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Abstract
RNA-sequencing (RNA-seq) has rapidly become a popular tool to characterize transcriptomes. A fundamental
research problem in many RNA-seq studies is the identification of reliable molecular markers that show differential
expression between distinct sample groups. Together with the growing popularity of RNA-seq, a number of data
analysis methods and pipelines have already been developed for this task.Currently, however, there is no clear con-
sensus about the best practices yet, which makes the choice of an appropriate method a daunting task especially
for a basic user without a strong statistical or computational background. To assist the choice, we perform here a
systematic comparison of eight widely used software packages and pipelines for detecting differential expression
between sample groups in a practical research setting and provide general guidelines for choosing a robust pipeline.
In general, our results demonstrate how the data analysis tool utilized can markedly affect the outcome of the
data analysis, highlighting the importance of this choice.
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INTRODUCTION
Deep sequencing of RNAs (RNA-seq) has rapidly

become the tool of choice in many genome-wide

transcriptomic studies. It enables the annotation and

quantification of genes across various samples with

improved sensitivity over expression microarrays

[1–3]. A fundamental research problem in many

RNA-seq studies is the identification of differentially

expressed genes between distinct sample groups

(e.g. healthy and disease). Together with the grow-

ing popularity of the RNA-seq technology, a

number of computational software packages and

pipelines have already been introduced for this task,

including methods based on negative binomial

models such as edgeR [4], DESeq [5] and baySeq

[6], non-parametric approaches such as NOIseq [7]

and SAMseq [8], transformations of gene-level read

counts for linear modeling with limma [9], as well as

transcript-based detection methods that also enable

gene level differential expression reports, such as

Cuffdiff 2 [10] and EBSeq [11]. Currently, however,

the understanding of the best practices remains rather

shallow and the field is under continuous develop-

ment [1, 12].

In general, it seems that similar challenges and

solutions as earlier with microarrays are now debated

in the context of RNA-seq. For instance, the early

microarray studies involved often only very few rep-

licate samples and they determined differential

expression using simplistic statistics, such as fold-

change, while it soon became evident that it is es-

sential to consider also the variability over replicate
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samples. Therefore, microarray experiments today

make use of advanced statistical testing procedures,

such as those based on modified t-tests [9]. Similarly,

the early RNA-seq studies often used a single source

of RNA and the counts across technical replicates

were reported to fit well to a Poisson distribution

[3, 12, 13]. However, when data on biological

replicates became more available, it was soon dis-

covered that the variability between replicated

measurements is often higher than expected

by Poisson distribution—a phenomenon called

overdispersion—making Poisson-based analyses

prone to high false positive rates. Consequently,

methods to deal with biological variability and over-

dispersion have been introduced, such as methods

based on negative binomial and beta negative bino-

mial models [4–6, 14]. As the detection of differen-

tially expressed genes involves performing a large

number of statistical tests, multiplicity needs to be

taken into account when determining the signifi-

cance of the detections. The conventional correction

of P values for multiplicity aims to control the

family-wise error rate, but it is often too conservative

for the purposes of many biological studies.

Therefore, when assessing the statistical significance

of the detections, it has become a common practice

to control the false discovery rate (FDR) of the de-

tections, that is, the expected proportion of false

positives among all the detections, and correct

the P values accordingly using, for instance, the

Benjamini–Hochberg method [15].

Although several recent studies have introduced

new software packages to detect differential expres-

sion from RNA-seq data sets and the authors have

shown their improved performance over previous

methods in selected data sets, only few independent

comparisons have been published so far. In particular,

a systematic independent comparison of the state-of-

the-art methods and pipelines in real data sets at dif-

ferent numbers of replicates is still lacking. Toward an

independent comparison, Kvam et al. [12] compared

recently the performance of four related packages

(edgeR, DESeq, baySeq and TSPM) but focused

mainly on simulated data sets. Soneson and

Delorenzi [16] included in their comparison a total

of 11 approaches (edgeR, DESeq, baySeq, NBPSeq,

TSPM, EBSeq, NOIseq, SAMseq, ShrinkSeq and

two versions of limma) but again focused mainly on

simulated data sets. Nookaew et al. [17] included in

their comparison five packages (edgeR, DESeq,

baySeq, NOIseq and Cuffdiff) on a real data set but

their case study on Saccharomyces cerevisiae involved

only three replicates per group. None of these com-

parisons included the very recently introduced

Cuffdiff 2, which has been proposed to outperform

the previous approaches [10].

