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Abstract

Objective

To compare the effect of stable supportive to flat flexible walking shoes on medial tibiofe-

moral contact force (MTCF) in people with medial knee osteoarthritis and varus

malalignment.

Design

This was a randomized cross-over study. Twenty-eight participants aged�50 years with

medial knee osteoarthritis and varus malalignment were recruited from the community.

Three-dimensional full-body motion, ground reaction forces and surface electromyograms

from twelve lower-limb muscles were acquired during six speed-matched walking trials for

flat flexible and stable supportive shoes, tested in random order. An electromyogram-

informed neuromusculoskeletal model with subject-specific geometry estimated bodyweight

(BW) normalized MTCF. Waveforms were analyzed using statistical parametric mapping

with a repeated measures analysis of variance model. Peak MTCF, MTCF impulse and

MTCF loading rates (discrete outcomes) were evaluated using a repeated measures multi-

variate analysis of variance model.

Results

Statistical parametric mapping showed lower MTCF in stable supportive compared to flat

flexible shoes during 5–18% of stance phase (p = 0.001). For the discrete outcomes, peak

MTCF and MTCF impulse were not different between the shoe styles. However, mean dif-

ferences [95%CI] in loading impulse (-0.02 BW�s [-0.02, 0.01], p<0.001), mean loading rate

(-1.42 BW�s-1 [-2.39, -0.45], p = 0.01) and max loading rate (-3.26 BW�s-1 [-5.94, -0.59], p =
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0.02) indicated lower measure of loading in stable supportive shoes compared to flexible

shoes.

Conclusions

Stable supportive shoes reduced MTCF during loading stance and reduced loading

impulse/rates compared to flat flexible shoes and therefore may be more suitable in people

with medial knee osteoarthritis and varus malalignment.

Trial registration

Australian and New Zealand Clinical Trials Registry (12619000622101).

Introduction

Knee osteoarthritis (OA), predominantly of the medial tibiofemoral compartment [1], is a

highly prevalent and disabling global chronic disease affecting 1 in 5 people over the age of 40

[2]. Pathogenesis of medial knee OA is thought to be due in part to abnormal joint loading

within the medial tibiofemoral compartment, with estimates of medial tibiofemoral contact

force (MTCF) having been associated with structural disease progression in knee OA [3]. As

estimates of tibiofemoral loading are sensitive to frontal plane knee kinematics [4], an impor-

tant subgroup for consideration is people with medial knee OA and varus malalignment. This

subgroup has demonstrated greater functional [5] and structural decline [6] than those with

neutrally aligned knees, which is likely due to elevated compressive loads within the medial

compartment [7, 8]. As there is no cure for OA, appropriate self-management strategies are

strongly advocated to reduce symptoms and delay the need for arthroplasty [9, 10]. Footwear

is a low-burden simple self-management strategy.

Current clinical guidelines for knee OA recommend stable supportive shoes be worn [9,

10]. A recent high quality clinical trial by our team showed that stable supportive shoes yielded

significant reductions in knee pain compared to flat flexible shoes in people with knee OA

[11]. However, biomechanical mechanisms underpinning greater clinical benefits associated

with the use of stable supportive shoe compared to flat flexible shoes are unclear. Stable sup-

portive shoes are characterized by high shoe pitch and heel thickness, rigid soles, and motion

control properties that limit foot pronation to provide foot stability [12]. Conversely, flat flexi-

ble shoes have low shoe pitch and heel thickness, minimal sole rigidity, and are without motion

control properties [12].

Currently, the influence of footwear on tibiofemoral loading in knee OA has been inferred

from surrogate measures such as the knee adduction moment (KAM) [12–14]. A higher peak

KAM has been observed when walking in stable supportive shoes compared to flat flexible

shoes in people with knee OA [12–14]. Given higher measures of the KAM have been associ-

ated with greater knee OA pain severity [15], the mechanism of knee pain-relieving effects of

stable supportive shoes compared to flat flexible shoes is unclear.

