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Abstract

Background: A wealth of genome sequences has provided thousands of genes of unknown function, but
identification of functions for the large numbers of hypothetical genes in phytopathogens remains a challenge that
impacts all research on plant-microbe interactions. Decades of research on the molecular basis of pathogenesis focused
on a limited number of factors associated with long-known host-microbe interaction systems, providing limited
direction into this challenge. Computational approaches to identify virulence genes often rely on two strategies:
searching for sequence similarity to known host-microbe interaction factors from other organisms, and identifying islands
of genes that discriminate between pathogens of one type and closely related non-pathogens or pathogens of a
different type. The former is limited to known genes, excluding vast collections of genes of unknown function
found in every genome. The latter lacks specificity, since many genes in genomic islands have little to do with
host-interaction.

Result: In this study, we developed a supervised machine learning approach that was designed to recognize
patterns from large and disparate data types, in order to identify candidate host-microbe interaction factors. The
soft rot Enterobacteriaceae strains Dickeya dadantii 3937 and Pectobacterium carotovorum WPP14 were used for
development of this tool, because these pathogens are important on multiple high value crops in agriculture
worldwide and more genomic and functional data is available for the Enterobacteriaceae than any other microbial
family. Our approach achieved greater than 90% precision and a recall rate over 80% in 10-fold cross validation tests.

Conclusion: Application of the learning scheme to the complete genome of these two organisms generated a list of
roughly 200 candidates, many of which were previously not implicated in plant-microbe interaction and many of
which are of completely unknown function. These lists provide new targets for experimental validation and
further characterization, and our approach presents a promising pattern-learning scheme that can be
generalized to create a resource to study host-microbe interactions in other bacterial phytopathogens.
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Background
Interactions between plant-associated microbes and their
eukaryotic hosts are complex biological processes involv-
ing hundreds, if not thousands, of genes from each organ-
ism. Understanding the molecular mechanisms of such
complex processes at the systems-scale is seriously ham-
pered by the lack of a comprehensive list of gene products
that contribute for even a single bacterial or fungal
pathogen. Variation in lifestyles and pathogenic poten-
tial between organisms makes the challenge all the
greater. Genome sequencing has dramatically increased
the potential for large-scale screens to identify genes in-
volved with host-microbe interactions. Direct experimen-
tal evidence is the obvious gold standard, but not all
significant pathogens are experimentally tractable, and se-
lection of experimental conditions and convenient hosts
for high-throughput screens can limit discovery. More tar-
geted experiments can be designed to probe function
more completely, but these are time consuming and gen-
erally limited to a smaller number of candidate genes.
Further, it is unclear what experiments to conduct if a
candidate gene is of completely unknown function. Im-
portantly, genes of unknown function make up a sub-
stantial fraction of each sequenced genome, and it is
likely that among these lie some of the greatest poten-
tial for discovery of truly novel aspects of host-microbe
interaction (as well as many other complex biological
processes).
Computational approaches to identify potential host-

microbe interaction factors and predict their specific
functions can be a valuable way to guide experimenta-
tion, and may be the only option for some recalcitrant
organisms. Typical bioinformatics strategies include search-
ing for sequence similarity to gene products known to con-
tribute to host-microbe interaction in other organisms, and
comparing genomes to identify gene islands that discrimin-
ate between pathogens of one type and closely related non-
pathogens or pathogens of a different type. Both strategies
are useful, but the former is limited to known genes and de-
tectable levels of sequence similarity, and thus excludes the
vast collections of genes of unknown function. The latter
lacks specificity, since many genes in genomic islands may
have little to do with host interactions, and the definition of
rules for the distribution across organisms can be arbitrary.
There are no simple rules to define the relevant distribution
for the set of orthologous genes across genomes, especially
when there are a large number of genomes being compared.
Further, it is preferable in many situations to factor in other
features such as genome context or gene expression data as
additional evidence sources to predict whether a gene is as-
sociated with host-microbe interaction processes.
More sophisticated computational prediction strategies

can introduce a variety of other types of evidence, but inte-
gration of diverse data types remains a challenge. Machine

learning techniques are ideally suited for pattern recogni-
tion tasks to accommodate diverse biological data sources
into a single predictive analysis to achieve superior per-
formance over any individual type of data, especially where
(1) data sets are large, (2) with heterogeneous sources, and
(3) patterns are not easily described by a compact set of
rules, all of which are true for the task of genome-scale
identification of host-microbe interaction factors. Super-
vised machine learning schemes have been receiving in-
creasing attention recently as a promising approach to
study diverse biomedical problems [1-5], but no previous
study focused on host-microbe interaction factors. In this
study, we developed a supervised machine learning strategy
to identify the gene inventory involved with host-microbe
interaction from two soft rot-associated enterobacteria,
Dickeya dadantii (aka. Erwinia chrysanthemi) 3937 [6],
and Pectobacterium carotovorum (aka. Erwinia caroto-
vorum) WPP14 [7]. Our approach allows us to incorp-
orate a wide variety of input data, including homology
information, genome context, predicted transcription
factor binding sites, and microarray transcript profiles.
It has achieved promising results with precision rate
over 90% with recall rate over 80%. Further, our study
generates an extended list of roughly 200 candidate
interaction factors and provides experimentally test-
able hypotheses to stimulate further research on the mo-
lecular mechanisms of soft rot pathogenesis and survival
in plant hosts. This study represents a promising applica-
tion of pattern-recognition methods for identification
of factors involved in complex biological processes,
which can be generalized to study other plant-associated
organisms.

Methods
Target genome selection
Soft rot-associated enterobacteria are economically im-
portant pathogens that infect a broad range of plant spe-
cies [8-11]. Soft rot bacterial pathogenesis is characterized
by rapid necrosis of parenchymatous tissues, mainly due
to the action of secreted enzymes that degrade the middle
lamellae and the primary cell wall [12]. Continuing discov-
ery of additional genes involved in survival in a plant host
or which contribute directly to pathogenesis [13-19] sug-
gests that even for well-studied organism such as Dd3937,
we have not yet achieved a comprehensive list of host-
microbe interaction factors or a complete understanding
of their precise roles. In this study, we target two soft rot-
associated phytopathogens for genome-wide identification
of host interaction factors (Table 1). One, Dickeya dadan-
tii 3937 (Dd3937) was originally isolated from Saintpaulia
ionantha [20,21], and is a long-standing model system for
this group of organisms [6]; the other, Pectobacterium car-
otovorum carotovorum WPP14 was isolated from infected
potato in Wisconsin [7,22].
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Colonization and survival in plants requires numerous
factors including proteins involved with iron assimila-
tion, protein secretion, exopolysaccharide synthesis, mo-
tility, and stress-resistance [23,24]. Five Gene Ontology
terms were identified that partition the majority of the
positive class training set data into distinct aspects of
host-microbe interactions (Table 2). We included all data
points in most of our analyses, but also conducted ana-
lyses on the partitions defined by these GO annotations
(Additional file 1a and 1b). This allows us to test whether
different subsystems contain distinct patterns that can be
recognized by our learning schemes, while avoiding sub-
systems with too few genes to provide sufficient informa-
tion to train the learning schemes.