To this end, we present here a systematic practical

pipeline comparison of eight software packages

edgeR, DESeq, baySeq, NOIseq, SAMseq, limma,

Cuffdiff 2 and EBSeq, which represent the current

state-of-the-art of the field. All of them except

Cuffdiff 2 are available in R or Bioconductor. To

complement the previously published simulation stu-

dies under a more realistic setting, we focus here on

two publicly available real data sets that are among

the few with relatively large numbers of replicates.

These data allow us to evaluate the different software

packages and pipelines at different numbers of repli-

cates covering a variety of practical research settings.

The use of publicly available data sets also guarantees

that any future analysis package can be easily com-

pared against the results. As our goal is to provide an

objective and practical assessment of the packages in

a sense of real experimental pipelines and guide an

average user in choosing a robust data analysis pipe-

line, we apply each of the packages following the

instructions provided in the software manuals—as

most users in practice typically do. For evaluation,

we focus on measures that are of practical interest to

researchers when analyzing their data sets. In particu-

lar, we investigate the number of detections at dif-

ferent numbers of replicates, their consistency within

and between pipelines, the estimated proportion of

false discoveries and the runtimes. In general, we

illustrate that there are marked differences between

the different software packages, which can lead to

considerable variability in reported results. To aid

the selection of a suitable data analysis approach,

we provide some practical guidelines taking into

consideration the experimental design and goals of

the analysis (e.g. number of samples available,

acceptable rates of false positives).

METHODS
Software packages for detecting
differential expression
We give here a brief summary of the software pack-

ages that we compare in the present work for de-

tecting differential expression between two groups of

samples. For more detailed description of the pack-

ages and the statistical models they apply, the reader
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is referred to the original publications and the related

software package websites (Table 1). When applying

the packages, we focus on the approach that an aver-

age user is likely to take, that is, we follow the in-

structions and recommendations provided in the

software manuals about the implementation and

parameters, including the default normalization

methods. Additionally, we also consider the use of

similarly preprocessed data in the analyses using the

Trimmed Mean of M values (TMM) normalization

[18], which was recently recommended in an exten-

sive comparison of various normalization methods

[19]. This enables us to assess the overall effect of nor-

malization on the outcome of the different packages

and more directly assess the differences between

the statistical tests of the packages. The codes used

to perform the calculations are available as

Supplementary Code.

edgeR [4] determines differential expression using

empirical Bayes estimation and exact tests based on a

negative binomial model. The package has been de-

veloped to enable analysis of experiments with small

numbers of replicates. In particular, an empirical

Bayes procedure is used to moderate the degree of

overdispersion across genes by borrowing informa-

tion between genes. An exact test analogous to

Fisher’s exact test but adapted to overdispersed data

is used to assess differential expression for each gene.

As default, the TMM normalization procedure is

carried out to account for the different sequencing

depths between the samples, whereas the Benjamini–

Hochberg procedure is used to control the

FDR [15].

