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Abstract

Background: The planted (l, d) motif search (PMS) is an important yet challenging problem in computational
biology. Pattern-driven PMS algorithms usually use k out of t input sequences as reference sequences to generate
candidate motifs, and they can find all the (l, d) motifs in the input sequences. However, most of them simply take
the first k sequences in the input as reference sequences without elaborate selection processes, and thus they may
exhibit sharp fluctuations in running time, especially for large alphabets.

Results: In this paper, we build the reference sequence selection problem and propose a method named RefSelect
to quickly solve it by evaluating the number of candidate motifs for the reference sequences. RefSelect can bring a
practical time improvement of the state-of-the-art pattern-driven PMS algorithms. Experimental results show that
RefSelect (1) makes the tested algorithms solve the PMS problem steadily in an efficient way, (2) particularly, makes
them achieve a speedup of up to about 100× on the protein data, and (3) is also suitable for large data sets which
contain hundreds or more sequences.

Conclusions: The proposed algorithm RefSelect can be used to solve the problem that many pattern-driven PMS
algorithms present execution time instability. RefSelect requires a small amount of storage space and is capable of
selecting reference sequences efficiently and effectively. Also, the parallel version of RefSelect is provided for
handling large data sets.
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Background
Motif discovery, as a main means to locate conserved frag-
ments in biological sequences, is a fundamental problem in
computational biology. The conserved fragments usually
have special biological significance. For example, transcrip-
tion factor binding sites in DNA sequences [1, 2] play a
key role in gene expression regulation and they usually
range from 5 to 25 base pairs; short protein sequence sig-
natures [3, 4], which usually range from 10 to 36 residues,
can be used in identifying potential interaction sites of
proteins.

The planted (l, d) motif search (PMS) [5] is a famous
formulation for motif discovery: given a data set D = {s1,
s2, …, st} with t n-length sequences over an alphabet Σ, q
satisfying 0 < q ≤ t, and l and d satisfying 0 ≤ d < l < n, the
goal is to find one or more l-length strings m such that
m occurs in at least q sequences in D with up to d mis-
matches. The string m is called a (l, d) motif, and each oc-
currence of m is called a motif instance. Finding all (l, d)
motifs present in the input sequences is NP-complete [6].
In the PMS problem, the value of q implies the corre-

sponding sequence model of motif discovery (i.e., the dis-
tribution of motif occurrences in the input sequences).
The usual sequence models include OOPS, ZOOPS and
TCM [7], representing that each input sequence contains
one occurrence, zero or one occurrence and zero or more
occurrences, respectively. When q = t and 0 < q < t, the
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PMS problem corresponds to the OOPS and ZOOPS or
TCM sequence models, respectively.
There have been numerous motif discovery algorithms

[8, 9]. They are either approximate or exact, based on
whether the algorithm can always find all motifs or the
optimum motif. The approximate algorithms usually
adopt probability analysis and statistical methods. For
instance, the two classical algorithms MEME [10] and
Gibbs Sampling [11] identify motifs by using expectation
maximization and Gibbs sampling techniques, respect-
ively. In general, these approximate algorithms can solve
the problem in a short time but cannot guarantee global
optimum.
In this paper, we mainly focus on exact motif discovery

algorithms, which can find all (l, d) motifs by traversing the
whole search space. The main indicator to assess exact al-
gorithms is time performance, and researchers usually com-
pare exact algorithms on the challenging PMS problem
instances, for which the expected number of random (l, d)
motifs present in the sequences is more than 1 [12]. For
the exact algorithms proposed in earlier years, such as
WINNOWER [5], DPCFG [13] and RecMotif [14], their
search space is composed of (n – l + 1)t possible align-
ments of motif instances. In recent years, the exact algo-
rithms verify all the l-length patterns in the O(|∑|l) search
space, and then output the patterns with motif property;
we call them the pattern-driven PMS algorithms [15–24].
The pattern-driven PMS algorithms have better time

performance than other exact algorithms so far in identi-
fying both short motifs and long motifs with weak signal.
Their basic idea is to generate candidate motifs by using
several reference sequences in the input, and then verify
each candidate motif one by one. Specifically, they gener-
ate candidate motifs by using all possible h-tuple T = (x1,
x2… xh) composed of h l-length strings coming from h
distinct reference sequences. In existing pattern-driven
PMS algorithms, h is 1 for PMSP [15] and PMSPrune
[16]; h is 2 for StemFinder [17], PairMotif [18], qPMS7
[19] and TravStrR [20]; h is 3 for iTriplet [21] and PMS5
[22]; for PMS8 [23] and qPMS9 [24], h is greater than or
equal to 3 and self-adaptive in dealing with different PMS
problem instances. Moreover, these algorithms use k = t –
q + h reference sequences to generate candidate motifs,
ensuring that there exists at least one h-tuple T so that
each l-length string in T is a motif instance.
Although pattern-driven PMS algorithms outperform

