample quality information for RIN/RQN (RNA

integrity number/RNA quality number), we applied a step-wise

backwards selection, negative binomial regression model.

Age at onset, duration and age at death are inter-dependent and

could not be simultaneously included in the models. Furthermore,

age at onset and age at death were strongly correlated with each

other (Pearson r = 0.85, p-value = 5e-04) and both were correlated

with CAG repeat size (r = 20.84, p-value = 6e-04, and r = 20.89,

p-value = 1e-04 respectively) while duration was not correlated

with age at onset, age at death or CAG repeat size in this sample.

To determine which variables best modeled the relationship of the

miRNAs to clinical variables, we compared the Akaike informa-

tion criterion (AIC) for each variable (onset age, death age and

duration) in regression analyses that adjusted for the effect of CAG

repeat size. Of these three variables, duration was found to have

the poorest fit with each of the five miRNAs and therefore we

report analyses containing age at onset and age at death.

Among the HD brains, CAG repeat size, age at onset and age at

death were all independently found to have a negative association

with miR-10b-5p (CAG, b= 20.18, p-value = 2.7e-05; onset, b= 2

0.05, p-value = 1.9e-05; death, b= 20.07, p-value = 6.8e-07). CAG

repeat size and age at onset were found to be independently,

negatively related to miR-196a-5p (CAG, b= 20.15, p-va-

lue = 1.7e-02; onset, b= 20.07, p-value = 1.4e-03). Age at death

was significantly related to miR-615-3p expression (b= 20.03, p-

value = 0.0045) and age at onset was associated with miR-196b-5p

(b= 20.04, p-value = 9e-04). No association to any clinical features

was seen for miR-1247-5p. In order to fully evaluate whether there

was any effect of disease duration on the observed relationships to

the clinical features, duration was added back into final models. No

substantial changes to the effect estimates were observed with the

addition of duration to any of the models.

None of the miRNA levels was related to post-mortem interval

in either control or HD case samples. The essentially null level of

expression in controls prevented meaningful assessment of the

relationship of miR-196a-5p, miR-196b-5p and miR-615-3p with

Figure 3. miR-10b-5p overexpressing PC12 Q73 cells exhibit reduced cytotoxicity. PC12 cells expressing huntingtin exon 1 with a
polyglutamine expansion spanning 73 repeats were transfected with miR-10b-5p or cel-miR-67-3p as a negative control. On day 3 post-
differentiation, a subset of cells were treated with 1 uM MG 132. A MTT assay was used to measure cell viability after four days post differentiation. On
the Y-axis, the viability percentage was calculated from the initial cell count. Error bars represent SEM. (****p,0.0001; **p,0.001 *p,0.05).
doi:10.1371/journal.pgen.1004188.g003

MicroRNAs in Huntington’s Disease
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clinical variables, in particular age at death, or sample variables,

post-mortem interval (PMI), or RIN/RQN. Analysis of miR-10b-

5p showed no association to age at death (b= 20.002, p-

value = 0.60), or PMI (b= 20.014, p-value = 0.31), but did show

association with RIN/RQN (b= 0.54, p-value = 7.2e-05) in

controls. miR-1247-5p showed association with later age at death

(b= 20.013, p-value = 0.024) in controls.

Expression of miR-10b-5p, miR-196a-5p, miR-196b-5p
and miR-615-3p are correlated

Among the twelve HD samples, the levels of four out of the five

significantly differentially expressed miRNAs (miR-10b-5p, miR-

196a-5p, miR-196b-5p, miR-615-3p) were strongly correlated

with each other, (Spearman r range 0.71–0.88; p range 0.0002–

0.01). miR-1247-5p was not significantly correlated with these

miRNAs (Spearman r range 0.13–0.51; p range 0.09–0.70).

Because the values of miR-615-3p and miR-196a-5p were

essentially zero in the control samples, correlations among the

miRNAs were not performed for controls.

mRNA targets of miR-10b-5p, miR-196a-5p, miR-196b-5p
and miR-615-3p may have similar functions

Watson-Crick base-pairing between nucleotide position 2

through 8 on the mature miRNA, termed the ‘seed region,’ and

the 39 untranslated region (39 UTR) of target mRNA determine

the recognition, specificity and efficiency of miRNA silencing [29].

Seed sequences differ for miR-10b-5p (ACCCUGU), miR-615-3p

(CCGAGCC) and miR-1247-5p (CCCGUCC) suggesting these

miRNA have different targets, while miR-196a-5p and miR-196b-

5p share a seed sequence (AGGUAGU) and only differ by a single

base difference in mature miRNA sequence.

Targets of the five miRNAs were obtained from miRWalk

(http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/index.html),

a repository of experimentally validated miRNA targets curated

from literature and online resources [30]. miRWalk targets of miR-

196a, miR-196b and miR-1247 were not strand specific. The

miRWalk database contained 84 unique targets for miR-10b-5p, 80

for miR-196a, 40 for miR-196b, two for miR-1247 and twelve for

miR-615-3p. Since miR-1247 had just two validated targets, it was

removed from analysis.

Four target genes (DICER1, HOXA7, HOXB4, HOXD1) were

shared across all four miRNAs. miR-10b-5p shared eleven targets

with miR-196a-5p (HOXB8, COX8A, HOXA10, NPC1, FLT3,

AKT1, NPM1, DROSHA, AGO2, NFYC, PAX7), and one with miR-

615-3p (MAPK8). miR-196a and miR-196b shared 28 targets. In

all, eleven of the 167 unique validated targets were Hox cluster

genes (HOXA1, HOXA7, HOXA9, HOXA10, HOXB4, HOXB7,

HOXB8, HOXC8, HOXD1, HOXD4, HOXD10).

