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A B S T R A C T   

Structural proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are potential drug targets 
due to their role in the virus life cycle. The envelope (E) protein is one of the structural proteins; plays a critical 
role in virulency. However, the emergence of mutations oftenly leads to drug resistance and may also play a vital 
role in virus stabilization and evolution. In this study, we aimed to identify mutations in E proteins that affect the 
protein stability. About 0.3 million complete whole genome sequences were analyzed to screen mutations in E 
protein. All these mutations were subjected to stability prediction using the DynaMut server. The most common 
mutations that were detected at the C-terminal domain, Ser68Phe, Pro71Ser, and Leu73Phe, were examined 
through molecular dynamics (MD) simulations for a 100ns period. The sequence analysis shows the existence of 
259 mutations in E protein. Interestingly, 16 of them were detected in the DFLV amino acid (aa) motif (aa72- 
aa75) that binds the host PALS1 protein. The results of root mean square deviation, fluctuations, radius of gy
ration, and free energy landscape show that Ser68Phe, Pro71Ser, and Leu73Phe are exhibiting a more stabilizing 
effect. However, a more comprehensive experimental study may be required to see the effect on virus patho
genicity. Potential antiviral drugs, and vaccines may be developed used after screening the genomic variations 
for better management of SARS-CoV-2 infections.   

1. Introduction 

Recently the newly emerged coronavirus disease-19 (COVID-19) 
remains a major public health issue since 2019. The causative agent 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1] is 
passing through numerous evolutionary stages [2,3] and seems more 

fatal. The virus is rapidly spreading through respiratory droplets, 
affecting the important organs of the host body [2,3]. 

Since the coronavirus 2 (CoV-2) belongs to the formerly known 
family of coronaviruses, it shares close genomic similarity with SARS- 
CoV. The CoV-2 contains the ssRNA genome [6]; it encodes four struc
tural proteins such as a spike (S), an envelope (E), membrane (M), and 
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nucleocapsid (N) [7], resulting in the coding of 16 non-structural pro
teins (NSPs). These structural proteins are responsible for viral replica
tion and virion-receptor attachments and, thus, are involved in 
pathogenicity, viral spread, and the introduction of the virus to the cells 
of the host body. 

The E protein is composed of 76 amino acids [8] weighing 8–12 kDa 
[9]. This protein has an N-terminal domain (NTD), hydrophobic 
domain, and C-terminal domain (CTD) [10], arranged as NTD first 1–9 
amino acid (aa), the hydrophobic area, extending from 10 to 37 aa and 
CTD (38–75 aa) [11]. Ionic pores are formed across the membrane due 
to the arrangement of the hydrophobic tail region. Structurally, the E 
protein consists of seven alpha helices and eight loop regions. It forms a 
pentameric configuration (five molecules) with 35 alpha-helical regions 
and 40 looped ring regions, which are formed by the hydrophobic tail 
(Fig. 1B). This pentameric configuration of the hydrophobic tail can be 
affected by the interactions within CTD [12]. These pores serve as ion 
channels that allow the movement of the virus across the membrane, 
enhancing its pathogenicity [13]. E mutations reduce viral pathoge
nicity and also stop the channel activity [14] representing an essential 
drug target and vaccine candidate [15]. 

Some novel mutations seen in the E protein sequence do not present 
in the already existing coronaviruses. In the CoV-2 E protein sequence, 
arginine is mutated by isoleucine, threonine, and lysine (R69I, R69T, 
and R69K) at the 69th position. Moreover, in the amino acid sequence of 
CoV-2, serine and phenylalanine are present at 55th and 56th positions, 
instead of threonine and valine, respectively [16]. 

The SARS-CoV-2 has undergone numerous mutations in all the 
important targets [17–19]; therefore, drugs created to fight CoV-2 might 
not very potent. In order to evaluate the drug targets for designing novel 
antiviral drugs against CoV-2, it is vital to screen the frequency of mu
tations and their effect on the thermodynamic properties of the impor
tant target proteins. This is particularly important for the effective 
treatment of emerging microbes, including mutants of SARS-CoV-2. 

Although structural proteins of CoV-2 are important for investigating 
mutations, here in this study, we investigated the variations existing 
only in E proteins owing to their potential drug target. Very limited 
information and small-scale genomic data has been screened for muta
tions in the E protein. This is the first comprehensive study in which we 
screened 0.295 million complete genomes of SARS-CoV-2 for identifying 
variants in the E protein. Among all the genomes, 259 mutations were 
detected, exhibiting various degrees of thermodynamic properties. 