Assembling training datasets
The data set for each target genome is assembled separ-
ately. Genome sequences, predicted proteins and anno-
tations for both genomes were obtained from the ASAP
database [25,26]. Each protein-coding gene in a target
genome is considered a data point. The target class label
in this specific learning task indicates whether or not a
data point has an association with the biological pro-
cesses involved in host-microbe interaction. A positive
class label means the data point is related to host-
microbe interaction. A negative class label indicates the
data point is not likely to be directly involved in host-

microbe interaction, rather it is associated with core bio-
logical processes such as transcription and translation or
central pathways of metabolism. Positive and negative
class labels were assigned by human experts.
For each data point, we assemble a vector of features

(or attributes), to characterize it. In our preliminary ana-
lyses, we sought to be inclusive in construction of the
data matrix. We included 606 attributes for Dd3937 and
598 attributes for WPP14, and these attributes fall
roughly into four different categories listed in Table 3.
(1) Sequence homology data was obtained from BLASTP
searches of the proteins from the target genomes against
239 gamma-proteobacteria from 14 bacterial orders and
58 genomes from other bacterial families outside of
gamma-proteobacteria (details in Additional file 2a and
2b). 2) We further summarized sequence homology infor-
mation by classifying organisms based on phenotypes
(e.g.., strict anaerobe), taxonomy (e.g.., the order of
Enterobacteriales), habitat (e.g., aquatic), and host type
(e.g. plant-associated). Based on this information, we
calculated a series of attributes summarizing the hom-
ology data. For instance, for each gene, we calculate
the number of genomes with a homolog, the fraction
of genomes with homologs that are plant-associated,
the average similarity scores between homologs, the
ratio of the similarity score of plant-associated versus
animal-associated homologs, the percentage of hits in
the order of Enterobacteriales, and the percentage in
facultative anaerobic organisms, etc. Additional file 2c
shows the number of genomes in each category used
to generate summary attributes. 3) Information related
to function and regulation including transcriptome and
proteome profiles was incorporated into the attribute vec-
tors (details in Additional file 3a), including microarray
experiments with a pecS mutant strain [27], exposure to
phenolic acids [28], and growth on potato tuber and stem
[29]. For Dd3937, we also integrated the presence of pre-
dicted binding sites for 32 transcriptional regulators, in-
cluding ones related to gene regulation during infection
such as PecS [17,27], KdgR [30], H-NS [31,32], and CRP
[33,34]. We did not include binding site data for WPP14
because the large number of contigs complicates predic-
tion. 4) Finally, we incorporated over 20 basic gene or pro-
tein features (Table 3), such as GC content, amino acid
composition and computed structural and physiochemical
features of proteins and peptides [35], operon prediction

Table 1 Genome-wide target class label assignment to each protein coding gene as a data point for Dickeya didantii
3937 and Pectobacterium carotovorum WPP14

Total # CDS* IF** CF** Training data set Testing data set Pseudogene

Dd3937 4520 267 1264 1531 2989 28

WPP14 4590 233 1111 1344 3246 174

*we only use protein coding genes and pseudogenes are not included.
**IF stands for host-microbe interaction factor; CF stands for genes involved in core biological processes

Table 2 Ontology for host-microbe interaction, and category
assignment genome-wide for data points in Dickeya dadantii
(Dd3937) and Pectobacterium carotovora (WPP14)

GO term and name Dd3937 WPP14

GO:0052192 movement in environment of other
organism involved in symbiotic interaction;

41 41

GO:0052048 interaction with host via secreted
substance involved in symbiotic interaction

54 53

GO:0051816 acquisition of nutrients from other
organism during symbiotic interaction

103 81

GO:0044413 avoidance of host defenses 43 34

GO:0043903 regulation of symbiosis, encompassing
mutualism through parasitism

13 9

*GO:0044403 symbiosis, encompassing mutualism
through parasitism

13 15

Total 267 233

*this term is a parent term for all others listed in this table and is used as a
generic catch all for host-microbe interaction factors lacking more specific GO
term annotations.

Ma et al. BMC Genomics 2014, 15:508 Page 3 of 18
http://www.biomedcentral.com/1471-2164/15/508



[36], COG functional category [37], and codon adaptation
index [38,39]. Other gene features are derived from more
complex analyses, including: (a) the phylogenetic profile
method [40], which is based on the theoretical framework
that co-occurrence of functionally linked proteins will be
preserved by natural selection [41]; (b) Phylogenetic con-
servation which classifies genes according to distribution
at different branching depths based on our phylogenetic
framework for enterobacteria [11]; (c) PSORTb v3.0 [42]
which predicts localization as cytoplasmic, cytoplasmic
membrane, periplasmic, extracellular, or unknown; (d)
Protein fingerprint scanning (a similarity search tech-
nique able to identify distantly related proteins) against
identified fingerprints associated with virulence factors
in PRINTS database [43,44]; and (e) the gene neighbor
method which identifies gene physical adjacency on a
chromosome [45], based on the theory that neutral evolu-
tion tends to shuffle gene orders while functionally associ-
ated genes have conserved gene order. We employ both
150 bp and 300 bp as a threshold distance to define gene
neighbors using ad hoc code.