To understand the influence these miRNAs may be having on

shared biological processes, targets of each miRNA were analyzed

using IPA Core Analysis. To find overlap in biological functions

and canonical pathways of each miRNA and its targets, the IPA

Core Comparison Analysis tool was used. After correcting for

multiple comparisons, targets of miR-10b-5p, miR-196a, miR-

196b and miR-615-3p shared significant overlap in 33 biological

functions; the top three functional categories were ‘‘Cell Death and

Survival,’’ (Benjamini-Hochberg adjusted p-value, range = 3.5e-07–

1.5e-04), ‘‘Nervous System Development and Function’’ (range = 1.5e-07–

1.5e-03) and ‘‘Cellular Assembly and Organization’’ (range = 2.5e-05–

1.7e-03). Twelve pathways were shared among all four sets of

miRNA targets, including ‘‘Huntington’s Disease Pathway’’ (ran-

ge = 7.6e-04–8.1e-03), (Gene set = AKT1, BAX, CAPSN1, CLTC,

CREB1, EGFR, HDAC9, JUN, MAPK8).

mRNA targets of differentially expressed miRNAs are
differentially expressed

Total mRNA-sequencing was performed in the same brain

samples as miRNA-sequencing to examine whether gene expression

was affected by miRNA up-regulation. Of the 169 unique gene

targets for the five differentially expressed miRNAs, 167 were

detected using mRNA-sequencing. 22 mRNA targets were signifi-

cantly differentially expressed between the HD and control prefrontal

cortex samples (False Discovery Rate (FDR) adjusted q-value = 0.05

after adjusting for 167 comparisons). Only one gene (keratin 5, KRT5)

was down-regulated in HD (Table 4), and four of these target genes

were located in the Hox clusters (HOXD4, HOXA10, HOXB7 and

HOXD10).

miR-10b-5p, miR-196a-5p, miR-196b-5p and miR-615-3p
expression is related to Hox cluster gene expression

Four of the five up-regulated miRNAs are located intergenic to

Hox gene clusters (Figure 3). Because of gene duplication, miR-

196a is derived from both the HOXB and HOXC clusters; miR-

10b is located in the HOXD cluster and miR-615 is found in the

HOXC cluster [31,32]. A total of 55 genes (40 protein-coding

genes, eleven antisense transcripts, three functional lncRNAs and

one pseudogene) are located in the four Hox clusters [33,34]. To

evaluate evidence for a general regional up-regulation of Hox

cluster genes, an expression analysis of the mRNA-sequence data

was performed for all annotated genes within the Hox loci

(Table 5). Fifteen out of 55 genes within the Hox loci were

differentially expressed in HD. Fourteen Hox genes were

significantly up-regulated (FDR-adjust q-value,0.05, mean fold-

change = 6.73, range 3.02 to 16.12) and a single Hox gene was

down-regulated (HOXD1, FDR-adjust q-value = 3.92e-02, fold

change = 22.45). The majority of differentially expressed Hox

genes (13 out of 15) were essentially unexpressed in controls.

The genes adjacent to the four differentially expressed miRNAs

were highly expressed. Two genes immediately adjacent to miR-

10b-5p were significantly up-regulated in HD (HOXD4, FDR-

adjusted q = 3.22e-03; HOXD8, FDR-adjusted q = 2.07e-03),

(Figure 4). HOXB9 (FDR-adjusted q-value = 3.22e-03) immedi-

ately downstream of miR-196a-1 and HOXC10 (FDR-adjusted q-

value = 4.14e-02) immediately upstream of miR-196a-2 were also

up-regulated. Furthermore, all three Hox genes located upstream

of miR-196b were significantly up-regulated in HD (HOXA10,

FDR-adjusted q-value = 1.11e-02; HOXA11, FDR-adjusted q-

value = 2.07e-03; HOXA13, FDR-adjusted q-value = 2.24e-02).

HOXC6 (FDR-adjusted q-value = 1.27e-02) immediately upstream

of miR-615 was also up-regulated.

Discussion

Up-regulation of expression for five miRNAs in HD brain
We report a next-generation sequencing study of small RNAs,

identifying 1,417 mature miRNA species in the prefrontal cortex

(Brodmann Area 9) of twelve HD and nine control brains. Five of

these, miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p and

miR-1247-5p, were up-regulated in HD at genome-wide signifi-

cance (FDR q-value,0.05), and three of these five, miR-196a-5p,

miR-196b-5p and miR-615-3p, were expressed at near zero levels

in the control brains. Up-regulation of miR-10b-5p was validated

in the miRNA-sequencing samples and confirmed in an indepen-

dent replication sample set. Several studies implicating a role for

miRNAs in HD have been performed, although, to our knowledge

this is the first genome-wide quantification of miRNA expression

comparing individual human HD and control brain samples.

MicroRNAs in Huntington’s Disease

PLOS Genetics | www.plosgenetics.org 6 February 2014 | Volume 10 | Issue 2 | e1004188

http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/index.html


Packer et al. [11], studying an array of 365 mature miRNAs,

had previously reported miR-196a-5p to be significantly increased

by nearly six-fold in Brodmann Area 4 of HD grade 1 brains.

Recently, a study by Cheng et al. [13] found increased miR-196a

expression suppressed mutant HTT expression in both HD

neuronal cell models and HD transgenic mouse models. These

Table 4. 22 differential expressed targets of miR-10b-5p, miR-196a, miR-196b, miR-1247 and miR-615-3p.

Target
gene miRNA Location

Mean Control
Expression (n = 9)