The use of the external KAM to infer internal joint load sharing is limited because the KAM

does not account for the contribution of muscle loading in its estimates [16–18]. To gain

insight into the internal mechanics of the joint, electromyogram (EMG)-informed neuromus-

culoskeletal modelling can be used, which considers both muscle and external load contribu-

tors to estimate MTCF [17]. Although the MTCF during walking is continuous, previous

research investigating knee OA biomechanics and footwear has limited their analysis to
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discrete measures (i.e., peak KAM or KAM impulse) [12–14, 19], which constitutes substantial

data loss and attentional bias. In addition to the magnitude of MTCF, the rate of loading is

also of relevance. People with knee OA have been shown to have higher ground reaction force

(GRF) loading rates compared to healthy controls [20] and increased KAM loading rate has

been correlated with increased medial tibiofemoral cartilage loss [21]. The type of shoe midsole

has been shown to influence KAM loading rates [22], and stable and flat flexible shoes differ in

sole structure [12]. However, given the limited relationship between the KAM and MTCF

[23], the influence of shoe type on MTCF loading rates remains unclear. Thus, further research

is needed to investigate the effects of flat flexible and stable supportive shoes on the MTCF

across the stance phase of walking and its loading rate, to provide further insight into the bio-

mechanical mechanisms underpinning the pain-relieving effects of stable shoes relative to flat

flexible shoes.

The aim of this study was to use EMG-informed neuromusculoskeletal modelling to com-

pare the effects of flat flexible and stable supportive walking shoes on MTCF waveforms and

discrete measures of MTCF (peak, impulse and loading rate) in people with medial knee OA

and varus malalignment. A secondary aim was to compare the effects of flat flexible and stable

supportive walking shoes on KAM waveforms and discrete measures of KAM (peak, impulse

and loading rate) in the context of existing research.

Methods

A randomized cross-over study design was used to test the immediate effect of two shoe condi-

tions on parameters of the MTCF during walking. The study was prospectively registered in

the Australian and New Zealand Clinical Trials Registry (12619000622101) and is reported

according to the items of the TREND checklist applicable to cross-sectional studies [24]. Ethi-

cal approval was obtained from the Institutional Human Research Ethics Committee

(#1853473) and participants provided their written informed consent prior to testing. The

study was conducted at The University of Melbourne.

Participants

Twenty-eight volunteers were recruited from a clinical trial investigating the 8-week effect of

valgus bracing within our laboratory [25]. These participants were recruited from the commu-

nity in Melbourne, Australia between April 2019 and November 2019 via advertisements in

social media and our volunteer database. Data acquisition was performed prior to commence-

ment of this clinical trial. Knee OA was classified according to the American College of Rheu-

matology clinical and radiographic criteria for knee OA [26]. Participants were included if

they: i) were aged 50 years or older; ii) reported knee pain on most days of the past month for

>3 months; iii) reported knee pain over the past week while walking of�4 on a numerical rat-

ing scale; iv) demonstrated radiographic tibiofemoral joint OA (Kellgren & Lawrence grade

�2) [27]; v) wear a female shoe size 6–11 US or male shoe size 8–13 US (due to the availability

of the testing shoes); vi) fit into standard width shoes; and vii) had varus malalignment. Varus

malalignment was defined as an anatomic axis angle of<181˚ for females or<183˚ for males

[28]. Exclusion criteria were: i) lateral joint space narrowing greater than or equal to medial

joint space narrowing; ii) lateral osteophyte grade greater than or equal to medial compart-

ment osteophyte grade; iii) any knee surgery over the past 6 months; iv) awaiting or planning

any back or lower-limb surgery over the next 3 months; v) planning to see an orthopaedic sur-

geon about a knee problem over the next 8 weeks; vi) current or past (3 months) use of oral or

intra-articular corticosteroid; vii) systemic arthritis; viii) current or past (6 months) muscular

or joint condition other than knee OA; ix) current use of or past (6 months) use of, or
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intention to use (next 8 weeks), a knee brace, walking stick or gait aid; and x) unwillingness to

wear a knee brace or inability to undergo magnetic resonance imaging (MRI).

Procedures

A flow-diagram of study procedures is provided in Fig 1. Volunteers were screened via an

online survey, followed by telephone screening to confirm eligibility. Potentially eligible partic-

ipants underwent bilateral knee x-rays if they did not have their own knee x-ray within the pre-

vious 12 months. For participants with unilateral symptoms, the unilateral leg was selected as

the study knee and data relevant to this limb was analyzed. For participants with bilateral

symptoms, the most symptomatic eligible knee was selected as the study knee and data from

this limb was analyzed. Participant reported data was collected via REDCap. Biomechanical

data was collected by the same researcher within the Centre for Health, Exercise and Sports

Medicine gait laboratory at The University of Melbourne.