Overview of supervised machine learning procedures
The learning procedure is illustrated in Figure 1. (1) First
training and testing data sets are assembled by assigning
target class labels and forming attribute vectors. (2) Data
preprocessing is performed to improve representation
and quality, including attribute selection and data trans-
formation, as well as data partitioning according to GO
annotations. (3) Both data preprocessing and pattern
learning schemes were implemented in Weka package
version 3.5.6. [56,57]. Both base and ensemble classifiers
were trained to recognize classification patterns. Seven
base classifiers were employed in this study including
decision tree [58], support vector machine (SVM) using
sequential minimal optimization [59-61], Bayesian prob-
abilistic approaches including Bayesian network [62,63]
and naive bayes [64], instance based learner k nearest
neighbor [65], and propositional rule learner using re-
peated incremental pruning to produce error reduction
(RIPPER) [66]. On top of base classifiers, ensemble clas-
sifiers, such as bagging and boosting classifiers, combine
multiple models by either sub-sampling a given dataset

Table 3 List of all attributes categories used in data set formation in this study, and number of attributes in each
categories for all data points in training data set for Dickeya dadantii (Dd3937) and Pectobacterium carotovorum
(WPP14)

Category Subcategory Dd3937 WPP14 Reference

Sequence homology Subtotal 297 297

Gamma strains 239 239 Additional file 2a

Non-gamma strains 58 58 Additional file 2b

Phenotypes of interest Subtotal 194 194

Taxonomy Statistics 76 76 Additional file 2c, d

Lifestyle Statistics 118 118 Additional file 2c, d

Gene characteristics Subtotal 23 21

GC content 1 1 This study

subcellular localization 1 1 [42,46]

phylogenetic profile 6 6 [40,41]

fingerprints scanning 3 3 [43,44]

codon adaptation index (CAI) 3 3 [47,48]

physical adjacency (gene neighbor) 2 2 [49,50]

Operon prediction 1 1 [36,51]

phylogenetic conservation 1 1 This study

COG functional category 1 1 [52]

Genomic island 4 1 [53,54]

computed structural and physicochemical
features of proteins and peptides

40 66 [35,55]

Functional genomics Subtotal 52 3

binding site prediction 32 0 Additional file 3b

Gene expression 14 3 Additional file 3a

proteomics 6 0 Additional file 3a

Total 606 581
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to achieve greater predictive accuracy and reduce over-
fitting bias [67-70] or combining of probability estimates
from different methods [71-73]. Detailed algorithm de-
scriptions and specific settings are described in Additional
file 4. (4) Classifier training is followed by classifier per-
formance evaluation, comparison, and selection. Cross-
validation is a technique to assess how accurately a
predictive model will perform on an independent data
set and whether the model recognizes a pattern that is
generalized enough to apply to unseen data [74,75].
(5) Based on performance on the training set, we se-
lected the best classifiers to build models and make
predictions for the genes that were not part of the
training sets.

Data preprocessing
Attribute extraction, or data transformation, was used to
improve the representation of the data sets. Data trans-
formation techniques create extracted attributes from
the original attributes, in order to normalize so different
attributes are on the same approximate scale, transform
all numeric attributes in the dataset to have zero mean
and unit variance [76], perform linear mapping of the
data to a lower dimensional space in such a way that the
variance of the data is maximized using principal com-
ponents analysis (PCA) [77], or combine attributes where
the aggregate feature is more useful than keeping them
separate. Since many attributes used in our analysis are
continuous data, we also employed data discretization
techniques that convert continuous features to discretized
or nominal ones to accommodate both data types in the
same analysis [78,79]. Another important component
in data preprocessing is attribution selection, which is

removal of uninformative data since excessive dimen-
sionality can reduce the effectiveness of learning tasks.
It includes two steps: an initial clean-up step where the
attributes of each type (as listed in Table 3) are tested
individually in order to remove the ones with insignifi-
cant contribution to classification, which is especially
useful for the data types with highest dimensionality.
The second step is to evaluate the importance of an at-
tribute passed on from the initial step, and to remove
the ones with low importance measurement scores.
We used random forest attribute importance measures
in this step, which are based on the decrease of classifier
performance when values of a variable in a bifurcating tree
node are permuted randomly [80], implemented in the ex-
tended version of weka 3.5.1 [81,82] (More details in
Additional file 4). Furthermore, we performed data decay
analysis to define compact attribute sets that maintain in-
formativeness. This involved ranking all attributes based
on importance measures from 100 runs using random for-
est classifiers, gradually decreasing the number of attri-
butes by window size 10 based on their rank, recording
the performance of all decayed data sets, and defining the
essential set as the point where the overall performance
score began to drop.

Evaluating the performance of different learning schemes
We used 10-fold cross-validation analyses to evaluate
the learned classifiers on random subsets of data with-
held from the training sets and averaged across multiple
replicates. We recorded a variety of performance statis-
tics for each run including accuracy, true positive rate
(TPR or recall), and precision for the positive target class.
We also used ROC (Receiver Operating Characteristic)

Figure 1 Flow chart of the procedures in performing supervised machine learning tasks of host-microbe interaction factor prediction.
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curves, PR (Precision-Recall) curves, and the AUC (area
under the curve) to evaluate the performance of each con-
structed classifier. In this particular learning task, we value
precision rate as the most important statistic. Precision
specifies the proportion of relevant objects being retrieved
among all retrieved ones, a factor that is particularly im-
portant to define a candidate list with high confidence for
downstream experimental validation. On the other hand,
recall is the proportion of relevant objects that are re-
trieved. When a situation does not allow both precision
and recall rates to be high at the same time, we give the
precision rate precedence over the recall rate. ROC and
PR curves are widely regarded as more appropriate than
any individual statistic in evaluating classification algo-
rithms [83]. A ROC curve is a graphical technique that
plots the correlation of correctly classified data points with
falsely classified ones, in order to characterize the tradeoff
between true positive and false positive rates. PR curves
depict the correlation of how precisely the algorithm iden-
tifies the data points in their class with how many “true”
data points are retrieved and provide a good complement
to ROC curves which can be overly optimistic [84].

Results and discussion
Many computational methods have been used to identify
gene functions involved in host-microbe interaction, and
most of them rely primarily on homology-based searches
using known interaction determinants as bait to identify
new candidate genes. These methods are often success-
ful, but neglect many genes of unknown function and
strain/clade-specific genes, which could play an import-
ant role in host-microbe interactions and bacterial niche

adaptations [85,86]. Overcoming these limitations with
the current methodologies is critical to expanding our
understanding of the complex molecular mechanisms
underlying host-microbe interactions. The value of ma-
chine learning not only lies in deriving knowledge based
on pattern recognition, but also providing an automated
alternative to having a human expert repeatedly sift through
large and complex datasets.