Mean HD
Expression (n = 12) Fold Change p-value q-value*

SERPINE1 miR-10b-5p 7q22.1 22.91 140.82 6.15 3.03E-11 5.06E-09

CDKN1A miR-196a 6p21.2 336.73 841.75 2.5 1.58E-04 1.22E-02

HOXD4 miR-10b-5p 2q31.1 1.74 18.33 10.51 2.38E-04 1.22E-02

ANXA3 miR-10b-5p 4q21.21 259.93 553.71 2.13 2.92E-04 1.22E-02

TWIST1 miR-10b-5p 7p21.2 43.43 105.16 2.42 5.63E-04 1.72E-02

CD33 miR-196a, miR-196b 19q13.3 16.58 46.63 2.81 6.75E-04 1.72E-02

DIO3 miR-1247 14q32 10.89 41.93 3.85 7.29E-04 1.72E-02

MMP2 miR-10b-5p 16q13-q21 58.67 137.83 2.35 8.26E-04 1.72E-02

MMP9 miR-10b-5p 20q11.2-q13.1 5.32 17.33 3.26 9.33E-04 1.73E-02

HOXA10 miR-10b-5p, miR-196a, miR-196b 7p15.2 1.06 17.06 16.12 1.21E-03 1.73E-02

RHOD miR-10b-5p 11q14.3 12.71 37.96 2.99 1.23E-03 1.73E-02

COL1A1 miR-196a 17q21.33 30.19 220.28 7.3 1.31E-03 1.73E-02

HLA-E miR-10b-5p 6p21.3 3703.47 7769.76 2.1 1.34E-03 1.73E-02

PPARA miR-10b-5p 22q13.31 444.7 865.02 1.95 1.53E-03 1.73E-02

PAX6 miR-196a 11p13 693.52 1337.23 1.93 1.62E-03 1.73E-02

EGFR miR-10b-5p 7p12 784.95 1762.88 2.25 1.66E-03 1.73E-02

HOXB7 miR-196a 17q21.3 1.63 6.99 4.28 2.83E-03 2.78E-02

PLAUR miR-10b-5p 19q13 56.15 119.67 2.13 3.65E-03 3.38E-02

HOXD10 miR-10b-5p 2q31.1 1.25 9.33 7.45 4.73E-03 3.96E-02

RUNX1 miR-10b-5p 21q22.3 87.69 224.88 2.56 4.74E-03 3.96E-02

SOX2 miR-10b-5p 3q26.3-q27 1963.76 3492.72 1.78 5.32E-03 4.23E-02

KRT5 miR-196a 12q13.13 113.74 51.99 22.19 6.00E-03 4.55E-02

* FDR-adjusted q-value for 167 targets of the five miRNAs.
doi:10.1371/journal.pgen.1004188.t004

Table 5. Differential expression of Hox cluster genes in HD.

Gene
Mean Control Expression
(n = 9) Mean HD Expression (n = 12) Fold Change p-value q-value*

HOXA11 1.06 8.20 7.75 3.96e-05 2.07e-03

HOXA5 1.06 7.63 7.21 1.03e-04 2.07e-03

HOXD8 1.15 7.84 6.80 1.13e-04 2.07e-03

HOXD4 1.74 18.33 10.51 2.38e-04 3.22e-03

HOXB9 1.06 9.20 8.69 2.93e-04 3.22e-03

HOXA10 1.06 17.06 16.12 1.21e-03 1.11e-02

HOXC6 1.15 6.16 5.34 1.62e-03 1.27e-02

HOXA11-AS 1.25 7.39 5.90 2.49e-03 1.71e-02

HOXB7 1.63 6.99 4.28 2.83e-03 1.73e-02

HOXA13 1.45 8.74 6.03 4.07e-03 2.24e-02

HOXD10 1.25 9.33 7.45 4.73e-03 2.36e-02

HOXD1 55.91 22.80 22.45 8.55e-03 3.92e-02

HOXC10 1.36 8.04 5.90 1.06e-02 4.14e-02

HOXC4 3.57 10.77 3.02 1.12e-02 4.14e-02

HOTAIRM1 3.52 12.52 3.56 1.13e-02 4.14e-02

* FDR-adjusted q-value for the 55 genes in the four Hox clusters.
doi:10.1371/journal.pgen.1004188.t005
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findings suggest increased expression of miR-196a may be an

adaptive response, promoting neuronal survival and may have

therapeutic implications for HD. Miyazaki et al. [35] studied miR-

196a in spinal and bulbar muscular atrophy (SBMA), a

neurodegenerative disease caused by a similar polyglutamine

repeat expansion in the androgen receptor (AR) gene. They found

increased miR-196a expression via adeno-associated virus vector-

mediated delivery reduced AR mRNA levels leading to improved

neurological function in transgenic SBMA mouse models.

Together, these findings suggest a neuroprotective role for miR-

196a and its targets and possible therapeutic implications across

multiple polyglutamine-expansion neurodegenerative diseases.

miR-196a-5p and miR-10b-5p were among the 56 miRNAs found

to be elevated in response to mutant HTT over-expression in

undifferentiated NT2 cells [36]. According to the miRNA search

program ‘‘PubmiR,’’ [37] miR-196b-5p, miR-1247-5p and miR-

615-3p have not been previously reported in HD miRNA studies.

A number of past studies have examined miRNA levels in HD,

HD transgenic mice or cellular models; however, we did not

replicate the results obtained in these studies. Gaughwin et al. [36]

reported miR-34b elevated in plasma samples in HD, but we

found neither miR-34b-3p nor miR-34b-5p to be altered in HD

brain at genome-wide levels. We were not able to confirm any of

the miRNAs reported in past microarray studies that examined

targeted subsets of miRNAs, including the nine miRNAs reported

as down-regulated in two mouse models of HD (YAC128 and R6/

2) by Lee et al. [14] using a 567 miRNA microarray or the 38

miRNAs with altered expression in HD transgenic mice in a 382

miRNA microarray [15]. Johnson et al. [10–12] reported miR-29a

and miR-330 to be significantly up-regulated in HD samples,

neither of which was found to be altered in this study [10]. In a

RT-qPCR study comparing 90 miRNAs in mouse Hdh (Q111/

Q111) striatal cells to control mice [12,38], none of the 27

reported differentially expressed miRNAs was different at genome-

wide levels in our study. The most commonly reported altered

miRNA in HD studies, miR-132, has been reported as both down-

regulated [10,14,39] and up-regulated [11], but was not differen-

tially expressed in our study.

While some of the lack of concordance may be a consequence of

the differences between human and animal models of HD, it is also

likely that some of the differences are a consequence of the

different technologies employed by these studies. Microarrays may

have different levels of detection for some miRNAs from that seen

by miRNA sequencing. Finally, nearly all of the studies employ

microarray methods. Microarrays that study only 365 (e.g. Packer

et al. [11],) to 567 miRNAs (e.g. Lee et al. [14]) are not performing

as many contrasts and thus do not adjust for as many contrasts as

our genome wide analysis (e.g. 1,417 miRNAs detected) demands.

miR-10b-5p, miR-196a-5p, miR-196b-5p and miR-615-3p
implicate Hox cluster genes

Four (miR-10b-5p, miR-196a-5p, miR-196b-5p and miR-615-

3p) of the five differentially expressed miRNAs are related to Hox

cluster genes as follows: (1) these four are located in intergenic

regions of the Hox clusters, (2) eleven Hox genes are validated

targets of these four miRNAs, (3) Hox genes adjoining differen-

tially expressed miRNAs are differentially expressed and (4)

multiple Hox cluster genes are differentially expressed in HD

versus control brains (Table 4).