Shoe interventions

We selected one style each of commercially available flat flexible and stable supportive shoes

that met our existing biomechanical classification criteria [12]. These criteria separate the

shoes classes based upon shoe pitch (difference in sole thickness between heel and forefoot),

arch support and motion control features, heel height and thickness, sole flexibility, and weight

[12]. For the flat flexible condition, we selected Vivobarefoot Primus Lite (men’s and women’s)

and for the stable supportive shoes we selected ASICS Kayano (men’s and women’s). Shoes

were fitted by the same researcher (SCS) for each participant. Once fitted, participants were

asked to walk in each shoe for 5 minutes prior to MTCF assessment to ensure familiarization.

Data acquisition

Gait analysis. Participants completed six walking trials for two shoe conditions: stable

supportive and flat flexible shoes, performed in a random order. Two of the six trials were

used for model calibration purposes (four in total) and the remaining four trials for each con-

dition (eight in total) were for analysis. Participants walked along a 10m walkway at a self-

selected speed matched to ±5% across conditions, measured using two photoelectric beams

positioned midway along the walkway. Kinematic and ground reaction force data were

recorded using a 12-camera motion analysis system (Vicon MX, Oxford Metrics, UK) at 120

Hz and three ground-embedded force plates (AMTI, MASS, USA) at 1200 Hz, respectively.

The Vicon system was calibrated using the standardized Vicon 5 reflective marker wand with

10,000 samples across the analysis area. An image threshold error of 0.2 was used for each of

the twelve cameras, with recalibration performed if the error exceeded this. A full body marker

set, consisting of sixty-seven reflective markers of 14mm diameter were placed on the partici-

pant’s skin and exterior of shoes according to the University of Western Australia marker set

[29]. Surface EMG were acquired at 1200Hz during each walking trial using a wireless teleme-

tered 16-channel Telemyo DTS system (Noraxon, AZ, USA) for twelve lower-limb muscles:

tensor fascia latae, gluteus medius, rectus femoris, vastus lateralis, vastus medialis, biceps

femoris, semimembranosus, medial gastrocnemius, lateral gastrocnemius, soleus, tibialis ante-

rior and peroneus longus. The skin surface above the muscle belly was prepared and electrodes

placed consistent with surface EMG for non-invasive assessment of muscles (SENIAM) guide-

lines [30]. Participants performed maximum isometric voluntary contraction (MVC) trials to

elicit maximal EMG for each of the twelve instrumented muscles in the following positions: (i)

seated knee extension, (ii) seated knee flexion, (iii) seated ankle eversion, (iv), seated ankle dor-

siflexion, (v) standing hip abduction, and (vi) supported single leg heel raises. Participants
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Fig 1. Flow-diagram of study procedures.

https://doi.org/10.1371/journal.pone.0269331.g001
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performed three maximal efforts (5 second duration) for each contraction against resistance

with 30 seconds rest in between efforts. For the single leg heel raises, participants held the

raised position for three seconds and performed five repetitions. Participants received stan-

dardized verbal encouragement to contract maximally during these tasks.

Magnetic resonance imaging. A three-dimensional (3D) T1-weighted sagittal volumetric

interpolated breath-hold examination (VIBE) of the study knee and a 3D T1-coronal lower-

limb scan were undertaken prior to biomechanical assessment using a 3 Tesla MRI machine

(Siemens Medical Systems, Erlangen, Germany). The 3D images of the lower limb bones and

tibiofemoral joint cartilage were then segmented using Mimics software (Materialise, Leuven,

Belgium). These segmentations were used to inform subject-specific anatomical geometry dur-

ing modelling.

Data pre-processing

A flowchart outlining the data analysis methods is provided in Fig 2. A force plate threshold of

10 N was used to define heel-strike and toe-off events, obtained using Vicon Nexus software

and checked manually by the researcher. Laboratory force plate, marker, and EMG data were

pre-processed within Matlab 2019b (MathWorks, Massachusetts, USA) using the MOtoNMS

Fig 2. Flowchart outlining the data processing methods.

https://doi.org/10.1371/journal.pone.0269331.g002
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toolbox [31]. This toolbox processes experimental C3D files from Vicon Nexus and coverts the

data into OpenSim file formats (i.e., trace and motion files) [32]. The raw EMG data were first

band-pass filtered (30–400 Hz), full-wave rectified, then low-pass filtered using zero-lag 2nd

order Butterworth filter with a 6 Hz low-pass cut-off frequency. The resulting linear envelopes

were then amplitude-normalised to the maximum EMG value recorded during the MVC

trials.