DESeq [5] uses a similar negative binomial model

as edgeR but models the observed relationship

between the mean and variance when estimating

dispersion, allowing a more general, data-driven par-

ameter estimation. According to the method devel-

opers, this allows a balanced selection of differentially

expressed genes throughout the dynamic range of

the data. Similar to edgeR, a scaling factor normal-

ization procedure is carried out to account for the

varying sequencing depths of the different samples

and the Benjamini–Hochberg procedure is used to

control the FDR. Also DESeq has been developed to

enable analysis of experiments with small numbers

of replicates. With DESeq, it is technically possible,

although not recommended, to work with experi-

ments without any biological replicates.

baySeq [6] is based on estimating posterior like-

lihoods of differential expression via empirical Ta
bl
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Bayesian methods, assuming negative binomially dis-

tributed data. The method produces posterior prob-

abilities rather than significance values and reports a

Bayesian FDR estimate. The varying library sizes are

taken into account by library scaling factors. The

method is relatively computationally intensive but,

unlike the other R/Bioconductor packages, its im-

plementation makes it directly possible to take

advantage of parallel processing (not applied in this

study).

NOIseq [7] is a data adaptive non-parametric

method, which empirically models the noise

distribution from the actual data by contrasting

fold-change differences and absolute expression dif-

ferences among samples within the same condition.

According to the method developers, it can therefore

adapt to the size of the data set and thus efficiently

control the rate of false discoveries. NOIseq includes

RPKM (reads per kilobase per million mapped reads)

[2] as a default normalization method. The package is

specifically designed to account for small numbers of

replicates and genes with low expression levels.

SAMseq [8] is a non-parametric method based on

Wilcoxon rank statistic and a resampling procedure

to account for the different sequencing depths.

A permutation-based approach is used to estimate

FDR. According to the method developers, it can

be applied to data with at least moderate numbers of

replicate samples (�10 or more). It is claimed that

the method is able to select significant features more

efficiently than parametric methods in cases when

their distributional assumptions do not hold.

Limma [9] is based on linear modeling. It was

originally designed for analyzing microarray data

but has recently been extended to RNA-seq data.

The current recommendation according to the

limma user guide is to use TMM normalization

of the edgeR package and the so called ‘voom’-

conversion which essentially transforms the normal-

ized counts to logarithmic (base 2) scale and estimates

their mean–variance relationship to determine a

weight to each observation prior to linear modeling

[20]. By default, the Benjamini–Hochberg proced-

ure is used to estimate the FDR [15].

Cuffdiff 2 [10] estimates expression at transcript-

level resolution and controls for variability and

read mapping ambiguity by using a beta negative

binomial model for fragment counts. It is part of

the extensive Cufflinks package developed for the

identification of differentially expressed genes and

transcripts and revealing differential splicing and

promoter-preference changes. Although Cuffdiff 2

enables to analyze signals at the transcript level, it

reports differential expression also at the gene level

and these gene level results were used here as a basis

for comparison with the other software packages. By

default, Cuffdiff 2 uses a similar scaling factor pro-

cedure as DESeq to account for the different sequen-

cing depths and the Benjamini–Hochberg procedure

to control the FDR. The Cuffdiff 2 method specif-

ically addresses the uncertainties in counts owing to

ambiguous reads that easily result in false differential

expression calls of genes especially with several simi-

lar isoforms. In this work, we only looked at the

gene level analysis results of the pipeline.

EBSeq [11] is mainly developed to identify dif-

ferentially expressed isoforms but has demonstrated a

robust outcome in gene level analyses as well. EBSeq

estimates the posterior likelihoods of differential and

equal expression by the aid of empirical Bayesian

methods, assuming negative binomial distribution

for the data. To account for the different sequencing

depths, a median normalization procedure similar to

DESeq is used as the default method [5]. A Bayesian

FDR estimate is provided.

To use comparable thresholds for determining

the differentially expressed genes with the different

packages, we used the FDR of 0.05 for all packages

except NOIseq, which does not report any FDR

estimate. To obtain as comparable threshold as pos-

sible with NOIseq, we required that the probability

of differential expression was above 0.8, as suggested

by the method developers. When determining the

ranking of the genes, we primarily ranked the genes

according to their multiple testing corrected signifi-

cance levels reported by the software packages and

secondarily according to the nominal significance

levels as the corrected values in many cases quickly

reached their maximum value. These ranks were

used for determining the similarity between the dif-

ferent methods by calculating the Spearman correl-

ation of the gene ranks.