Analyzing the frequency of mutations and their effect on the ther
modynamics properties of E proteins may allow the researcher to design 
novel inhibitors and predict the level of pathogenicity and transmission. 
In the current study, the most common mutations that were detected at 

Fig. 1. Domain organization of E proteins and the location and frequency of 
most common mutations. TM: transmembrane [15], NTD: N-terminal domain, 
CTD: C-terminal domain. (B). Pentameric representation of E proteins showing 
channel (C). Full-length E protein (I-TASSER, E-QHD43418) with most common 
mutations in the loop region. 

Table 1 
Frequency of some common mutations in the CoV-2 E protein.  

Accession Wild type 
AA 

Position Mutated 
AA 

Frequency aMutation 

EPI_ISL_476911 T 9 I 168 T9I 
EPI_ISL_424214 S 55 F 128 S55F 
EPI_ISL_538676 V 62 F 129 V62F 
EPI_ISL_448073 S 68 F b419 bS68F 
EPI_ISL_452908 R 69 I 159 R69I 
EPI_ISL_577907 P 71 L 158 P71L 
EPI_ISL_660339 P 71 S b264 bP71S 
EPI_ISL_478788 L 73 F b218 bL73F  

a Full list is available in the S1 supplementary file. 
b ; mutations subjected to MD simulations. 

Fig. 2. RMSD comparison of the WT and MTs E proteins of SARS-CoV-2.  
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the C-terminal (Ser68Phe, Pro71Ser, Leu73Phe) were exhibiting more 
stabilizing effect on E proteins structure. First, the presence of a large 
number of mutations in the E protein of CoV-2 may lead to the confor
mational changes and evolutions, resulting in therapeutic failure. Sec
ondly, the virus may be more fatal in near future, and therefore, 
antivirals against geography-specific CoV-2 strains might be more 
effective. 

2. Methodology 

2.1. Genomic sequence retrieval 

The complete genome was retrieved from the Global Science Initia
tive on Sharing All Influenza Data (GISAID) (December 2019–2020) 
(https://www.gisaid.org/) [20]. The GISAID shared the virus data to 
publish results and the metadata relevant to public health scientists. This 
server provides all kinds of CoV-2 genomic data, including even those 
that have not been unpublished. We screened 0.295 genomes of CoV-2 
reported worldwide for variants analysis in E proteins. The sequences 
were aligned with the reference CoV-2 genome (Accession NC_045512) 
using the CoVsurver application (https://www.gisaid.org/epiflu-appl 
ications/covsurver-mutations-app/). The identified mutations in struc
tural proteins of CoV-2 were separated and arranged in the form of excel 

sheets. The statistical analysis was performed to screen the most com
mon variants. 

2.2. Structural information 

Scientists are all well aware that sharing the genomic and proteomic 
data of SARS-CoV-2 is important for the better management of infectious 
diseases in order to devise countermeasures. The E protein structural 
data was retrieved from the protein data bank (PDB) [21] (PDB IDs: E =
7k3g). Some residues at the NTD (1–7aa) and CTD (39–75) are missing 
in the PDB structure of the COV-2 E protein. To observe the effect of 
mutations on the residues missing in the CTD and ND terminals, the 
full-length E protein structure was downloaded (E-QHD43418) from 
I-TASSER [22,23]. The chain ID in the I-TASSER structure is missing, 
which was added in PYMOL using the code “sele, chain’” and “alter 
(sele), chain = ‘A’.” The I-TASSER has already modeled the full-length 
proteins of CoV-2 using the NCBI reference data (NC_045512) (Gen
Bank MN908947). 

2.3. Mutation effect on E proteins’ dynamic stability 

All the observed mutations were recorded and their effect on the E 
protein structure was computed using the DynaMut [24]. The server 

Fig. 3. The RMSF of the WT and MTs in the E proteins of SARS-COV-2. CA: Carbon alpha. The RMSF of WT (orange) and MTs. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. The RMSDs of WT and MTs at different simulation periods. The WT behaves very differently at the CTD.  
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implemented the mutation effect and also the normal mode methods 
that can be used to analyze the variants that affect protein stability and 
flexibility. This impact is measured through graph-based signatures and 
also as a normal mode. This method outperforming (P < 0.001) with 
results are also displayed in good resolution. 