Some attributes are more useful than others to predict
host-microbe interaction
Our results indicate that although all categories outperform
randomized data, different major categories of attributes
contribute differently to learning scheme performance as
shown in the ROC curve for Dd3937 in Figure 2 and
Additional file 4. Gene features and summarized hom-
ology information were most useful in classifying host-
microbe interaction factors, while data related to computed
structural or physiochemical characteristics, and gene
functionality data, including gene expression, binding
site predictions, and proteomics profiles, performed less
well. Further analysis of the gene functionality attributes
using random forest importance measurement scores in-
dicates that the data corresponding to many of these attri-
butes are relatively noisy and do not correlate well with
the target class, though a subset, such as KdgR binding
site predictions, do correlate well. Some of our attributes
are themselves the results of other pattern recognition
methods. For example, phylogenetic profiles, one of the
most useful attributes, are based on an unsupervised
learning approach, where no prior information is given
to the learner regarding the output or class label. Our

Figure 2 ROC curve to compare classifier performance of different data sets containing various types of attributes as listed in Table 3.
(TPR: True Positive Rate; FPR: False Positive Rate).
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analysis is a good example of how supervised and un-
supervised learning algorithms can be combined to make
better inference.
We conducted data decay analysis to obtain additional

insight into the most informative attributes. The size of
the final compact attribute sets is 45 and 31 for Dd3937
and WPP14, respectively, as shown in Additional file 5b.
The majorities of attributes in the compact sets are sum-
maries of homology data according to phenotypes or
computed gene features, and many of the retained attri-
butes are shared between both strains despite the inde-
pendent machine learning analyses. The common list
includes five gene feature attributes including phylo-
genetic profile, gene cluster from operon prediction, gene
neighbor, cellular localization, and amino acid compos-
ition. The most informative homology attributes include
percentage, average value, or sum value of a given gene
having homologous hits with organisms having different
pathogenicity and habitat phenotypes. In addition, the
homology data summarized by phenotypes related to
growth condition and taxonomic groups is also inform-
ative including having homologs in anaerobic organisms,
facultative anaerobes and their ratio, and having homologs
in other gamma-proteobacteria, and enterobacteria, all of
which appear in the selected attribute list for both strains.
Overall, these results suggest that attributes which are

relatively simple to assemble from standard BLASTP
searches, coupled with a handful of additional easily com-
puted features are sufficient to achieve good performance

in this machine learning task. This is particularly encour-
aging for development of a generalized approach for fu-
ture applications to predict host-interaction factors across
a broad range of bacterial phytopathogens.

Preprocessing and partitioning can improve performance
The PR curve shown in Figure 3 illustrates the improve-
ment in performance that we achieved through attribute
selection, data discretization, and data partitioning ac-
cording to GO terms. 1) Attribute selection generates
more cost-effective learning schemes by reducing data set
dimensionality by removing uninformative attributes, in
order to improve the overall performance of the learning
schemes [87,88]. After benchmarking different attribute
selection techniques such as filter (e.g., subset attribute se-
lection [89]) and wrapper methods (e.g., Naive Bayes with
forward selection algorithm) as well as attribute ranking
(e.g., SVM Attribute evaluator [90] and information gain),
we chose random forest importance measures in this
study because it is robust to noise, relatively computation-
ally efficient, and is suitable for data sets with high dimen-
sionality hence reducing the risk of overfitting [81]. After
feature selection, our data sets contain 105 and 122 attri-
butes, which are 17.3% and 21% of the original data size of
Dd3937 and WPP14, respectively. 2) By comparing differ-
ent data transformation techniques (Additional file 6a),
supervised data discretization was shown to be substan-
tially better for improving classifier performance than
other methods. Supervised discretization techniques are

Figure 3 PR (Precision-Recall) curve to evaluate strategies for boosting classifier performance.

Ma et al. BMC Genomics 2014, 15:508 Page 7 of 18
http://www.biomedcentral.com/1471-2164/15/508



suitable for high dimensional data as they significantly re-
duce the number of possible values of continuous features,
and also discretize an attribute according to its class label
[91,92]. 3) We also saw an improvement when we coupled
the preprocessing with partitioning the learning task into
several separate tasks based on assigning genes in the
training set according to GO terms. This result suggests
that some subsystems, such as localization in host and se-
cretion of host interaction proteins, are substantially more
informative and suitable for our learning task (Additional
file 6b). Other subsystems, such interaction with host
defense systems and transcriptional regulation of host
interaction genes, performed less convincingly, possibly
because these subsystems are involved in host-microbe
interaction but also include other genes not implicated in
this biological process. For example, the global DNA-
binding regulator hns gene also modulates flagella genes

and lipopolysaccharide production that are important for
initial bacterial attachment to host cell surfaces [93,94].
These data points were removed from subsequent ana-
lysis. Our result suggests that our learning schemes hold
predictive power for the subsystems involved with com-
plex biological processes during host-microbe interaction,
but do not accurately distinguish the patterns for some
subsystems that are closely intertwined with other cellular
processes.

The performance of machine learning schemes is
statistically encouraging
In this study, we employed several strategies to mitigate
the potential overfitting issues that are important for ef-
fective supervised machine learning tasks. Simply put,
overfitting occurs when the predictive model learns a
pattern that is overly specific to the training data but not

Table 4 Statistics for positive class object prediction and parameters used in selected learning schemes for both
Dickeya dadantii 3937 and Pectobacterium carotovorum WPP14

Classifiers Precision TPR/recall/sensitivity specificity/TNR accuracy F-measure AUC