Along with development of this study, a new

version of the DESeq package named DESeq2

(v.1.1.25) and a new version of Cuffdiff 2 named

Cuffdiff 2.1 (v.2.1.1) were released but the corres-

ponding manuscripts have not been published yet.

Hence, although we included DESeq2 and Cuffdiff

2.1 in our comparison analyses as well, we did not

incorporate the results in the main part of our work.

However, to provide as complete as possible infor-

mation to interested readers, we present a summary
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of the results in Supplementary Figures S1 and S2. In

general, DESeq2 and Cuffdiff 2.1 showed not only

an increase in the number of detections, when com-

pared with DESeq and Cuffdiff 2, respectively, but

also an increased number of false positives.

Data sets
For a practical comparison of the software packages

and pipelines in real data sets, we considered two

publicly available data sets that were among the

few with relatively large numbers of replicates.

Additionally, these data represented diverse types of

experiments, including mouse and human data with

different levels of heterogeneity between replicate

samples. In particular, the mouse data showed

significantly higher correlations among replicate sam-

ples than the human data (Wilcoxon test, P< 0.01),

suggesting that they constituted more homogeneous

sample groups (Supplementary Figure S3).

The mouse RNA-seq data has been published in

[21]. It consists of the striatum samples of 21 mice, 10

of the C57BL/6J strain and 11 of the DBA/2J strain.

The samples were sequenced on Illumina Genome

Analyzer II with 76 bp read length, yielding on aver-

age 22 million raw reads per sample. For the evalu-

ation, we identified differentially expressed genes

between the two strains, similarly as in the original

publication [21].

The human RNA-seq data is part of the

International HapMap project and it has been pub-

lished in [22]. We considered here samples from

lymphoblastoid cell lines of 56 unrelated Nigerian

individuals, 28 males and 28 females. The samples

were sequenced on Illumina Genome Analyzer II

instrument with 35 and 46-bp read length. For the

evaluation, we identified differentially expressed

genes between males and females.

To include Cuffdiff 2 into our comparisons, we

realigned all the sequenced read data using the latest

reference sequences and annotations. The human

data were aligned against the hg19 reference and

the mouse data against the mm10 reference

genome using the Tophat aligner with default par-

ameters [14]. The average alignment rate was 0.89

(s.d. 0.02) and 0.86 (s.d. 0.03) for human and mouse,

respectively. For all other methods except Cuffdiff 2,

the gene counts were extracted using the HTSeq

python tool (http://www-huber.embl.de/users/

anders/HTSeq). In all cases, the genes were analysed

against RefSeq gene annotations.

The Bioconductor package easyRNASeq [23] was

used to calculate the RPKM values [2], which were

utilized to divide the genes into four categories: very

lowly or not expressed, lowly, medium or highly

expressed genes. Briefly, following the approach of

Hackett et al. [24], genes with an average RPKM

value across samples below 0.125 were considered

as very lowly or not expressed, genes with an average

RPKM value between 0.125 and 1 were considered

lowly expressed, between 1 and 10 medium

expressed, and above 10 highly expressed.

To estimate the proportion of false discoveries, we

utilized the replicates within the sample groups in the

mouse and human data. More specifically, we con-

structed artificial two-group comparisons with differ-

ent numbers of replicates by randomly sampling

without replacement two subsets of samples from a

single sample group 10 times for each sample group.

We expected that no significant detections should be

made in such mock comparisons. To compare be-

tween the different software packages, we divided

the number of mock detections with the average

number of detections in the actual comparisons

with the same number of replicates. Only statistically

significant genes were considered with each package.