Data processing

Musculoskeletal modelling. A generic, full-body musculoskeletal model [33] was used

within OpenSim (Version 3.3) [32], which had three rotational degrees of freedom at the hip,

one at the knee (with abduction/adduction and internal/external rotations prescribed as a

function of knee angle), and one at the ankle. The original model was adjusted to include

weightless ‘dummy’ tibia bodies. This allowed the computation of 3D knee moments and tibio-

femoral contact forces, as per existing methods [16]. Contact bodies were added to the medial

and lateral compartments of the knee to enable the calculation of net joint moments and mus-

cle tendon unit moment arms about each compartment [17]. The locations of these points

were determined in 3-matic (Materialise, Leuven, Belgium) by an extrema analysis of the most

distal point of the respective femoral condyles. The hip joint centre was obtained in 3-matic as

the centre of a sphere fitted on the respective MRI segmented femoral head. Patient-specific

scaling of the pelvic, femur and tibia dimensions as well as their mass inertia properties was

undertaken by measuring the respective segmented bone lengths and widths using the bony

landmarks from the generic model as a reference [33, 34]. Foot and torso model segment

dimensions and mass inertia properties were linearly scaled to match individual’s anthropom-

etry using markers that were acquired during a static pose.

Calibrated-informed neuromusculoskeletal modelling. After model scaling, OpenSim

inverse kinematics, inverse dynamics, and muscle analysis tools were used to determine the

lower-limb joint kinematics, joint moments, and muscle-tendon unit kinematics, respectively

[32]. Model kinematics were low-pass filtered at a 6Hz cut-off frequency [32, 35]. The mod-

elled joint moments, muscle-tendon unit kinematics, and processed EMG were then used to

calibrate an EMG-informed neuromusculoskeletal model for each participant using the Cali-

brated EMG-Informed Neuromusculoskeletal modelling toolbox (CEINMS) [36]. The twelve

experimental EMG signals were mapped to twenty muscle-tendon units in the model [36, 37].

For each participant, optimal fibre and tendon slack length of knee-spanning muscles were

adjusted using morphometric scaling to preserve their dimensionless operating ranges [38].

Muscle activation dynamics and internal muscle parameters were then functionally calibrated

in CEINMS as per our previously reported methods using two of the experimentally acquired

walking trials for each condition (four in total) [16]. Following calibration, CEINMS was used

in assisted-mode [37] to estimate muscle and tibiofemoral contact forces for the remaining

four walking trials for each condition that were not used during calibration. The assisted–

mode neural solution synthesised excitation patterns using optimization criteria for knee span-

ning muscles that did not have experimental EMG (sartorius and gracilis) and minimally

adjusted excitations for muscles with experimental EMG. The knee spanning muscle forces

were used as inputs into a planar knee mechanism to estimate MTCF [17]. The absolute mus-

cle and external contribution to compartmental tibiofemoral contact force were determined

by summing the muscle moments, external torques, and contact reaction moments about the

medial and lateral tibiofemoral contact points [16, 17].

Outcomes. The main load variable of interest was MTCF (including muscle and external

contribution to MTCF), however we also extracted external knee joint moments (i.e., KAM).
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Load variables over each stance phase of gait were spline interpolated to 101 time points and

normalised to bodyweight (BW). The peak (BW) and impulse (BW.s) were extracted [18, 39].

The loading phase of gait was defined as the point from initial contact to the first peak of the

load variable [21]. The impulse was calculated as time integral of the load variable over the

respective time-period. The mean and max loading rate was calculated from existing methods

that have evaluated loading rates of the peak vertical GRF [40, 41] and KAM [21, 41]. The

mean loading rate (BW�s-1) was calculated as the load variable peak divided by the time taken

from initial contact to the first load variable peak. Within the same time interval, the max load-

ing rate (BW�s-1) was determined by calculating the maximum instantaneous slope of the load

variable.

Sample size calculation

Given that the minimum clinically important difference in MTCF with interventions in OA is

unknown, this study utilised a sample of convenience (n = 28) from a bracing trial concur-

rently undertaken by our research group [25]. A post-hoc sample size calculation determined

that this sample was adequately powered to detect a small to medium effect size of 0.35 for

change in peak MTCF from barefoot with flat flexible shoes compared to stable supportive

shoes. Assuming 80% power, an alpha of 0.05, and a correlation between measurements on the

same individual of 0.82 [42], a sample of at least 26 participants was required.