Dd3937

Random Forest 0.93 0.81 0.98 0.94 0.87 0.97

Bayesian Network 0.91 0.85 0.97 0.94 0.88 0.97

SMO using RBF kernels 0.93 0.85 0.98 0.95 0.89 0.92

SMO using polynormial kernels 0.91 0.87 0.97 0.95 0.95 0.89

Adaptive Boosting (Naïve Bayes)* 0.84 0.89 0.95 0.93 0.87 0.96

Adaptive Boosting (Decision Tree)* 0.96 0.91 0.99 0.97 0.93 0.98

Adaptive Boosting (IBK)* 0.96 0.84 0.99 0.95 0.90 0.99

Adaptive Boosting (Decision Stump)* 0.92 0.87 0.98 0.95 0.89 0.97

Multi-Boosting (Decision Tree)* 0.97 0.91 0.99 0.97 0.94 0.98

Multi-Boosting (IBK)* 0.91 0.77 0.98 0.93 0.84 0.93

Multi-Boosting (Naïve Bayes)* 0.90 0.91 0.97 0.95 0.91 0.96

Logit-Boosting (Decision Stump)* 0.91 0.90 0.97 0.96 0.91 0.98

WPP14

Random Forest 0.89 0.81 0.97 0.93 0.85 0.97

Bayesian Network 0.90 0.83 0.97 0.94 0.87 0.97

SMO using RBF kernels 0.94 0.84 0.98 0.95 0.89 0.91

SMO using polynormial kernels 0.93 0.86 0.98 0.95 0.95 0.89

Adaptive Boosting (Naïve Bayes)* 0.89 0.89 0.97 0.95 0.89 0.96

Adaptive Boosting (Decision Tree)* 0.95 0.86 0.99 0.96 0.90 0.98

Adaptive Boosting (IBK)* 0.87 0.83 0.96 0.93 0.85 0.92

Logit-Boosting (Decision Stump)* 0.90 0.85 0.97 0.94 0.88 0.97

Multi-Boosting (Decision Tree)* 0.94 0.86 0.98 0.96 0.90 0.98

Multi-Boosting (Decision Stump)* 0.91 0.75 0.98 0.93 0.82 0.97

Multi-Boosting (Naïve Bayes)* 0.90 0.89 0.97 0.95 0.89 0.96

Logit-Boosting (Decision Stump)* 0.90 0.87 0.97 0.95 0.89 0.97

*: denote ensemble classifiers, with base learner being shown within parenthesis.
Abbr: SMO: Support Vector Machine using Sequential Minimal Optimization; IBK: instance based learner with K-nearest neighbor classifier; RBF: Radial Basis
Function kernels.
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generalized enough to perform equally well on unseen
data [95]. We strived to maximize inclusion of relevant
attributes to mitigate the problem of overfitting to in-
crease model replicability [96], while excluding unim-
portant attributes that may be detrimental to pattern
recognition schemes performance. Additionally, we hold
out pristine examples for testing, integrated result over
multiple classifiers retaining only predictions that show
a high degree of consensus, chose classifier parameters
based on the cross-validation tests, and used a simpler
predictor where possible, to address the overfitting issue.
Overall the results of using supervised machine learning

schemes on host-microbe interaction factor prediction are

statistically encouraging, achieving over 84% precision rate
and 75% recall rate from 10-fold cross validation evaluation.
We used a nested 10-fold cross-validation that includes an
“outer” 10-round cross-validation, which averages data vari-
ability from 10 different data partitions. Each data partition
sets aside 10% of the data set (outer test set) to measure the
performance of the predictive model generated from the
other 90% of the data (outer training set). Each outer train-
ing set is used to choose the value of tuning parameters for
this model in order to achieve optimal performance. The
parameter-tuning step is especially important for SVM and
K-nearest neighbor learning schemes which are particularly
sensitive to parameter settings (Stone 1977). Performance

Figure 4 Comparison of the selected learning schemes. (a) ROC curve for Dickeya dadantii 3937, (b) ROC curve for Pectobacterium
carotovorum WPP14. (TPR: True Positive Rate; FPR: False Positive Rate).
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Table 5 Top 50 predicted host-microbe interaction factors from Dickeya dadantii 3937

FeatureID Prob Name Annotation

ABF-0018715 0.922 virB8 Inner membrane protein forms channel for type IV secretion
of T-DNA complex (VirB8)

ABF-0020188 0.922 Predicted cell-wall-anchored protein SasA (LPXTG motif) this
is up-regulated by hrpY; we have a mutation in this gene.

ABF-0019950 0.922 Putative multicopper oxidase

ABF-0019360 0.922 hypothetical protein

ABF-0019151 0.922 chrysobactin synthetase cbsF

ABF-0019124 0.922 Biopolymer transport protein ExbD/TolR

ABF-0019122 0.922 MotA/TolQ/ExbB proton channel family protein

ABF-0019117 0.922 sftP TonB-dependent receptor

ABF-0019116 0.922 hypothetical protein

ABF-0018783 0.922 putative transmembrane protein

ABF-0018775 0.922 Holin

ABF-0018724 0.922 putative ATP/GTP-binding protein remnant

ABF-0018722 0.922 virB2 Major pilus subunit of type IV secretion complex (VirB2)

ABF-0047137 0.922 hypothetical protein

ABF-0018717 0.922 virB6 Integral inner membrane protein of type IV secretion
complex (VirB6)

ABF-0018716 0.922 virB7 TriF protein

ABF-0018713 0.922 virB10 Inner membrane protein forms channel for type IV secretion
of T-DNA complex (VirB10)

ABF-0018712 0.922 virB11 ATPase provides energy for both assembly of type IV secretion
complex and secretion
of T-DNA complex (VirB11)

ABF-0018601 0.922 hypothetical protein

ABF-0018207 0.922 hypothetical protein

ABF-0018199 0.922 ganC putative truncated PTS system EIIBC component

ABF-0017777 0.922 hecA2 Putative member of ShlA/HecA/FhaA exoprotein family

ABF-0015606 0.922 ABC transporter permease protein

ABF-0015604 0.922 Amino acid ABC transporter, periplasmic amino acid-binding
protein

ABF-0015543 0.922 hypothetical protein 15544 is up-regulated by hrpY. Is 15543
in the same operon?
We have a mutation in 15544

ABF-0015387 0.922 nipE necrosis-inducing protein

ABF-0014838 0.922 putative exported protein

ABF-0014623 0.922 Type IV pilus biogenesis protein PilN

ABF-0018720 0.922 virB4 ATPase provides energy for both assembly of type IV secretion
complex and secretion
of T-DNA complex (VirB4)

ABF-0018714 0.922 virB9 VirB9

ABF-0047204 0.922 hypothetical protein

ABF-0015913 0.921 ppdA Prepilin peptidase dependent protein A

ABF-0017252 0.921 Conjugative transfer protein TrbG

ABF-0018195 0.921 ganG galactan ABC transport system, permease component

ABF-0016407 0.921 hypothetical protein

ABF-0018205 0.921 Pirin

ABF-0019418 0.921 Cellulose 1, 4-beta-cellobiosidase precursor
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statistics for different classifiers are listed in Table 4, exclud-
ing classifiers with precision rates < 80%. ROC curves of se-
lected classifiers for WPP14 are shown in Figure 4.
The comparison of base classifier performances indi-

cates SVM and random forest outperforms other base
classifiers (data not shown), and ensemble classifiers
generally perform better than base classifiers, especially
the boosting algorithms using decision trees as the base
learner. The ensemble classifiers integrate results over
multiple classifiers in order to average out the “classifier
effect”. For example, some classifiers such as Naïve Bayes
can be overly optimistic with a lower precision rate [97],
and adaptive boosting ensemble classifiers with Naïve
Bayes as the base learner can optimize precision and total
accuracy rate through incrementally iterative learning pro-
cesses [98]. The performance curves of selected classifiers
are shown in Figure 4a and 4b for Dd3937 and WPP14 re-
spectively. The best performing classifier for Dd3937 is
the adaptive boosting ensemble classifier [70] with deci-
sion trees as the base learner, which achieved a precision
rate above 97% with over 87% recall rate. The best per-
forming classifier for WPP14 is the multi-boosting ensem-
ble classifier [69] with decision trees as the base learner,
which reached a precision above 94% with over 82% recall
rate. Using the constructed predictive models from se-
lected classifiers, we are able to make predictions for data
points with previously unknown relation to host-microbe
interactions.