2.4. Molecular dynamics (MD) simulation 

The MD simulation was performed on the Desmond module 
(Schrodinger), as described in the previous study [23,24]. Briefly, the 
TIP3P model and Gromos9643a1 forefield was applied. The system was 
neutralized with counterions (NaCl). The cubic simple point charge 

Fig. 5. Comparison of the SSE of the WT and MTs in MD simulation. The plot reports SSE distribution by residue index throughout the protein structure and 
summarizes the SSE composition for each trajectory frame over the course of the simulation. The plot monitors each residue and its SSE assignment over a certain 
period of time. (A) The WT residue index and SSE along Y-axis shows differences at the 60–65ns MD simulations period; (B) S68F shows a little variation at 40–55ns; 
(C) P71S exhibits more variations at 45–68ns; (D) L73F also demonstrates variations when the WT is compared with P71S and S68F. 

Fig. 6. Comparison of Rg of the WT and MTs E proteins. The WT (blue) exhibited a little difference in folding throughout the 100ns simulation period as compared to 
the MTs, showing that the folding in both types is stable. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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(SPC) water box was applied. Two-step (NVT and NPT) energy mini
mization (50000 ps) till the minimization completion was continued. 
The ambient pressure was set at 1.013 bar and temperature 310 K for 
100 ns? The thermodynamic stability of the WT (wild type) and mutants 
(MT) E proteins was analyzed using root means square fluctuations 
(RMSF) and root means square deviation (RMSD). All the simulation 
were repeated three time for better results. Approximately 1000 frame 
per simulation was run. 

2.5. The Gibbs free energy 

The Gibbs free energy (G) [27] of MTs was plotted against wild type 
E protein. The G is minimized to equilibrium state of system at constant 
temperature and pressure which is a thermodynamic potential. Principal 
component analysis (PCA) is performed to recognize low modes in 
proteins [28,29]. PCA simplifies the complicated motion in trajectory 
[30–32]. A set z1, z2 …, zp known as principal components (PCs) were 
generated during PCA. Energies of sets of proteins conformations is 
called Free Energy Landscape (FEL) [33,34]. The first two components 
(PC1 and PC2) give the trajectories on initial two principal components 
of motion. G values shows the stability level of proteins [35–37]. 

3. Results and discussion 

This is the first comprehensive study in which 0.295 million com
plete genomic sequences of CoV-2, which were reported worldwide in 
the GISAID server (from December 2019 to December 2020), were 
analyzed to identify variants in E proteins. A large number of non- 
synonymous mutations (259) were detected in the genome sequences 
from 48 countries (Supplementary Table S1), among which the largest 
number were present in isolates from England (S1). This wide range of 
variations may project the variation level of CoV-2 strains worldwide. 
Previous studies [25,26] have screened 3617 and 81,818 COV-2 ge
nomes for E protein variants, respectively. These recent studies reported 
115 and 15 non-synonymous mutations, respectively, which were 
mainly present in the CTD. 

3.1. Mutations in envelope (E) protein 

3.1.1. Mutations in the NTD 
Being the smallest structural protein (75aa) of CoV-2, all of the res

idues’ positions of the E protein harbored non-synonymous mutations 
(S1). A total of 31 non-synonymous mutations were detected in the NTD 

Fig. 7. Hydrogen bonding of the WT and MTs E proteins.  

Fig. 8. WT and MTs stability and flexibility.  

K. Mou et al.                                                                                                                                                                                                                                     
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(Supplementary File S1), among which V5F (n = 39), E8D (n = 35), V5I 
(n = 17), and Y2H (n = 14) were common. A majority of these mutations 
were detected in the isolates from the UK. The NTD helps the tail region 
target the Golgi complex using some of its associated elements as mu
tations in this region may affect its efficiency. 

3.1.2. Mutations in the CTD 
The most frequent mutations were detected in the CTD of the E 

protein (68–73 aa) (Table 1). Some of them were T91, S55F, V62F, S68F, 
R691, P71L, P71S, and L73F (Fig. 1). Other common mutations have 
been listed in the table along with their residue types and positions 
(Table 1 and S1). Mutations in the CTD, namely, S55F (128), V62F 
(129), and R69I (159) may affect the virus pathogenesis, altering the 
binding of the E protein to a tight junction. The motif “DLLV” (72–75 aa) 
of the CTD showed some mutations that may affect the PALS1 (Protein 
Associated with Caenorhabditis elegans Lin-7 protein 1) at the Golgi 
complex, as well as CoV-2 infectivity [38,40]. The PALS1 is a member of 
the post-synaptic density protein-95/Discs Large/Zonula occludens-1 
(PDZ) domain-containing proteins group that is involved in diverse 
cellular functions and also functions as scaffolds for signaling protein 
[28,29]. 