Statistical analysis

Statistical parametric mapping (SPM) with one-way repeated measures analysis of variance

(ANOVA) was conducted within Matlab [43] to examine MTCF waveforms (including muscle

and external contributions) and KAM waveforms for the two shoe conditions (flat flexible and

stable supportive). SPM is suitable for analysis of MTCF waveforms as it is smooth, sampled

above the Nyquist frequency, and bounded by time [43]. If a significant main effect of condi-

tion on MTCF or KAM (i.e., suprathreshold cluster existed, p<0.05), pairwise comparison

with Bonferroni correction was applied to compare the waveforms via SPM {t} maps [44] and

reported graphically as mean differences ±95% confidence intervals (95% CI).

Statistical analysis of discrete MTCF and KAM outcomes were conducted using Statistical

Package for Social Sciences (SPSS), version 26 (IBM, New York, USA) with significance at

p<0.05. Dependent variables in the primary analysis were 1) peak MTCF; 2) MTCF impulse;

3) MTCF loading stance impulse; 4) mean MTCF loading rate; 5) max MTCF loading rate;

and 6) walking speed. Dependent variables in the secondary analysis were 1) peak KAM; 2)

KAM impulse; 3) KAM loading stance impulse; 4) mean KAM loading rate; 5) max KAM

loading rate; and 6) walking speed. We compared the differences in the dependent variables

using a repeated-measures multivariate analysis of variance (MANOVA), with shoe condition

(two levels: stable supportive and flat flexible) as the independent variable. The MANOVA was

chosen to control for experiment-wise error rate by evaluating the main effects and interaction

of the independent variable on the dependent variables collectively. Assumptions of homoge-

neity of variance of the residuals, multicollinearity, normal distribution of the residuals and

independent observations were evaluated. In the event of a significant main or interaction

effect, subsequent post-hoc pairwise comparison with Bonferroni correction was performed to

explore significant effects.

Results

The cohort (n = 28) had slightly more males than females, were overweight, and predomi-

nantly had moderate-to-severe radiographic knee OA (Table 1).
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Waveform analysis

The results of the primary SPM with one-way repeated measures ANOVA showed significant

suprathreshold clusters between the two shoe conditions for MTCF (p = 0.001), muscle contri-

bution to MTCF (p = 0.02) and external contribution to MTCF (p = 0.02) (Fig 3). Post-hoc

testing demonstrated that compared to flat flexible shoes, stable supportive shoes had a lower

MTCF (at 5–18% of stance), lower muscle contribution to MTCF (at 11–18% of stance), and

lower external contribution to MTCF (at 5–15% of stance) (Fig 4).

The results of the secondary SPM with one-way repeated measures ANOVA showed signif-

icant suprathreshold clusters between the two shoe conditions for KAM (p<0.001, p = 0.008)

(Fig 5). Post-hoc testing demonstrated that compared to flat flexible shoes, stable supportive

shoes had a lower KAM at 8–17% of stance and a higher MTCF at 26–51% of stance (Fig 6).

Discrete measures

The results of the primary repeated measures MANOVA showed a significant main effect

between shoe conditions (p<0.001). Subsequent post-hoc analysis found that compared to flat

flexible shoes, stable supportive shoes had a lower loading impulse (-0.02 BW�s 95%CI [-0.02,

-0.01], p<0.001), lower mean loading rate (-1.42 BW�s-1 95%CI [-2.39, -0.45], p = 0.01) and

lower maximal loading rate (-3.26 BW�s-1 95%CI [-5.94, -0.59], p = 0.02) (Table 2). There were

no differences observed for peak MTCF (p = 0.48), MTCF impulse (p = 0.12) or walking speed

(p = 0.82) (Table 2).

The results of the secondary repeated measures MANOVA showed a significant main effect

between shoe conditions (p<0.001). Subsequent post-hoc analysis found that compared to flat

flexible shoes, stable supportive shoes had a higher peak KAM (0.04 BW 95%CI [0.02, 0.06],

p<0.001) and a higher stance KAM impulse (0.02 BW�s 95%CI [0.01, 0.02], p = 0.001)

Table 1. Participant characteristics (n = 28).

Age, yr 63.9 (4.8)

Male, n (%) 16 (57%)

Height, m 1.68 (0.10)

Weight, kg 83.9 (13.6)

Body mass index, kg/m2 29.6 (3.4)

Unilateral symptoms, n (%) 15 (54%)

Duration of symptoms, median (IQR) months 48 (60)

Mean knee pain over the past week, median (IQR)a 6 (2)

Most affected leg, right(%) 22 (79%)

Test leg dominant, yes (%) 25 (89%)

Knee alignmentb, degrees

Females 178.2 (2.6)

Males 178.4 (2.7)

Radiographic disease severity gradec, n (%)

Grade 2 9 (32%)

Grade 3 11 (39%)

Grade 4 8 (29%)

Except where indicated otherwise, values are mean (standard deviation)
aNumerical rating scale (0 = no pain to 10 = worst pain possible)
bAnatomic alignment, where neutral alignment is 181˚ for females and 183˚ for males and varus is <181˚ for females

and <183˚ for males; cKellgren-Lawrence grading system; IQR: interquartile range

https://doi.org/10.1371/journal.pone.0269331.t001
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(Table 3). There were no differences observed for KAM loading stance impulse (p = 0.36),

mean KAM loading rate (p = 0.38), max KAM loading rate (p = 0.11) or walking speed

(p = 0.68) (Table 3).