A significantly extended list of host-microbe interaction
factors is revealed
Application of different learned classifiers to the target
genomes as a whole allows us to generate a conservative
set of predictions for downstream experimentation. We
pay the most attention to precision to ensure the re-
trieved data points are most relevant to host-microbe

interaction to facilitate subsequent experimental valid-
ation. In order to call a gene a “predicted host-interaction
factor”, we required strict consensus across the different
classifiers with an average precision score in excess of
thresholds defined by the ROC curves (92% and 89% for
Dd3937 and WPP14, respectively). The selected classifiers
generally agree with each other, and about two thirds of
all unknown genes are unanimously predicted by all clas-
sifiers to be either host-microbe interaction factors or
genes involved in core biological processes. Using these
criteria, a total of 1726 genes (57.7% of Dd3937 genes)
in Dd3937 and 2180 genes (67.2% of WPP14 genes) in
WPP14 are predicted not to involved in host-microbe in-
teractions. There are 211 genes (7.1% of Dd3937 genes) in
Dd3937 and 216 genes (6.7% of WPP14 genes) in WPP14
classified as putative interaction factors. The remaining
1052 genes (35.1% of Dd3937 genes) and 850 genes
(26.2% of WPP14 genes) are left as unclassified. The top
50 predicted host-microbe interaction factors for Dickeya
dadantii 3937 and Pectobacterium carotovorum WPP14
are listed in Tables 5, 6 and 7, and the entire list of pre-
dicted host-microbe interaction factors for both strains
are in Additional file 7a and 7b. These lists partially over-
lap, with 56 orthologs identified as interaction factors in
both organisms. Given the phylogenetic relationship be-
tween these two phytopathogens and the similarity of
their pathogenic phenotypes, we did expect this result;
however, the learning tasks were executed independently
and agreement across organisms was not a given.
One striking observation is the large number of genes

of unknown function from the predicted list of host-
microbe interaction factors. Among all predicted inter-
action factors, over 30% of them currently have no or
very little annotated information, and many of them are
ORFans [99-102] without any homolog to 297 bacterial
genomes inspected. Among the 56 genes found in

Table 5 Top 50 predicted host-microbe interaction factors from Dickeya dadantii 3937 (Continued)

ABF-0019468 0.921 hypothetical protein

ABF-0019566 0.921 hypothetical protein

ABF-0016680 0.921 Iron utilization protein

ABF-0020727 0.921 sttG General secretion pathway protein G

ABF-0019115 0.921 hypothetical protein

ABF-0015381 0.921 avrM Avirulence protein

ABF-0018723 0.921 virB1 VirB1

ABF-0015598 0.921 hypothetical protein

ABF-0015609 0.921 Branched-chain amino acid aminotransferase

ABF-0018193 0.921 ganF galactan ABC transport system, permease component

ABF-0017097 0.921 Methyl-accepting chemotaxis protein

ABF-0020433 0.921 hypothetical protein

ABF-0019153 0.921 cbsH chrysobactin oligopeptidase CbsH
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interaction factor lists for both strains, roughly one
third have no clear functional assignment. 13 hypo-
thetical proteins in both strain lists are “unknown un-
knowns”, a term used to indicate there is no information
at all available for that gene [103]. The other 9 of them are
so-called “known unknown” proteins, meaning they only
have information in general biological terms, such as puta-
tive exported protein, putative transmembrane protein,
and probable lipoprotein. This result suggests a substantial
portion of the genome cannot be screened using conven-
tional similarity-based searches, and our more sophisti-
cated pattern recognition approach was able to identify
candidate interaction factors that would be missed using
homology-based methods.
The remaining two-thirds of predicted interaction fac-

tors are annotated with various (at least partially) inform-
ative functions. The lists include genes with previously
characterized roles in host-microbe interaction in these or
very closely related organisms that were overlooked by the
human experts who assembled the training set. For ex-
ample, Dd3937 secretes plant cell wall degrading enzymes
through a type II secretion system for plant host cell wall
degradation in turn using the released nutrients as carbon
sources for growth [104], and a group of genes related to
this process are predicted with high confidence including
predicted proteins previously reported to play an accessory
role in utilization of galactose, a major component of pec-
tin, in Dd3937 [105]. A knockout mutant of a necrosis-
inducing protein included in the prediction list has been
experimentally shown to have reduced virulence in a Pecto-
bacterium strain [106]. Further, our lists also include genes
with homologs implicated in host-microbe interaction in
more distantly related organisms. There are 9 genes that
were shown with direct or indirect evidence to be involved
with metal homeostasis in different bacteria, including
exbB, exbD, and tonB genes which are essential for ferric
iron uptake in Escherichia coli [107], Xanthomonas cam-
pestris [108], Pseudomonas putida [109], and Photorhabdus

Table 6 Top 50 predicted host-microbe interaction factors
from Pectobacterium carotovorum WPP14

ID Prob Name Product

ADT-0001591 0.912 hypothetical protein

ADT-0003750 0.912 putative exported protein

ADT-0000805 0.912 dltB peptidoglycan biosynthesis protein

ADT-0003928 0.911 pectate lyase

ADT-0003247 0.911 methyl-accepting chemotaxis protein

ADT-0000806 0.911 dltD poly(glycerophosphate chain) D-alanine
transfer protein

ADT-0003745 0.911 ABC transporter ATP binding protein

ADT-0002063 0.911 hypothetical protein

ADT-0000400 0.911 hasE HlyD family secretion protein

ADT-0003089 0.911 N-terminal fragment of a diguanylate
cyclase (pseudogene)