3.1.3. Mutations in the transmembrane (TM) domain 
Transmembrane variants such T9I (n = 168), F20L (n = 90), L21F (n 

= 84), V24 M (n = 76), and T30I (n = 72) may affect the homo pen
tameric configuration of the E protein [43]. The E protein may also be an 
effective drug target as it contributes equally to the pathogenicity and 
cytotoxicity of the virus. It produces viroporins that are hydrophobic in 
nature [44]. Proline residues facilitate the targeting of the cis-Golgi 
complex by the hydrophobic tail present in the cytoplasm. The release 

of these virion particles is facilitated by the ionic gradient present in the 
endoplasmic reticulum and Golgi compartment through the E protein 
[8]. Studies on E mutants for highlighting the structural changes of the 
ion-channel activity behind mutations, might be very helpful for better 
management of COVID-19. 

The CTD of E proteins harbored some common mutations whose 
stability was predicted. The DynaMut prediction outcome of L73F (ΔΔG: 
− 0.417 kcal/mol), P71S (ΔΔG: − 0.255 kcal/mol) exert a destabilizing 
effect. However, T9I (ΔΔG: 0.190 kcal/mol), P71L (ΔΔG: 0.012 kcal/ 
mol), and S68F (ΔΔG: 0.362 kcal/mol) shows a stabilizing effect (Sup
plementary File S1). The most common mutations were detected at the 
C-terminal (Ser68Phe, Pro71Ser, and Leu73Phe) were also assessed 
through MD simulations, exerting a stabilizing effect on the E protein of 
CoV-2. 

3.2. Thermodynamic properties 

We analyzed the thermodynamic properties of most common vari
ants (Ser68Phe, Pro71Ser, and Leu73Phe) present in the CTD in relation 
to the E structure stability in comparison with the wild type (WT). 

3.2.1. RMSD and RMSF of WT and MTs 
The RMSD graphs of then WT and MTs E proteins are shown in Fig. 2. 

The MTs S68F and P71S seem more stable from 55ns to 100 ns, exhib
iting 9 Å and 10.5 Å RMSDs, respectively. The RMSD of the WT still 
exhibiting fluctuations at 100 ns? Similar to the other MTs, L73F is also 
exhibiting stable deviations through the simulation period, with 13.7 Å 
to 14.5 Å RMSD. The WT exhibited 5.3 Å RMSD at the 80ns–95ns period 
and still seems to rise from 95ns to 100 ns? 

The comparison of the WT and MTs in terms of flexibility exhibited 

Fig. 9. Interactions of WT and MTs residues with surrounding aa. The type of interactions of WT and MTs residues is colored-coded. S68F, P71S, and L73F MTs have 
been compared with their WT on the left. 

K. Mou et al.                                                                                                                                                                                                                                     
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significant variations at some positions (Figs. 3 and 4). The RMSF at the 
53rd to 75th aa position exhibited a significant difference between the 
WT and MTs. The WTs at this position exhibited 6.89 Å (55 aa), 9.88 Å 
(71 aa), and 9.5 Å (75 aa); S68F demonstrated very low RMSF, below 4 
Å, for the majority of the residues and 5.1 Å at 75 aa, which was 
significantly low as compared to the WT. Similarly, P71S also exhibited 
very low RMSF at CTD (5.7 Å) when compared to the WT (Fig. 3). 
Similar to S68F, the MT L73F also demonstrated low-level fluctuation 
when compared with the WT. MD simulations explore the insight dy
namic changes at the molecular level [45–47], which might be difficult 
to accomplish through experimental work. Several studies have reported 
that any change in protein functions might be associated with RMSF 
[48–50]. Flexibility is one of the key thermodynamic characteristics that 
maintain the optimal functions of proteins [51]. A large change in this 
property may alter the function of the biomolecules. 

Protein secondary structure elements (SSE) such as alpha helices and 
beta strands are monitored throughout the simulation. The difference in 
the SSE of the WT and MTs has been highlighted in Fig. 5 at 20ns–70 ns? 
The mutation induced some changes in the SSE within a 100ns simula
tion period. Upon examining Fig. 5, some differences in the SSE of the 
WT (Fig. 5A) and MTs (Fig. 5B, C, D) can be seen. 