Discussion

The primary objective of this study was to use EMG-informed neuromusculoskeletal model-

ling to compare the effects of flat flexible to stable supportive walking shoes on MTCF wave-

forms and discrete measures of MTCF (peak, impulse and loading rate) in people with medial

knee OA and varus malalignment. Our SPM of waveform data found the MTCF to be lower in

stable supportive shoes compared to flat flexible shoes, but only during the loading period (at

5–18%) of stance. Furthermore, our analysis of discrete variables found a lower MTCF impulse

during the loading phase of stance as well as lower loading rates (mean and max) when walk-

ing in stable supportive shoes compared to flat flexible shoes, but no differences in peak MTCF

or MTCF stance impulse. Collectively, these biomechanical findings indicate that stable sup-

portive shoes may be preferable to flat flexible shoes in people with medial knee osteoarthritis

and varus malalignment.

As this is the first study to evaluate the effects of stable supportive and flat flexible shoes on

MTCF during walking using EMG-informed neuromusculoskeletal modelling, direct compar-

ison with existing literature is precluded. We observed no statistically significant difference in

peak MTCF or MTCF impulse between stable supportive and flat flexible shoes. The mean

change from flat flexible shoes for stable supportive shoes in peak MTCF and MTCF impulse

was +1.3% and +2.1%, respectively. Given the MDC scores for MTCF using a scaled-generic

EMG-driven model is ~12% [42], these differences are unlikely to be meaningful. Secondary

analysis of KAM estimates derived from our modelling showed statistically significant

increases of 6% in peak KAM and 13% in KAM impulse in stable supportive shoes compared

to flat flexible shoes (Table 3). These increases are consistent with existing studies that have

used the KAM as a proxy for medial load (e.g., mean peak KAM (+6% (12), +7% (14), +15%

(13)) and KAM impulse (+8% (12), +12% (13))). Previous research has suggested that an

increase to the KAM does not guarantee increases in MTCF, due to the influence of muscle

and ligaments in counteracting external loads [23]. Given the increase in peak KAM in stable

supportive shoes compared to flat flexible shoes occurred in absence to changes to peak

MTCF, our findings support this concept. Our secondary analysis also found a significant

reduction in the KAM with stable supportive shoes compared to flat flexible shoes during the

loading period (8%-17%) of stance, but no significant difference in KAM loading rates (mean

and max) or KAM loading impulse (Figs 5 and 6, Table 3). We postulate this is due to discrep-

ancies between the peak MTCF and peak KAM across the shoe styles. As ours is the first study

to directly evaluate the MTCF loading response using EMG-informed neuromusculoskeletal

modelling, further research evaluating this outcome is required to confirm our findings.

Inspection of Fig 3 waveforms suggest that, at peak MTCF, the muscle contribution to

MTCF was higher and the external contribution to MTCF lower in flat flexible shoes com-

pared to stable supportive shoes. Based on our findings, we speculate that at peak MTCF there

was a concomitant increase in muscle activity across the knee, which nullified the decrease in

external loads in flat flexible shoes compared to stable supportive shoes. Limited evidence has

Fig 3. Ensemble mean (± standard deviation) and statistical parametric mapping (using a one-way repeated

measures ANOVA) for medial tibiofemoral joint contact force (top), muscle contribution to medial contact force

(middle), and external contribution to medial contact force (bottom) across the stance phase of gait when walking

with stable supportive shoes (green) and flat flexible shoes (yellow).

https://doi.org/10.1371/journal.pone.0269331.g003
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demonstrated higher medial gastrocnemius and gluteus maximus activation during the stance

phase of running in acute bouts of barefoot running compared to shod running [45]. Indeed,

it is plausible that flat flexible shoes may increase proximal activation during walking in knee

OA. It is also possible that subject-specific biomechanical strategies modulated the MTCF out-

comes. This has been demonstrated during real-time modelling of MTCF, where the gait strat-

egies used to alter peak MTCF differed between participants [46]. Furthermore, variations in

tibia, rearfoot and forefoot motion have been shown to influence external knee loads [47].