RESULTSANDDISCUSSION
Effect of normalization on the detections
To assess the effect of normalization on the outcome

of the different packages, we considered both the use

of the default normalization of each package, as well

as the use of similarly preprocessed data normalized

with the TMM normalization [18]. In particular,

we investigated the differentially expressed genes de-

tected in the mouse and human data when the

number of replicates was varied. For this, subsamples

of different sizes were generated from the complete

data by group-preserving random sampling without

replacement 10 times at each number of replicates

and data. When looking at the number of detections

at different numbers of replicates, no systematic sig-

nificant differences were observed between the

default and TMM normalization-based detections

(Wilcoxon test, P> 0.1; Supplementary Figure S4).

A closer look at the detections revealed a high over-

lap; with each software package and data, over 80%

of the detections made using either of the normal-

izations were made using both of the normalizations

(Figure 1A). Finally, comparison of the gene rank-

ings confirmed the overall similarity of the results
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(Figure 1B and C). With the exception of SAMseq

in the human data, the default and TMM normal-

ization-based rankings were always grouped together

in the dendrograms; the similarity between two dif-

ferential expression rankings was determined by

Spearman correlation of the gene ranks. Thus, to

our surprise, changing the default normalization

methods to TMM normalization did not have a sig-

nificant impact on the results in the present compari-

sons. Therefore, for the rest of the results, we focus

on the default normalization methods that an average

user is likely to use.

Number and consistency of detections
As expected, with most of the packages, the number

of detected differentially expressed genes increased

when the number of replicate samples was increased

(Figure 2A). However, with NOIseq and Cuffdiff 2,

the number of detections decreased when the

number of samples was increased. The same trend

was observed both in the mouse and in the human

data, suggesting that NOIseq and Cuffdiff 2 have low

power especially when the number of replicates in

the groups increases. For instance, Cuffdiff 2 did not

identify any differentially expressed genes between

the males and females in the complete human data.

It was unable to detect even those genes on the

male-specific chromosome Y that were identified

as differentially expressed between males and females

with all the other software packages. As NOIseq

compares the changes between conditions to those

within conditions aiming at low false positive rates,

Figure 1: Effect of normalization on the detections. (A) Overlaps of the differentially expressed genes detected in
the mouse and human data using the default or TMM normalization method for all R-based packages that do not
useTMM as their default normalization option (see Methods for details of the significance thresholds).With edgeR
and limma theTMM normalization is the default normalization and, therefore, they are not included.Overall similar-
ity between the rankings obtained using the default or TMM normalization method (denoted by TMM after the
name of the package) in the (B) mouse and (C) human data.The dendrogramwas constructed using average linkage
hierarchical clustering and Spearman correlation of the gene ranks.
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the method may not be ideally suited to such het-

erogeneous data sets as those in our comparisons.

With Cuffdiff 2, the decreasing number of detections

is likely related to the inability of the variability es-

timation to take into account the increasing number

of replicates [10]. We also tested an older version of

Cuffdiff (v.1.3.0) and different parameter settings but

obtained similar results (Supplementary Table S1).

With the recently released new version, however,

an increase in the number of detections was observed

but no supporting manuscript has been published yet

(Supplementary Figure S1).

NOIseq and Cuffdiff 2 were generally most con-

servative, whereas the largest numbers of detections

were typically obtained with edgeR and SAMseq,

with the exception that SAMseq identified only

few genes with small numbers of replicates when

the non-parametric approach was also expected to

have relatively low power. The number of detec-

tions with DESeq and limma was typically some-

where between the extremes, DESeq being more

conservative than limma. The relative number of

detections with baySeq and EBSeq varied depending

on the data, being relatively low in the mouse data

Figure 2: Number and consistency of differentially expressed genes detected using eight state-of-the-art software
packages in the mouse and human data (upper and lower panel, respectively). (A) Number of detections (y axis)
with different numbers of replicates (x axis) for each software package. The points correspond to averages over 10
randomly sampled subsets; the error bars show the standard error of the mean. (B) Differentially expressed genes
in the complete data divided into four categories on the basis of their expression levels: very lowly or not expressed
genes, lowly, medium and highly expressed genes. The different software packages were ordered on the basis of
their total number of detections in the mouse data. (C) Precision of the detections (y axis) when increasing the
number of replicates (x axis) in terms of genes identified as differentially expressed genes in the complete data
using all the samples available in the mouse and human data (upper and lower panel, respectively).Only statistically
significant genes were considered with each method (see Methods for details of the significance thresholds). The
points correspond to averages over 10 randomly sampled subsets; the error bars show the standard error of the
mean. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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and among the highest in the human data. SAMseq

showed the largest variability between the different

subsets of the same size.