3.2.2. Rg of WT and MTs 
The degree of protein-folding stability could be measured through 

Rg. Fluctuations in Rg for a period indicate unstable folding, while a 
straight value reveals stable folding [52–55]. A protein with misfolding 
shows variations in Rg over time (Fig. 6). The WT and MTs exhibited 
variations in folding. The MT S68F exhibited more stable folding than 
the WT, whereas P71S and L73F also presented stable folding for the 
18.9–50ns period (Fig. 6). The S68F MT shows the lowest fluctuations 
from 21ns to 100 ns (1.3 nm). Rg is a mass-weight root mean square 
distance between atoms and their common center of mass. It is a vital 
parameter for defining dynamic stability, offering an insight mechanism 

of dimension and compactness of biomolecules and total protein sys
tems. The Rg plotted for three MTs of the CoV-2 E proteins shows 
notable stability than that of the WT. The mutant structures show a 
slightly low average Rg value than the WT. 

3.2.3. Hydrogen bonding of the WT and the MTs 
Most of the interactions among the atoms are mainly hydrogen 

bonding (HB), which assists in protein folding, stability, and is also 
involved in recognition. The α helix and β sheet stabilize by the HB 
potential between the amide nitrogen of the protein and the carbonyl 
oxygen of the main chain [56–58]. The primary forces in protein–drug 
interactions are HB, van der Waals, and electrostatic forces [51]. The 
average number of HB among the WT and MTs CoV-2 E protein atoms is 
shown in Fig. 7. MT S68F exhibited fewer HB than P71S and P73F. 
However, both the MTs (P71S and P73F) demonstrated more HB than 
the WT (Fig. 7), signifying the stabilizing effect of the mutation. P71S 
exhibited maximum HB (295) during the first 25ns simulations. How
ever, the number of HB in the MD simulation in the last 25ns is almost 
the same for the WT and MTs. 

The effect of mutations on E proteins’ stability and flexibility has 
been shown in Fig. 8. All of the MTs exhibited an increase in flexibility, 
which may have a positive effect on function. The molecular activities 
are linked with the flexible regions. According to a previous investiga
tion [59], protein requires flexibility to engage in good catalytic activity. 
Adding water improves flexibility, and understanding the diverse role of 
protein flexibility can help develop biotechnological solutions including 
vaccines. 

MTs showed more interactions than WT. The S68F exhibited a 
different geometry due to the aromatic nature of phenylalanine sub
stitutions. Moreover, the number of interactions in this MT seems 
greater than in the WT (Fig. 9). In MT P71S, the proline has been 
substituted into serine, present in the active site of many enzymes. 
Similar to the S68F, the L73F exhibited more interactions (Fig. 9) with 

Fig. 10. Gibbs free energy landscape. The scale shows the free energy values. Blue and green regions are more stable than red and yellow. MT S68F shows more 
stability than WT based on the free energy landscape. WT exhibited more stability than P71S and L73F. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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surrounding residues than the WT due to its substitution into aromatic 
amino acid, forming more hydrogen interactions with its surrounding 
residues that might be instrumental in E stability. 

The FEL of WT and MTs has been shown in Fig. 10. The lowest and 
stable energy state is represented by blue color. WT E protein showed 
more stable state that two MTs (P71S, L73F) whereas the MT S68F seems 
more stable than WT. The blue areas show stability while other indicate 
transitions in the protein conformation to attain a more favorable state. 
The green areas in P71S, L73F are more prevalent that WT which shows 
stability next to blue regions. These result demonstrates that E protein 
MTs might be useful to cause viral pathogenecity [60–62]. Calculating G 
might be important to observe the overall stability upon mutations. 

4. Conclusion 

In this comprehensive study, 259 non-synonymous mutations were 
detected in the E protein with different frequencies. Mutations were 
present in all three domains—the CTD, the NTD, and the hydrophobic 
domain; however, the highest frequency was detected in the first one. 
All of the MTs demonstrated various degrees of flexibilities and stabil
ities, where the majority depicted a loss in flexibility and stability. 
Moreover, three MTs (S68F, P71S, and L73F) were analyzed through MD 
simulations and exhibited a stabilizing effect on the E protein structure. 
In order to evaluate the drug targets for designing a novel antiviral drug 
against CoV-2, it is vital to dig out the frequency of mutations and their 
effect on the thermodynamic properties of the selected target. This is 
particularly imperative for the effective treatment of emerging microbes 
including SARS-CoV-2 mutants. The current study will contribute 
significantly to the knowledge on virus stabilization and the evolu
tionary aspects and pathogenicity of CoV-2 infections, which might be 
useful for better management of COVID-19 and the development of a 
vaccine in the near future. 
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