Figure 4. Differentially expressed miRNAs in HD are located in Hox genes clusters. Schematic representation of Hox clusters. Hox genes
are represented as numbered boxes (labeled 1–13), miRNA are represented by triangles and other genes in the regions (functional lncRNA, PRAC) are
represented by rectangles. Antisense transcripts and pseudogenes are not pictured. Nineteen genes within Hox cluster regions were found
significantly differentially expressed in HD prefrontal cortex using mRNA-sequencing (FDR-adjusted p-value,0.05). Four miRNAs, one lncRNA, and
fourteen Hox genes were significantly up-regulated in HD (indicated by red), many of which are adjacent to differentially expressed miRNAs. A single
Hox gene (HOXD1) was down-regulated in HD (indicated by blue). (HD = Huntington’s disease).
doi:10.1371/journal.pgen.1004188.g004
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Of the eleven Hox gene targets, eight did not differ in their

expression across condition. A single target, HOXD1 was seen to

be down-regulated in HD (FC = 22.45). HOXD1 is a reported

target of four of the five miRNAs [40] which may explain its

repression in HD.

Three Hox gene targets were up-regulated in HD (HOXB7,

HOXD4 HOXD10). It is possible these up-regulated Hox genes

share similar regulatory mechanisms, as the increased miRNA

expression does not produce the expected miRNA-mediated gene

silencing and suppress the observed up-regulation of the miRNA

target genes. Coevolution of Hox genes and Hox-related miRNAs

may further suggest that they share regulatory elements or

mechanisms [41]. Furthermore, Hox genes and related miRNAs

have been observed to have similar patterns of transcriptional

activation and both are activated by retinoic acid [42–46].

Although miR-10b-5p has been validated as targeting HOXD4,

they may exhibit patterns of co-expression. Specifically, Phua et al.

[45] report miR-10b and HOXD4 are temporally co-expressed

during neurodifferentiation. Here, we see a similar up-regulation

and co-expression pattern in HD, where miR-10b and HOXD4 are

both highly expressed.

Hox genes are a family of transcription factors that contribute to

major morphological changes during embryonic development and

are required for anterior-posterior body axis in bilaterally develop-

ing species [47]. They are highly involved in most aspects of early

development, and are prominently expressed in the developing

brain [48]. Hox-related miRNAs may also follow similar spatio-

temporal patterns of expression during embryogenesis [49].

Hox genes are regulated by retinoic acid but also other factors,

including basic fibroblast growth factor [50], steroid hormones

[51,52] and polycomb repressive complex group [53]. Polycomb

group (PcG) proteins assemble into large silencing complexes and

control histone-modifying activity. Hox genes are repressed by PcG

complexes, specifically Polycomb Repressive Complex 2 (PRC2),

which trimethylates histone H3 at lysine 27 (H3K27me3) [53].

Seong et al [54] observed knockout huntingtin mouse embryos

lacked repression of HOXB1, HOXB2, and HOXB9 and showed

diminished global H3K27me3, while a knock-in expanded repeat

mouse exhibited increased H3K27me3 signal, suggesting mutant

huntingtin may alter proper PRC2 activity. These findings raise

the possibility that the increased expression of miRNAs and Hox

genes reported here are related to enhanced H3K27me3 or

impaired PcG repression. However, the role of Hox in the adult,

HD brain is still unclear. Increased transcriptional activity of Hox

may be compensatory, helping to preserve or re-establish cell

polarity, or an indirect result of impaired epigenetic regulation.

miR-10b-5p response in HD may be protective
To functionally validate our miRNA-sequencing findings, we

chose to assess miR-10b-5p. We believed this miRNA to be the

most biologically active of the differentially expressed miRNAs.

miR-10b-5p had the highest basal expression levels and the highest

fold change between conditions. Additionally, miR-10b-5p levels

were not increased in PD, a comparable protein aggregate,

neurodegenerative disease, nor in PD samples with pathology in

the prefrontal cortex equivalent to HD.

To determine whether miR-10b-5p had a protective or

deleterious effect on neuron viability, we ectopically expressed

miR-10b-5p in terminally differentiated PC12 Q73 cells. Since the

levels the five differentially expressed miRNA were up-regulated,

we felt overexpression of miR-10b-5p best represented the

phenotype observed in HD brain.

We reported increased miR-10b-5p expression enhanced the

survival of PC12 Q73 cells. Furthermore, we found that increased

miR-10b-5p expression enhanced survival in the presence of

apoptosis-inducing compound, MG 132. In this experiment,

survival in cells with increased miR-10b-5p expression was

comparable to that of unchallenged cells and significantly greater

than untreated cells exposed to toxin. These finding provide

support for the hypothesis that increased miR-10b-5p may be a

neuroprotective response to the expanded polyglutamine repeat

seen in HD and speaks to the role of this microRNA in the

pathology of HD.

miR-10b-5p, miR-196a-5p, miR-196b-5p and miR-615-3p
have overlapping biological functions

Using pathway analysis, we showed that miR-10b-5p, miR-196a-

5p, miR-196b-5p and miR-615-3p targeted genes are predicted to

be involved in apoptosis as well as nervous system development and

function. In neuroblastoma SH-SY5Y cell lines, miR-10a, miR-10b

and miR-615-5p expression levels significantly increased during all-

trans-retinoic-acid (ATRA) treatment, indicating miR-10a/b and

miR-615-5p may have a role in neurodifferentiation [44]. SH-

SY5Y cells treated with antisense miR-10a or miR-10b had

impaired neurite outgrowth and morphology but did not show

changes in overall cell proliferation [44]. miR-10a and miR-10b

were highly expressed in SK-N-BE, LAN5 and SH-SY5Y cell lines

during ATRA treatment and ectopic expression of miR-10ab

mirrored the phenotype of the ATRA treatment [42]. Taken

together, these studies implicate these miRNAs in neuron differen-

tiation, migration, and outgrowth.