To take a closer look at the expression levels of the

detected genes, we divided them into four categories

on the basis of their average expression level across

the samples: very low or not expressed, low, medium

and high [24]. When considering all the genes in the

data, the proportion of very lowly or not expressed

genes was nearly 50% for both mouse and human

(Figure 2B). Among the genes identified as differen-

tially expressed, this proportion typically decreased

below 35% but was still substantial. In particular,

with edgeR, baySeq and EBSeq in the human data

�50% or more of the detections were very lowly or

not expressed. In general, our comparison illustrated

that a large proportion of the detections involved

relatively low count genes, requiring caution when

interpreting the results. Although for the purposes of

the present evaluation, we wanted to keep all the

genes in the analyses, in practical research studies it

may be reasonable to filter out the very lowly ex-

pressed genes from the results, especially with

baySeq, edgeR and EBSeq but also with other meth-

ods. This can be done using, for instance, the overall

sum of counts independent of the sample groups [16,

25] or the maximum normalized count across

samples [26].

Finally, we examined the consistency of the

detections between subsets of varying numbers

of replicates and the complete data by calculating

their overlap [27, 28]. More specifically, we deter-

mined the lists of differentially expressed genes in the

subsets of different sizes with each software package

and then calculated their average overlap with those

identified as significant in the complete data

(Figure 2C). The precision in terms of the complete

data was generally highest with DESeq and limma.

In the mouse data, also baySeq and SAMseq per-

formed similarly when there were more than four

replicates. The lowest precision was observed with

NOIseq and Cuffdiff 2, which was in line with the

observation that with them the number of detections

decreased when increasing the number of replicates.

Additionally, EBSeq showed low precision.

False discoveries
To assess how the different software packages and

pipelines can control false positive rates, we utilized

the multiple replicates within the sample groups by

constructing artificial two-group comparisons. No

significant detections were expected in such mock

comparisons. Not unexpectedly, the proportion of

false discoveries tended to decrease when increasing

the number of replicates especially in the mouse

data with relatively homogeneous sample groups

(Figure 3 and Supplementary Tables S2 and S3). In

the mouse data, the differences between the software

packages were relatively small, the most conservative

baySeq and Cuffdiff 2 showing the lowest numbers

of false detections and EBSeq in general the largest.

SAMseq showed the largest variability. For instance,

in the mouse data with only three replicates it some-

times detected a large number of genes also in the

mock comparisons (Supplementary Table S2). In the

human data, differences between the packages were

larger and so was also the variability between the

different subsets, reflecting the inherently larger het-

erogeneity between the samples. Now, DESeq,

limma and Cuffdiff 2 showed the lowest proportions

of false detections, whereas edgeR and EBSeq iden-

tified a relatively large number of genes as differen-

tially expressed also in the mock comparisons.

Notably, while NOIseq was relatively conservative

in the actual comparisons, it identified relatively

many genes in the mock comparisons.

Similarity between methods
Finally, we assessed the similarities and differences

between the different procedures. To characterize

the overall similarities of the results, we first com-

pared the obtained gene rankings using Spearman

correlation (Figure 4A and Supplementary

Figures S5 and S6). This suggested that the rankings

obtained with baySeq, Cuffdiff 2 and EBSeq were

generally most different from the rest of the software

packages. On the other hand, the most similar rank-

ing results were obtained with DESeq and edgeR,

which share also the same underlying statistical

model. The behavior of SAMseq seemed to be

highly dependent on the data. The higher overall

correlations between the gene rankings in the

mouse data, as compared with those in the human

data, could be attributed to larger differences be-

tween the mouse groups as well as higher homogen-

eity of the samples within the groups (Supplementary

Figure S3).