ADT-0003418 0.910 methyl-accepting chemotaxis protein

ADT-0000941 0.910 methyl-accepting chemotaxis protein

ADT-0006368 0.910 hypothetical protein

ADT-0005582 0.910 hypothetical protein

ADT-0000983 0.910 methyl-accepting chemotaxis protein

ADT-0001252 0.910 ABC transporter permease protein

ADT-0003245 0.910 methyl-accepting chemotaxis protein

ADT-0000027 0.910 methyl-accepting chemotaxis protein

ADT-0003542 0.909 putative type IV pilus protein

ADT-0001195 0.909 LysR-family transcriptional regulator

ADT-0004315 0.909 astB sulfate ester ABC transporter permease
protein

ADT-0003152 0.909 methyl-accepting chemotaxis protein

ADT-0002357 0.908 methyl-accepting chemotaxis protein

ADT-0000543 0.908 ABC transporter, substrate binding protein

ADT-0001392 0.908 putative exported protein

ADT-0002087 0.908 putative signaling protein

ADT-0001868 0.908 LysR-family transcriptional regulator

ADT-0000803 0.908 acyl carrier protein

ADT-0000571 0.908 putative cellulase

ADT-0000535 0.908 putative lipoprotein

ADT-0001404 0.907 hypothetical protein

ADT-0004320 0.907 sftP TonB-dependent receptor

ADT-0001744 0.907 putative exported protein

ADT-0003391 0.907 putative membrane protein

ADT-0003535 0.907 hypothetical protein

ADT-0003563 0.907 LysR-family transcriptional regulator

ADT-0001980 0.907 hypothetical protein

ADT-0000804 0.907 dltA putative D-alanine--poly(phosphoribitol)
ligase subunit 1

ADT-0001616 0.906 putative transport system membrane
protein

ADT-0001394 0.906 hypothetical protein

Table 6 Top 50 predicted host-microbe interaction factors
from Pectobacterium carotovorum WPP14 (Continued)

ADT-0001320 0.906 methyl-accepting chemotaxis protein

ADT-0001567 0.906 putative exported protein

ADT-0005614 0.906 hypothetical protein

ADT-0001436 0.906 putative component of polysulfide
reductase

ADT-0004253 0.906 occQ octopine transport system permease
protein

ADT-0001493 0.905 hypothetical protein

ADT-0001492 0.905 putative lipoprotein

ADT-0002704 0.905 putative lipoprotein

ADT-0002584 0.905 ABC transporter, membrane spanning
protein
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Table 7 List of 56 genes predicted host-microbe interaction factors in both Dickeya dadantii 3937 and Pectobacterium
carotovorum WPP14

Dd3937 WPP14

FeatureID Name Product FeatureID Name Product

ABF-0019117 sftP TonB-dependent receptor ADT-0004320 sftP TonB-dependent receptor

ABF-0019116 hypothetical protein ADT-0004318 unknown

ABF-0018207 hypothetical protein ADT-0001980 hypothetical protein

ABF-0015604 Amino acid ABC transporter ADT-0000748 putative extracellular solute-binding protein

ABF-0015387 nipE necrosis-inducing protein ADT-0000781 putative exported protein

ABF-0014838 putative exported protein ADT-0002655 putative exported protein

ABF-0019124 Biopolymer transport protein ExbD/TolR ADT-0002263 putative biopolymer transport protein

ABF-0019115 hypothetical protein ADT-0002265 hypothetical protein

ABF-0017097 Methyl-accepting chemotaxis protein ADT-0003418 methyl-accepting chemotaxis protein

ABF-0019566 hypothetical protein ADT-0001832 putative exported protein

ABF-0016407 hypothetical protein ADT-0001404 hypothetical protein

ABF-0015906 6-phosphogluconolactonase ADT-0003106 putative exported protein

ABF-0019118 atsR Alkanesulfonates-binding protein ADT-0001174 atsR putative sulfate ester binding protein

ABF-0019125 astB Alkanesulfonates transport system
permease protein

ADT-0004315 astB sulfate ester ABC transporter permease protein

ABF-0017125 inh Alkaline proteinase inhibitor precursor ADT-0001911 inh protease inhibitor

ABF-0019002 hypothetical protein ADT-0001744 putative exported protein

ABF-0019205 ABC transporter ADT-0002584 ABC transporter

ABF-0014642 hypothetical protein ADT-0000571 putative cellulase

ABF-0019092 Transcriptional activator protein lysR ADT-0001195 LysR-family transcriptional regulator

ABF-0016585 Methyl-accepting chemotaxis protein ADT-0001320 methyl-accepting chemotaxis protein

ABF-0019383 D-alanyl transfer protein DltB ADT-0000805 dltB peptidoglycan biosynthesis protein

ABF-0019855 Methyl-accepting chemotaxis protein II
(aspartate chemoreceptor protein)

ADT-0001887 putative methyl-accepting chemotaxis protein

ABF-0015168 chmX Methyl-accepting chemotaxis protein III
(ribose and galactose chemoreceptor protein)

ADT-0003152 methyl-accepting chemotaxis protein

ABF-0018737 DNA-binding protein ADT-0003335 putative regulatory protein

ABF-0019933 hypothetical protein ADT-0003354 hypothetical protein

ABF-0014645 Paraquat-inducible protein A ADT-0002701 putative membrane protein

ABF-0017674 Methyl-accepting chemotaxis protein ADT-0003245 methyl-accepting chemotaxis protein

ABF-0020681 hypothetical protein ADT-0002418 RES domain-containing protein

ABF-0015907 TonB-dependent hemin ADT-0002398 TonB-dependent hemin

ABF-0018934 4-aminobutyrate aminotransferase ADT-0002845 putative class-III aminotransferase

ABF-0014824 Methyl-accepting chemotaxis protein II
(aspartate chemoreceptor protein)

ADT-0002104 methyl-accepting chemotaxis protein

ABF-0018178 Iron(III) dicitrate-binding protein ADT-0002009 putative periplasmic substrate-binding
transport protein

ABF-0019391 Pectate lyase ADT-0003928 pectate lyase

ABF-0015887 hypothetical protein ADT-0002063 hypothetical protein

ABF-0016115 Methyl-accepting chemotaxis protein ADT-0000027 methyl-accepting chemotaxis protein