In our past studies [16], we found increased neurite outgrowth

in HD prefrontal cortex. Relative to controls, HD pyramidal

neurons had a significantly increased number of primary dendritic

segments, increased total dendritic length, and more dendritic

branches than control neurons. Here, we report four miRNAs that

have been observed in cell models to present a similar phenotype.

It is possible that increased expression of these miRNAs and

related targets represent an adaptive response of neurons stressed

by a toxic expanded polyglutamine protein fragment.

miR-10b-5p, miR-196a-5p, miR-196b-5p and miR-615-5p
are related to HD pathogenesis

Four of the five up-regulated miRNAs showed association to

clinical features of HD (CAG repeat size, age of motor onset and

age at death for miR-10b-5p; CAG repeat size and age at onset for

miR-196a-5p, age at onset for miR-196b-5p and age at death for

miR-615-3p). Due to the near zero level of expression in controls,

it was not possible to assess the relationship of miR-196a-5p, mir-

196b-5p and miR-615-3p to age at death, but miR-10b-5p was not

correlated with age at death in controls. Thus, the increased

expression of these miRNAs did not appear to be related to

normal aging, but rather a component of gene regulation and

transcription in the context of neurodegeneration. A growing body

of literature points to the presence of toxic effects of the HD gene

substantially before the onset of symptoms, perhaps from the time

of conception [55–57].

Because age at death represents the lifetime exposure of the

individual to the effects of the HD gene, we hypothesize that the

association of miR-10b-5p and miR-615-3p with age at death may

represent the lifetime exposure to the effects of the HD mutation.

If the relationship of altered miRNA expression to age at death

supports the view that the HD gene may have a life-long effect

among expanded CAG-repeat carriers, this raises the possibility

that the HD mutation may influence neuronal development in the

developing brain through the action of one or more of these

miRNAs and Hox cluster genes.
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Target genes of over-expressed miRNAs show increased
expression in HD

We report five miRNAs as being highly up-regulated in HD and

though our expectation was to see the mRNA targets of these

miRNAs as decreased, we observe increased expression of many of

their shared mRNA targets. We believe these effects are not

attributable to differences in cell populations studied, since flow

cytometric analysis measuring neuron abundance found no

significant difference across condition. Rather, we hypothesize

positive miRNA-mRNA target relationships are a result of HD-

specific alterations in mRNA processing.

Translation is a highly dynamic process. Cytoplasmic mRNA

actively engaged in translation can cycle to a non-translated state

and accumulate in stress granules or processing bodies (P-bodies).

During cellular stress, mRNA can be sequestered to P-bodies or

stress granules, to stall translation through translational repression

machinery or miRNA silencing, until stress conditions have been

resolved [7,58–60]. P-bodies may also serve an important role in

RNA transport. Because neurons are highly polarized, cytoplasmic

transport of mRNA is essential for localized translation to discrete

regions of the cell. During transport, it is believed that mRNAs are

silenced by miRNA, upon rapid exchange at the synapse [60–62].

In HD cortical neurons, excitotoxicity, oxidative damage,

aberrant gene expression and energetic defects lead to stress

conditions and in response, cells may sequester mRNA to P-bodies

and stress granules. Among the 55 Hox locus genes studied, only

one of the fifteen significantly differentially expressed genes is

down regulated (Table 4). Thus, the increased levels of most of

the validated gene targets of these four miRNAs may be

reactionary, as they are sequestered to P-bodies for storage as

part of a protective process to enhance cell viability [7].

To the best of our knowledge, no study has addressed the role of

P-bodies or stress granules in HD. However, it was observed in live

cortical neurons that wildtype huntingtin co-localized in P-bodies,

specifically in neuronal RNA granules, along with Argonaute 2,

the endonuclease required for RNA-mediated gene silencing by

the RNA-induced silencing complex (RISC) [63,64]. Therefore, it

is reasonable to suggest mutant huntingtin may impair miRNA-

mediated mRNA degradation and/or localized translation of

specific mRNAs.

There is evidence that miRNA-mRNA regulatory mechanisms

may be altered in other neurodegenerative diseases as well. In a

joint examination of miRNA-mRNA expression in Alzheimer’s

disease (AD) and control prefrontal cortex, an overwhelming

number of miRNA to mRNA targets were found to be positive

correlated. Genomic variants in TDP-43 and FUS, genes that

encode stress granule proteins, were found to cause familial

Amyotrophic lateral sclerosis [65,66] and several other stress

granule proteins (TIA-1, G3BP) may also be pathogenic [67].

miRNAs as potential biomarkers in HD
These studies suggest potential relationships of these miRNAs to

CAG repeat expansion, age at onset or age at death. If these

findings hold up on further examination, these miRNAs may hold

potential to provide insight into important biological and disease

expression for HD. miRNA are extremely stable. The half-life of

the majority of miRNAs has been predicted to be on average five

days and plasma miRNAs have been found to be stable after being

subjected to high heat, extreme pH, long-time storage at room

temperature, or multiple freeze-thaw cycles [68–70]. If these

miRNAs cross the blood-brain barrier and can be detected at

reasonable levels in serum/plasma from mutant HD gene carriers,

they may serve as biomarkers of disease expression.

Materials and Methods

Sample information
Frozen brain tissue from prefrontal cortex Brodmann Area 9

(BA9) was obtained from the Harvard Brain and Tissue Resource

Center (HBTRC) McLean Hospital, Belmont MA. Twelve

Huntington’s disease (HD) samples and eleven neurologically-

normal control samples were selected for the study (Table 1). The

HD subjects had no evidence of Alzheimer or Parkinson disease

(PD) comorbidity based on neuropathology reports. For micro-

scopic examination, 16 tissue blocks were systematically taken and

histologically assessed as previously described [3]. All samples were

male. HD samples and controls were not different for postmortem

interval (PMI) (t = 1.07, p = 0.30), RNA integrity number (RIN)

(t = 0.83, p = 0.41) or death age (t = 0.40, p = 0.69). CAG repeat

size was known for all HD samples and onset age and disease

duration was unknown for a single sample (Table 1). Eight

additional HD, nine control and fourteen PD cases were studied as

part of validation and replication studies, and were obtained from

the HBTRC and the Sun Health Research Institute Sun City,

Arizona (Tables S2, S3 and S5).