Besides the overall rankings, we investigated also

the overlaps of the significant detections between the

software packages (Figure 4B). This showed that the

genes identified with the more conservative pipelines

were typically detected also with the less
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conservative ones. For instance, in the mouse data,

the lowest number of genes was identified with

Cuffdiff 2 (Figure 2A) and at least 90% of these

genes were typically detected with the other pack-

ages (Figure 4B). In addition to NOIseq and Cuffdiff

2, a large percentage of the detections made with

DESeq were identified with most of the other soft-

ware packages. In contrast, SAMseq identified a rela-

tively large number of genes that were typically not

detected with the other packages.

Runtimes
The computational time required to run the analyses

varied a lot depending on the software package

(Figure 5); edgeR and limma were computationally

fastest taking only seconds to run, whereas baySeq

and Cuffdiff 2 took hours to run. The computational

time required by DESeq, SAMseq, NOIseq and

EBSeq was in minutes, ranging from 1 to �15 mi-

nutes depending on the number of replicates. The

analyses were run on a computer cluster node with

two Intel XEON Hexa-Core processors and 96 GB

of memory. The only software that directly supported

multi-threading was Cuffdiff 2; it was run on all the

available 12 cores. All the R/Bioconductor packages

were run on a single core at a time.

CONCLUSIONS
In this study, we carried out a practical comparison of
the state-of-the-art software packages for detecting
differential expression from RNA-seq data at differ-
ent numbers of replicates to guide the selection of a
suitable package. In general, our results demonstrated
that there can be large differences between the pipe-
lines and no single method is likely to be optimal
under all circumstances.

When the number of replicates is very small (say

below 5), the results from statistical testing should

always be taken with caution. This is particularly

important to keep in mind, as such small numbers

of replicates remain a common practice in many

RNA-seq studies. In the present comparisons,

limma and DESeq seemed to be among the safest

choices in such cases in terms of the consistency of

the detections with those made from the complete

data (Figure 2C). In contrast, edgeR showed a large

range of variability, while the non-parametric

SAMseq suffered from low power. When the

number of samples becomes larger, the choice of

the software package becomes less critical, except

for NOIseq and Cuffdiff 2 which identified only

few genes as the number of replicates increased

above five (Figure 2A). However, this depends also

on the characteristics of the data, such as

Figure 3: False discoveries on the basis of mock comparisons in the (A) mouse and (B) human data. In each mock
comparison, differentially expressed genes were identified between two artificially constructed sample subsets
from a single sample group, in which no significant detections are expected.To compare between the different soft-
ware packages, we divided the number of mock detections with the average number of detections in the actual com-
parisons with the same number of replicates.Only statistically significant genes were considered with each method
(see Methods for details of the significance thresholds).The points correspond to averages over10 randomly sampled
subsets; the error bars show the standard error of the mean. A colour version of this figure is available at BIB
online: http://bib.oxfordjournals.org.
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heterogeneity. For instance, in the inherently more

heterogeneous human data, only DESeq and limma

were able to produce low rates of false positives even

if the number of samples was increased (Figure 3B).

Thus, it would be important for the users to famil-

iarize themselves with the general relationships be-

tween and within each sample group using general

visualization and quality assessment methods before

choosing the analysis tool. For example limma,

DESeq and NOIseq are readily coupled with tools

for this purpose. When the number of replicates is

relatively large (say �10 or more), non-parametric

methods may be useful especially if the distributional

assumptions are violated [8]. In all cases, care needs to

be taken when interpreting the results involving

lowly expressed genes. To ensure the accuracy of

the attained results, it may be informative to run

the analyses with more than one software package

(Figure 4).