ABF-0019101 atsB Alkanesulfonates transport system permease
protein

ADT-0003749 atsB putative sulfate ester transporter

ABF-0019214 Glucosamine kinase GpsK ADT-0003604 hypothetical protein

ABF-0016752 Ferric siderophore transport system ADT-0003559 TonB-like protein
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temperate [110], as well as ferric siderophore transporter
and ferrichrome-iron receptor genes, and a cytochrome b
gene (cybC) that is positively regulated by Fur and others
that encode iron-dependent proteins in Salmonella enter-
ica [111]. The predicted lists also include orthologs of the
dltB gene implicated in cell surface adhesion in Staphylo-
coccus aureus [112], the srfA gene that encodes secreted ef-
fect or protein in Pantoea ananatis [113], a LysR-family
regulator associated with quorum sensing in Pseudomonas
aeruginosa [114], the cell-wall-anchored protein SasA sug-
gested to play a role in adhesion to host in Staphylococcus
aureus [115], and the ppdC gene involved in extracellular
secretion machinery in Pseudomonas aeruginosa [116].
Additionally, we also observed many predicted interaction
factors that are physically clustered together on the chromo-
some. For instance, our prediction list includes an 11-gene
cluster for a general secretion system, and a 12-gene cluster
that may be associated with type IV secretion complex for-
mation. This result agrees with previous studies that many
virulence properties of microbes are a collaborative ef-
fort of multiple genes and their physical clustering
(and/or co-expression as operons) is under functional
and evolutionary constraints [117,118].
Interestingly, our predicted host-microbe interaction

factor lists include at least 17 chemotaxis or motility

associated proteins for each organism, including putative
methyl-accepting chemotaxis receptors and one type IV
pilus biogenesis protein involved in bacterial motility
and adhesion to a solid surface [119]. Previous studies
have indicated the chemotactic responses with specific
cellular localization are critical for biofilm formation and
interaction with hosts in a variety of pathogenic bacteria
[120-124]. The hypergeometric distribution was used to
assess the statistical significance of enrichment of a
given functional group in the target list relative to the
genome as a whole [125,126]. Interpro family annota-
tions were uniformly assigned across both genomes and
we conducted enrichment tests based on assignment to the
Interpro chemotaxis family. The highly significant p-values
for both Dd3937 (p = 3.42e-11) and WPP14 (p = 3.36e-12)
strongly suggest methyl-accepting chemotaxis genes are
highly enriched among the predicted host-microbe inter-
action factors.
Our learning strategy was explicitly designed to separate

genes likely to be involved in host-microbe interaction
from genes involved with core biological processes. The
evidence above strongly suggests that the method is effect-
ive at recognizing host-microbe interaction factors, but it
is important to keep in mind that it does not directly ad-
dress the possibility that some genes associated with core

Table 7 List of 56 genes predicted host-microbe interaction factors in both Dickeya dadantii 3937 and Pectobacterium
carotovorum WPP14 (Continued)

ABF-0016218 Fosmidomycin resistance protein ADT-0001196 MFS efflux transporter

ABF-0046571 Putative DNA-binding transcriptional regulatory
family of the TetR family

ADT-0003719 TetR-family transcriptional regulator

ABF-0014644 Probable lipoprotein ADT-0000406 putative lipoprotein

ABF-0015918 ppdC Putative prepilin peptidase dependent protein ADT-0002557 ppdC putative prepilin peptidase dependent
protein c precursor

ABF-0018572 ABC transporter ADT-0001164 putative iron (III) ABC transporter

ABF-0017527 Lysophospholipase ADT-0001494 putative lipoprotein

ABF-0047106 putative lipoprotein ADT-0002704 putative lipoprotein

ABF-0016810 Drug resistance transporter ADT-0001435 putative membrane protein

ABF-0019088 Dihydrodipicolinate synthase ADT-0002292 putative dihydrodipicolinate synthetase

ABF-0014868 Ferrichrome-iron receptor ADT-0004187 TonB dependent receptor

ABF-0017095 hypothetical protein ADT-0000555 putative exported protein

ABF-0018540 Oxidoreductase ADT-0000962 probable short-chain dehydrogenase

ABF-0014948 hypothetical protein ADT-0002252 putative exported protein

ABF-0020431 Methyl-accepting chemotaxis protein I (serine
chemoreceptor protein)

ADT-0000661 methyl-accepting chemotaxis protein

ABF-0019851 Methyl-accepting chemotaxis protein III (ribose
and galactose chemoreceptor protein)

ADT-0001602 methyl-accepting chemotaxis protein

ABF-0020368 hypothetical protein ADT-0002020 putative exported protein

ABF-0016058 Poly(glycerophosphate chain) D-alanine
transfer protein DltD

ADT-0000806 dltD poly(glycerophosphate chain) D-alanine
transfer protein

ABF-0019212 N-Acetyl-D-glucosamine ABC transport
system

ADT-0002138 extracellular solute-binding protein
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biological processes may also contribute to interaction
with hosts. Direct experimental testing of a relatively large
number of genes from both the positive and negative clas-
ses is underway and will illuminate the power of this ma-
chine learning approach to guide discovery.

Conclusion
Although bacterial pathogen genome sequencing has be-
come routine, the large number of unknown genes has
been, and still is, a major obstacle to understanding the
mechanisms of infection and adaptive evolution of mi-
crobial pathogens overall. We successfully employed su-
pervised machine learning to identify candidate host
interaction factors and we are able to predict host-microbe
interaction factors from among genes of entirely unknown
function, for two important agricultural pathogens Dickeya
dadantii Dd3937 and Pectobacterium carotovorum WPP14,
achieving promising results with a precision rate over 90%
with a recall rate over 80%. The predictions made in this
study include many genes that have not previously been
linked to host microbe interaction, a result not achievable
with homology-based search strategies, providing an ex-
panded list of appealing targets for further experimental val-
idation. Our results indicate the learning schemes used in
this study can recognize the complex patterns of host-
microbe interaction factors and yield biologically meaningful
results. Because of the powerful and intelligent models su-
pervised machine learning schemes are capable of construct-
ing, their future application to studying additional complex
biological processes is likely to be a productive research
approach.

Availability of supporting data
The data sets supporting the results of this article are avail-
able in the LabArchives repository, [https://mynotebook.
labarchives.com/share/plantpath/MjAuOHwyNTc2OC8xN
i9UcmVlTm9kZS8yNjQ4MTE0NTE0fDUyLjg=].
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factors for Dickeya dadantii 3937, (b) list of 216 genes predicted to be
host-microbe interaction factors for Pectobacterium carotovorum
WPP14. (c) list of top 300 genes that could not be confidently classified as
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