RNA extraction
Total RNA, for all samples studied, was isolated using QIAzol

Lysis Reagent and purified using miRNeasy MinElute Cleanup

columns (Qiagen Sciences Inc, Germantown, MD). RNA quality

for sequencing was assessed using either Agilent’s BioAnalyzer

2100 system and RNA 6000 Nano Kits to find RNA Integrity

Number (RIN) or Agilent 2200 TapeStation and DNA Screen-

Tape assay RNA Quality Number (RQN; Agilent, Foster City,

CA). Both methods calculate the area under the peak for 18S and

28S RNA as a ratio of total RNA as well as the relative height of

the 18S and 28S peaks to determine RNA quality [71]. The RIN/

RQN values were similar for the twelve HD and eleven control

specimens studied for miRNA and mRNA (t = 0.95, p = 0.36).

Illumina miRNA sequencing (miRNA-seq)
For each brain sample, 1 ug of RNA was used to construct

sequencing libraries using Illumina’s TruSeq Small RNA Sample

Prep Kit, according to the manufacturer’s protocol (Illumina, San

Diego, CA). In brief, small RNA molecules were adapter-ligated,

reverse transcribed, PCR amplified and gel purified to generate

the library. Multiplexed samples were equimolarly pooled into sets

of eight samples per flowcell lane and sequenced using 1650 bp

single-end reads on Illumina’s HiSeq 2000 system at Tufts

University sequencing core facility (http://tucf-genomics.tufts.

edu/). Demultiplexing and FASTQ file generation (raw sequence

read plus quality information in Phred format) were done using

Illumina’s Consensus Assessment of Sequence and Variation

(CASAVA) pipeline.

Primary processing of Illumina miRNA-seq reads
Sequence read quality was evaluated using the FASTQ quality

filter module from the FASTX-toolkit version 0.0.13 (http://

hannonlab.cshl.edu/fastx_toolkit/), and only those reads with at

least 80% of the base calls above Q20 (Phred score) were retained.

The 39 adapter sequence (59-TGGAATTCTCGGGTGC-

CAAGG-39) was removed from all reads using the FASTA/Q

clipper module from the FASTX-toolkit. A minimum length

threshold of 15 nucleotides was set for clipped reads because

miRNAs of this length will contain the seed sequence. To avoid

redundancy amongst identical read species, the reads were

collapsed using the FASTA/Q collapser module from FASTX-

toolkit to generate a FASTA file of only the unique read species.
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Alignment and mapping of miRNA-seq reads
Quality-filtered, 39 adapter-clipped reads were aligned to the

UCSC human reference genome (build hg19) using Bowtie version

0.12.3 [72]. Alignment parameters were set to allow for no

mismatch alignments and no limits on multiple mapping instances.

Multiple-mapped identical sequences were summed for a single

count for that annotated mature miRNA. The default settings

were used for all other alignment options.

The miRNA aligned data are available on ArrayExpress

(http://www.ebi.ac.uk/arrayexpress/), accession number E-

MTAB-2206.

miRNA abundance estimation
Aligned reads that overlapped with the human miRNA

annotation version 19 from miRBase (http://www.mirbase.org/

ftp.shtml) were identified using default BEDTools’ IntersectBed

functionality [73]. To select for mature miRNA reads, sequences

more than 27 bases in length were removed. Only those reads for

which the aligned 59 start-nucleotide matched exactly to the 59

start-nucleotide of the annotated miRNA were retained for the

analysis. After filtering, collapsed read counts were summed per

annotated mature miRNA (Table S6).

miRNA differential expression
The R (http://www.R-project.org) package DESeq version

1.10.1 [28] was used to perform the differential expression analysis

between HD and control samples using the read counts generated

for each sample as described above. miRNAs with zero read

counts across all case and control samples were removed from

analysis. To accommodate the analysis of miRNAs with read

counts of zero for some samples, a pseudo-count of one was added

to all raw counts for every miRNA across all the samples, prior to

performing DESeq’s estimateSizeFactors and estimateDispersions

functions with default options. DESeq assumes that count data

follow a negative binominal distribution and factors in technical

and biological variance when testing for differential gene

expression between groups. DESeq’s function, estimateSizeFac-

tors, was used to obtain normalization factors for each sample and

to normalize miRNA read counts.

The normalized counts were evaluated by principal component

analysis (PCA) with the FactoMineR R package for all HD and

control samples. The samples identified to be three or more

standard deviations away from the mean on the first or second

principal component were considered outliers and were removed

from analysis. The first two principal components were used

because they each explained more than 10% of the variance, while

the remaining principal components explained less than 10% of

the variance. Two control samples (C-35 and C-37) were identified

as outliers based on PCA analysis.

miRNA differential expression analysis was performed with

DESeq’s nbinomTest function for the remaining nine control and

twelve HD samples. All analyses were performed on DESeq

normalized counts.

miRNA quantitative PCR
miRNA were assayed using Exiqon’s miRCURY LNA Univer-

sal RT miRNA PCR following the manufacturer’s protocol

(Exiqon Inc, Denmark). In brief, reactions were incubated for

60 min at 42uC followed by heat-inactivation of reverse

transcription for 5 min at 95uC and stored at 4uC. After cDNA

synthesis, samples were diluted to 0.2 ng/ul in water. Brain

samples were assayed using Exiqon ExiLENT SYBR Green

master mix and LNA primer sets containing UniRT and miR-

10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p or miR-1247.

Reference primer hsa-SNORD48 PCR/UniRT was used for

brain samples; U6 snRNA for cell lines. Samples were run in

triplicate for each primer set in 384-well format (5 ul PCR Master

mix, 1 ul PCR primer mix, 4 ul 0.2 ng cDNA). Reactions were

cycled using Applied Biosystems 7900HT Fast Real-Time PCR

System using manufacturer’s instructions (Life Technologies,

Carlsbad, CA). For analysis, threshold cycle (CT) was generated

by ABi SDS v2.4 software. CT values for triplicate wells were

normalized by average RNU48 value for brain or U6 for cells.

miRNA fold change was calculated using the 2-DDCT method [74].