Based on our comparisons, the choice of the nor-

malization method had surprisingly little influence

on the outcome of the analysis. Moreover, although

we did not conduct a comprehensive study on the

effect of all the run parameters, our evaluation

Figure 4: Similarity between the methods in the mouse and human data (upper and lower panel, respectively).
(A) Overall similarity between the methods based on Spearman correlation of gene ranks. The dendrograms were
constructed using average linkage hierarchical clustering. (B) Overlap of significant detections between the methods
(see Methods for details of the significance thresholds). The proportion of common detections was calculated for
each pair of methods, resulting in an asymmetric matrix of percentages. A colour version of this figure is
available at BIB online: http://bib.oxfordjournals.org.

68 Seyednasrollah et al.



suggested that most of the time they do not have a

very strong impact on the results (Supplementary

Figure S4 and Table S1). Thus, the recommended

default parameters are likely to work well under

many circumstances. However, more comprehensive

evaluation is needed to fully understand the influence

of the different run parameters. Notably, during our

studies, updated versions of several of the included

pipelines were released, which well illustrates the

fact that the field is still under heavy development.

Our comparisons showed that the differences be-

tween the results produced with different package

versions can be significant (Supplementary Figure S1).

Overall, despite different study settings, our obser-

vations in real data complemented well the observa-

tions made in the recent comparison of Soneson and

Delorenzi [16] focusing mainly on synthetic data.

Taken together, DESeq was often relatively conser-

vative, while edgeR and EBSeq were often too lib-

eral. Limma performed generally well under many

circumstances, being also computationally fastest to

run. The performance of baySeq was highly variable

depending on the data. SAMseq performed well only

when the number of replicates was relatively large.

Unlike Soneson and Delorenzi [16], we also

included into our systematic comparisons NOIseq

and Cuffdiff 2, both of which performed surprisingly

poorly in the present data sets.

In addition to the performance differences of the

pipelines, practical issues also play a major role for

many users when making the choice between them.

Not all pipelines work on all operating systems and

the installation process may be more complicated for

some than others. In general, R/Bioconductor based

packages are the easiest to install through the

common package handling utility. Some pipelines

are feasible to use on a single pc, while others require

more computing power—limiting the choice of the

pipeline for some users. There are also marked dif-

ferences in the quality and detail of the documenta-

tion of the pipelines; some have very comprehensive

manuals and user-guides with practical examples

(e.g. DEseq, edgeR, limma), whereas others provide

more limited instructions and parameter value de-

scriptions (e.g. NOISeq). Many pipelines like

edgeR and limma also support more complex ex-

perimental designs, in addition to simple two-group

setups. In practice, many users are likely to look for a

pipeline that in general works reasonably robustly

under a wide range of conditions and is relatively

simple to use. Therefore, due to the good documen-

tation, fastness and general ease of use and robustness,

limma seems a useful tool for these users based on

our comparisons.

SUPPLEMENTARYDATA
Supplementary Data are available online at http://

bib.oxfordjournals.org/.

Key Points

� A number of software packages have already been developed to
identify differentially expressed genes between distinct sample
groups in RNA-seq studies.However, there is no clear consensus
about the best practices yet.

� The choice of the approach canmarkedly affect the outcome of
the data analysis and no single tool is likely to be optimal under
all circumstances.

� The number of replicates and the heterogeneity of the samples
should be taken into account when selecting the pipeline.

� In general, limma performed well under many circumstances in
the present comparisons, being also computationally fastest
to run.
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Figure 5: Runtimes of the different methods to iden-
tify differentially expressed genes in the human data.
Time in seconds on log scale (y axis) is shown as a func-
tion of the number of replicates (x axis). The analyses
were run on a computer cluster node with two Intel
XEON Hexa-Core processors and 96GB of memory.
Cuffdiff 2 was run on all the available 12 cores; the
R/Bioconductor packages were run on a single core. A
colour version of this figure is available at BIB online:
http://bib.oxfordjournals.org.
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