However, the influence of flat flexible and stable supportive shoes on these parameters were

not evaluated in this study. Further research may be necessary to investigate potential sub-

group or individual biomechanical and muscle activation strategies in people with knee OA.

During the loading phase of stance, there is a large, high frequency impact force through

the lower limb. The shock absorption capacity of this impact force (loading rate) has important

clinical implicaitons [40, 48]. Compared to healthy controls, higher rates of GRF loading have

Fig 4. Mean differences (95% CI) across shoe conditions based on ANOVA post-hoc comparison of medial

tibiofemoral joint contact force (top), muscle contribution to medial contact force (middle), and external

contribution to medial contact force (bottom).

https://doi.org/10.1371/journal.pone.0269331.g004

Fig 5. Ensemble mean (± standard deviation) and statistical parametric mapping (using a one-way repeated measures ANOVA) for external

knee adduction moment (BW) across the stance phase of gait when walking with stable supportive shoes (green) and flat flexible shoes (yellow).

https://doi.org/10.1371/journal.pone.0269331.g005
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been associated with the presence of knee OA [20] and increased loading rate of the external

KAM has been correlated with increased medial tibiofemoral cartilage loss on MRI [21]. Walk-

ing in stable supportive shoes resulted in a lower MTCF loading rate compared to flat flexible

shoes, which appears to be driven by a rightward shift in the stable supportive MTCF wave-

form shortly after heel-strike (Fig 3). These findings are intuitive considering the differences in

shoe design. Stable supportive shoes are designed with thick, high pitched heels and cushioned

soles, whereas flat flexible shoes have thin, low pitched heels and minimal shoe cushioning.

Unfortunately, other research comparing the effects of stable supportive and flat flexible shoe

styles on loading rates is limited to running in young, healthy populations [22], which makes

direct comparisons with our findings in walking difficult given that loading rates during run-

ning are influenced by both foot strike pattern [49–51] and footwear style [20, 50]. Further-

more, it is challenging to compare a clinical population aged�50 years with symptomatic

medial knee OA and varus malalignment to a young population with asymptomatic knees due

to disease-specific biomechanical strategies [20, 25].

Fig 6. Mean differences (95% CI) across shoe conditions based on ANOVA post-hoc comparison of external knee adduction moment

(BW).

https://doi.org/10.1371/journal.pone.0269331.g006
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A novel insight from our use of neuromusculoskeletal modelling is the evaluation of the

absolute muscular and external load contributions to MTCF. During loading stance, there was

a decrease in both the muscle and external load contributions to MTCF during walking with

stable supportive shoes compared to flat flexible shoes (Fig 4). The difference in the muscular

contribution to MTCF was observed between 11% to 18% of stance, while the difference in

external contribution to MTCF was evident between 5% to 15% of stance (Fig 4). At heel-

strike, shoes increase both ankle dorsiflexion and knee flexion compared to barefoot, which

likely increases gastrocnemius and quadriceps activation [52]. It is plausible that the compara-

ble waveforms of muscle contributions to MTCF between 1%-10% of stance across our foot-

wear conditions are a result of similar muscle activation profiles stemming from wearing shoes

of any type. However, without a barefoot control comparison these inferences lack validation.

This study focused on comparing immediate effects of two shoe styles. Interestingly, “ath-

letic”, “sturdy/supportive” and “cushioned” shoes are most frequently worn by people with

knee OA, with both clinicians and patients believing that they are the most suitable [53]. How-

ever, these characteristics are not mutually exclusive to stable supportive shoes. A rigorous

RCT comparing stable supportive to flat flexible shoes reported 88% of participants wore shoes

with mixed properties before enrolment and had comparable treatment expectations at

Table 2. Mean change (SD) in spatiotemporal and discrete joint contact force variables for flat flexible and stable supportive shoes, with accompanying mean differ-

ences (95% confidence intervals (CI)).