Neuron abundance quantification
0.5–1.0 g of tissue in 5 ml of lysis buffer was homogenized using

a dounce tissue grinder. Lysates were transferred to ultracentri-

fugation tubes, loaded on top of sucrose solution and centrifuged

at 24,400 RPM for 2.5 hr at 4uC (Beckman Coulter, Pasadena,

CA; L8-70 M with SW80 rotor). Nuclei pellets were resuspended

in 500 ul PBS and incubated at 4uC in a staining solution

containing 0.72% normal goat serum, 0.036% BSA, 1:1200 anti-

NeuN (Millipore, Germany), 1:1400 Alexa488 goat anti-mouse

secondary antibody (Life Technologies, Carlsbad, CA), for

45 min. Flow cytometry was performed at the Boston University

Medical School Flow Cytometry Core Lab on a FACSVantage SE

flow cytometer.

Illumina messenger RNA sequencing (mRNA-seq)
For each brain sample, 1 ug of RNA was used to construct

sequencing libraries using Illumina’s TruSeq RNA Sample Prep

Kit according to the manufacturer’s protocol. In brief, mRNA

molecules were polyA selected, chemically fragmented, randomly

primed with hexamers, synthesized into cDNA, 39 end-repaired

and adenylated, sequencing adapter ligated and PCR amplified.

Each adapter-ligated library contained one of twelve TruSeq

molecular barcodes. Multiplexed samples were equimolarly pooled

into sets of three samples per flowcell lane and sequenced using

26100 bp paired-end reads on Illumina’s HiSeq 2000 system at

Tufts University sequencing core facility (http://tucf-genomics.

tufts.edu/). Demultiplexing and FASTQ file generation were

accomplished using Illumina’s CASAVA pipeline.

Primary processing of Illumina mRNA-seq reads
Forward and reverse sequencing reads were independently

quality-filtered using the FASTQ quality filter module from the

FASTX-toolkit version 0.0.13 (http://hannonlab.cshl.edu/

fastx_toolkit/) with the same criteria as that applied for the

processing of the miRNA-seq reads. Reads failing the quality

threshold, as well as their corresponding mate reads, were

removed.

Alignment and mapping of mRNA-seq reads
Quality-filtered paired-end reads were aligned to the UCSC

human reference genome (build hg19) using TopHat version 2.0.4

[75,76]. This version of TopHat incorporates the Bowtie version

2.0.0.7 algorithm to perform the alignment [72] as well as

SAMtools version 0.1.18.0 for alignment file formatting [77]. For

efficient read mapping, TopHat requires the designation of the

mean and standard deviation of the distance between paired-end

reads, the read inner-distance. To estimate the appropriate read

inner-distance, we aligned a subset of 5 million reads from four

HD and four control samples to the Ensembl human reference

transcriptome (release 66) using Bowtie version 2.0.0.7. Using the

CollectInsertSizeMetrics function from picardTools version 1.76
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(http://sourceforge.net/projects/picard/files/picard-tools/), we

estimated the average mean inner-distance per condition and

subsequently applied these values for the TopHat alignment; 22

for HD samples 25 for controls respectively, (the current TopHat

default setting is 20), (Table S7). To account for read variability,

the standard deviation for inner-distance was set to 100. The

number of allowed splice mismatches was set to 1. Default settings

were used for all other alignment options.

mRNA gene abundance estimation
Gene expression quantification was performed using htseq-

count version 0.5.3p9 (http://www-huber.embl.de/users/anders/

HTSeq) and the GENCODE version 14 annotation gtf file as

reference (http://www.gencodegenes.org/releases). Intersection

non-empty mode and unstranded library type were specified as

parameters for htseq-count. Default settings were used for all other

options (Table S8).

mRNA differential expression analysis
The mRNA differential expression analysis between HD and

control samples was performed using DESeq version 1.10.1 [28]; the

workflow was the same as described for the miRNA differential

expression analysis. No outliers were found based on the PCA of the

DESeq-normalized count data. The nbinomTest function was run

for eleven control samples and twelve HD samples to assess

differentially expressed genes. Multiple comparison adjustment for

multiple testing with the Benjamini-Hochberg correction was used to

control for false discovery rate. For Hox gene differential expression

analysis, 55 comparisons were used. Genes located within HOX-

gene containing regions were queried through the Ensembl database

(release 72), interfacing through the R package BiomaRt [78,79].

Genes that were between HOXA1-HOXA13, HOXB1-HOXB13,

HOXC4-HOXC13 and HOXD1-HOXD13 start sites were regarded as

‘‘Hox genes.’’ For miRNA target differential expression, 154

comparisons were used for Benjamini-Hochberg correction.

miRNA-mRNA target analysis
Information on experimentally validated miRNA targets of

miR-10b-5p, miR-196a-5p and miR-615-3p were extracted from

the miRWalk ‘‘Validated Targets’’ module [30]. Strand specificity

was preserved. Targets for miR-196a-1 and miR-196a-2 were

merged for analysis. IPA Core Analysis (analysis.ingenuity.com)

was run as nervous system and CNS cell line specific across all

species, using target gene lists imported from miRWalk output.

‘‘Bio Functions’’ and ‘‘Canonical Pathway’’ analyses were used.

Right-tailed Fisher’s Exact Tests were run through IPA software

and p-values with FDR-adjusted q-values (p,0.05) were consid-

ered significant. Biological functions across the 3 significant

miRNA were compared using the IPA Core Comparison Analysis

tool. Benjamini-Hochberg Multiple Testing Correction p-values

(p,0.05) were considered significant.

Linear modeling of miRNA relationship to clinical
covariates

To account for the non-normality in the miRNA data, negative

binominal general linear regressions were performed using Proc

genmod in SAS. DESeq normalized counts were rounded to the

nearest integer before running the model. To test the normality of

gene expression data, Shapiro-Wilk tests were performed. Differ-

entially expressed miRNA data trended as non-normally distrib-

uted in HD (miR-10b-5p, p = 0.04; miR-196a-5p, p = 0.05; miR-

615-3p, p = 0.06), but not in controls (miR-10b-5p, p = 0.71; miR-

196a-5p and miR-615-3p were essential zero).