Flat flexible (n = 28) Stable supportive (n = 28) Mean difference (95%CI) Stable supportive minus Flat flexiblea

Spatiotemporal
Walking speed (m�s-1) 1.29 (0.15) 1.29 (0.15) 0.00 (-0.01, 0.02)

Joint contact forces (BW)
Peak medial 2.13 (0.46) 2.16 (0.49) 0.03 (-0.05, 0.11)

Joint contact impulse (BW�s)
Loading stance 0.10 (0.02) 0.08 (0.02) -0.02 (-0.02, -0.01)

Overall stance 0.89 (0.24) 0.91 (0.25) 0.02 (-0.01, 0.04)

Loading rate (BW�s-1)
Mean 14.03 (3.84) 12.61 (3.28) -1.42 (-2.39, -0.45)

Max 29.01 (12.63) 25.74 (12.19) -3.26 (-5.94, -0.59)

a positive values indicate an increase in stable supportive shoes compared to flat flexible shoes

https://doi.org/10.1371/journal.pone.0269331.t002

Table 3. Mean change (SD) in spatiotemporal and discrete knee adduction moment variables for flat flexible and stable supportive shoes, with accompanying mean

differences (95% confidence intervals (CI)).

Flat flexible (n = 28) Stable supportive (n = 28) Mean difference (95%CI) Stable supportive minus Flat flexiblea

Spatiotemporal
Walking speed (m�s-1) 1.29 (0.15) 1.29 (0.15) 0.00 (-0.01, 0.02)

Knee adduction moment (BW)
Peak 0.49 (0.15) 0.52 (0.15) 0.04 (0.02, 0.06)

Knee adduction moment impulse (BW�s)
Loading stance 0.04 (0.01) 0.04 (0.01) 0.00 (0.00, 0.00)

Overall stance 0.15 (0.05) 0.17 (0.05) 0.02 (0.01, 0.02)

Knee adduction moment loading rate (BW�s-1)
Mean 3.10 (1.29) 2.98 (1.04) -0.11 (-0.36, 0.15)

Max 7.29 (2.44) 6.71 (1.78) -0.55 (-1.25, 0.14)

a positive values indicate an increase in stable supportive shoes compared to flat flexible shoes

https://doi.org/10.1371/journal.pone.0269331.t003
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baseline [11]. Based on these findings, it is unclear whether the lower MTCF with stable sup-

portive shoes observed in this study stems from habitual walking in this shoe type. Indeed,

study of longitudinal responses of MTCF to footwear needs to be undertaken to understand

any muscular, gait or habitual adaptations.

Previous research has demonstrated relationships between KAM (peak and impulse) and

knee OA pain [15]. Despite being associated with a higher KAM relative to flat flexible shoes

[12–14], robust clinical trial evidence shows that stable supportive shoes provide greater knee

pain relief compared to flat flexible shoes [11]. This suggests that factors other than the KAM

contribute to changes in knee pain, and/or reflect the limitations of the KAM as a proxy of

medial tibiofemoral joint loads during walking. We applied an EMG-informed model to mea-

sure medial tibiofemoral loads, as these methods provide more valid indicators of in-vivo

MTCF than the KAM [54]. We found no difference in peak MTCF, or MTCF impulse

throughout stance, between flat flexible shoes and stable supportive shoes but observed

reduced measures of loading with supportive shoes compared to the flexible shoes. Taken

together, our exploratory hypothesis-generating findings suggest that greater knee OA pain-

relief associated with stable supportive shoes compared to flat flexible shoes may be due to

reduced MTCF loading rates.

This is the first study to apply a validated EMG-informed neuromusculoskeletal model to

compare the effects of shoe conditions on MTCF, in any population. We implemented sub-

ject-specific lower-limb joint geometry, which has previously been shown to improve predic-

tions of MTCF [34]. Furthermore, the root mean square error values between CEINMS

generated knee flexion/extension torques and those from inverse dynamics were well within

best practice and CEINMS guidelines [36, 55] and did not differ significantly between condi-

tions (S1 Table). This demonstrates the modelling has well satisfied the primary rigid body

physics while also respecting the unique subject- and task-specific muscle activation patterns.

However, some limitations do warrant consideration. First, these findings are only generalisa-

ble to participants with knee OA who also have varus knee malalignment. Second, our study

sample included slightly more males than females, however knee OA is more prevalent in

women than men [56]. Lastly, extensive validation of our EMG-informed neuromusculoskele-

tal modelling is hindered by limited datasets to directly validate MTCF predictions [34].

Our findings suggest that walking in stable supportive shoes reduced MTCF during loading

phase of stance compared to flat flexible shoes in people with medial knee OA and varus mala-

lignment. Stable supportive shoes also reduced mean and maximal loading rate, and reduced

loading impulse compared to flat flexible shoes, but not peak MTCF or MTCF stance impulse.

Stable supportive shoes may therefore be preferred over flat flexible shoes in people with

medial knee OA and varus malalignment.
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