Generation of transgenic cell lines
PC12 (rat adrenal gland phaeochromocytoma) cells were grown

at 37uC and 5% CO2 in Dulbecco’s modified Eagle’s medium

(DMEM; Life Technologies, Carlsbad, CA) with 20% fetal bovine

serum (FBS; Atlanta Biologicals, Flowery Branch, GA), 100 units/

ml penicillin and 100 units/ml streptomycin (Life Technologies,

Carlsbad, CA). pcDNA3.1mycC expressing human huntingtin

fragment (1–90) containing 73 polyglutamine repeats (Coriell

Institute; CHDI-90000034) was used for stable transfection. Cells

were seeded to 70% confluency and grown overnight. 15 ml of

Attractene Transfection Reagent (Qiagen, Gaithersburg, MD) was

added to 4 mg plasmid DNA diluted in 300 ml Opti-MEM (Life

Technologies, Carlsbad, CA). Cells were grown in complete media

and selected for four weeks using 500 mg/ml G418 (Life

Technologies, Carlsbad, CA). To create monoclonal cultures,

single colonies were isolated using dilution cloning, picked with

filter paper, grown in a 6-well plate and screened for transgenic

expression by Western blot analysis using mouse Anti- c-Myc

(Novex, R950-25, Life Technologies, Carlsbad, CA).

Cell differentiation and miRNA overexpression
96-well culture plates were seeded with 10,000 cells per well.

For differentiation, culture medium was replaced with medium

composed of DMEM with 0.5% FBS, 100 mg/ml G418, 100

units/ml penicillin and 100 units/ml streptomycin and 100 ng/ml

nerve growth factor (R&D Systems, Minneapolis, MN). After

48 hr, miRNA was transfected into HD cells using 0.25 ul

Lipofectamine 2000 (Life Technologies, Carlsbad, CA) and

6.25 pmol miR-10b-5p or miRIDIAN microRNA Mimic Nega-

tive Control #1 (cel-miR-67-3p, Thermo Scientific, Waltham,

MA) per well, following manufacturer’s protocol. miR-10b-5p

overexpression was verified using qPCR.

Cell viability assays
For MTT assays, 1 uM MG 132 (Tocris Bioscience, United

Kingdom) was added to select wells containing 10,000 cells per

well at 72 hr post-differentiation. Cell viability was assessed at

96 hr post-differentiation. Following manufacturer’s protocol,

CellTiter 96 Non-Radioactive Cell Proliferation Assay kit

(Promega; Madison, WI) was used to determine cell number.

Cells were incubated for 1.5 hr at 37uC and 5% CO2 with MTT

dye solution. Undifferentiated HD cells were serially diluted across

a 96-well plate to create a standard curve for cell number

calculation. Absorbance was measured using Bio-Tek Synergy H1

spectrophotometer at 540 nm for miR-10b-5p transfected wells,

with MG 132 (n = 44) and without MG 132 (n = 35) and cel-miR-

67-3p transfected wells with MG 132 (n = 40) and without MG

132 (n = 40). One-way ANOVA way used for statistical analysis.

For cell viability staining, miR-10b-5p and negative control

mimic were transfected after 48 hours of differentiation in 12-well

culture plate with 4 replicates each, 250,000 cells per well.

Molecular Probes Neurite Outgrowth Staining Kit (Life Technol-

ogies, Carlsbad, CA) was used according to manufacturer’s

protocol. Using Bio-Tek Synergy H1 microplate reader, fluores-

cent area scans were taken at 530 nm excitation/590 nm emission

with a 565 matrix per well.

Supporting Information

Figure S1 Neuron counts from prefrontal cortical tissue

homogenate. No significant difference is observed when compar-

ing ratios of NeuN+ counts to total events quantified by flow

cytometry.

(EPS)
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Table S1 miRNA RT-qPCR validation study results. RT-qPCR

was used to validate the five differentially expressed miRNA in the

same set of sample used for miRNA-sequence analysis. The table

lists the difference and standard error of fold change between

condition (2-DDCt), as well as p-values from two-tailed Welch’s t-

tests, for ten control and eleven Huntington’s disease (HD)

samples.

(DOCX)

Table S2 Sample information for eight Huntington’s disease

brains used for RT-qPCR replication study. Post-mortem intervals

(PMI), RNA integrity numbers (RIN) and ages at death for the

eight Huntington’s disease (HD) brains used for RT-qPCR

verification of the five differentially expressed miRNA.

(DOCX)

Table S3 Sample information for eight control brains used for

RT-qPCR replication study. Post-mortem intervals (PMI), RNA

integrity numbers (RIN) and ages at death for the eight control

brains used for RT-qPCR verification of the five differentially

expressed miRNA.

(DOCX)

Table S4 miRNA RT-qPCR replication study results. RT-

qPCR was used to replicate the five differentially expressed

miRNA in an independent sample set of Huntington’s disease

(HD) brains. The table lists the difference and standard error of

fold change between condition (2-DDCt), as well as p-values from

one-tailed Welch’s t-tests, for eight control and eight Huntington’s

disease samples.

(DOCX)

Table S5 Sample information for fourteen Parkinson’s disease

brains used for RT-qPCR replication study. Post-mortem intervals

(PMI), RNA integrity numbers (RIN) and ages at death for the

fourteen Parkinson’s disease (PD) brains used for RT-qPCR

verification of the five differentially expressed miRNA.

(DOCX)

Table S6 Read statistics for miRNA-sequence analysis. Sum-

mary of Illumina miRNA-sequence read and quality control

statistics generated from the FASTX-toolkit.

(DOCX)

Table S7 Mean and standard deviation inner-distance estimates

for TopHat2 alignment. Statistics used to estimate the distance

between paired-end reads, generated from picardTools.

(DOCX)

Table S8 Read statistics for mRNA-sequence analysis. Summa-

ry of Illumina mRNA-sequence read and quality control statistics

generated from the FASTX-toolkit.

(DOCX)
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