other exact algorithms, most of them use the first k se-
quences in the input as reference sequences, without
considering the effect of different reference sequences
on time performance. In this study we found that given
a data set, different reference sequences may lead to
quite different number of candidate motifs, especially for
large alphabets. So, in dealing with different inputs with
the same scale, the pattern-driven PMS algorithms may

exhibit sharp fluctuations in running time. For instance,
we randomly generate multiple groups of data sets with
|∑| = 20, t = 20, q = 20 and n = 600 following the method
described in the results and discussion section. When
solving the (19, 9) problem instance, qPMS7 sometimes
consumes 6.1 minutes, but sometimes over 48 hours.
Some other pattern-driven PMS algorithms like TravStrR
and PMS8, suffer from the same problem (see Supplement
1 for more examples).
To solve this problem, we propose a method named

RefSelect to quickly select reference sequences that gen-
erate a small number of candidate motifs. RefSelect can
bring a practical time improvement of the state-of-the-
art pattern-driven PMS algorithms, without doing any
modifications to them.

Methods
Problem description and notations
Reference sequence selection problem
Given a data set D = {s1, s2, …, st} over an alphabet Σ that
contains t sequences of length n, the (l, d) problem in-
stance (0 ≤ d < l < n) and the number of reference se-
quences k (1 < k < t) required by the pattern-driven PMS
algorithms, the task is to select k reference sequences
from D to form the reference sequence set D', such that
when using D' the pattern-driven PMS algorithms can
efficiently solve the (l, d) problem instance without
sharp fluctuations in running time.
In the reference sequence selection problem the value of

provided k should be greater than 1. If k is 1, it means that
the candidate motifs will be generated from multiple sin-
gle l-mers; in this case, no matter how we select a refer-
ence sequence, the number of generated candidate motifs
is fixed. In fact, k is greater than 1 for all the efficient and
recently proposed pattern-driven PMS algorithms.
We evaluate a reference sequence selection algorithm

from two perspectives. One is the time performance. The
time cost of the reference sequence selection algorithm
should be as small as possible because it is a preprocessing
for pattern-driven PMS algorithms. It will be meaningless if
it costs too much time to select reference sequences. The
other is validity, namely whether the reference sequence se-
lection algorithm brings a good speedup for pattern-driven
PMS algorithms. The speedup is the ratio of T1 to Trs+T2,
where T1 is the running time of the pattern-driven PMS al-
gorithms on the input sequences of original order,Trs is the
running time of the reference sequence selection algorithm,
and T2 is the running time of the pattern-driven PMS algo-
rithms on the input sequences of new order generated by
the reference sequence selection algorithm.
Table 1 summarizes the notations used in this paper.

Notice that, a sequence specially refers to an n-length
string in a data set, and an l-mer refers to a short string
of length l (l < n).
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Overview of RefSelect
We introduce why and how to select reference sequences
for the pattern-driven PMS algorithms. Let us consider
the following two observations, which indicate how the
Hamming distance between pairs of l-mers affects the
number of candidate motifs. Examples and detailed dis-
cussion for the two observations are given in the results
and discussion section.
Observation 1. For two l-mers x and x', the smaller

their Hamming distance dH(x, x'), the larger the number
of their common candidate motifs |Md(x, x')|.
Observation 2. For a tuple T of h l-mers, when it con-

tains pairs of l-mers with a relatively small Hamming
distance, it generates a relatively large number of candi-
date motifs.
Based on the two observations, different reference

sequences may lead to different number of candidate
motifs. The pattern-driven PMS algorithms utilize all
tuples of h l-mers in k (0 < h ≤ k) reference sequences to
generate candidate motifs. Once there are relatively
more pairs of l-mers with small Hamming distance in
these h-tuples, more candidate motifs will be generated.
Since the time performance of pattern-driven PMS algo-

rithms mainly depends on the number of generated candi-
date motifs, we should select the reference sequence set
generating a small number of candidate motifs. For ex-
ample, as shown in Fig. 1, assume the input sequence set
D is {s1, s2, s3, s4} where each sequence has two l-mers
and we select k = 3 reference sequences from D. In the
figure, the thicker the dotted line, the more candidate

motifs are generated by the associated two l-mers. Obvi-
ously, {s2, s3, s4} is the optimal reference sequence set.
Naturally, we select reference sequences by evaluating

the number of generated candidate motifs, ensuring the
selected reference sequences generate a small number of
candidate motifs. When we evaluate the number of can-
didate motifs generated from a tuple T of h l-mers, it is
difficult to directly compute the number of common
candidate motifs shared by all the h l-mers in T, denoted
by N1. An alternative way is to compute the sum of the
number of common candidate motifs shared by each
pair of l-mers in T, denoted by N2 = Σ|Md(xi, xj)| for 1 ≤
i < j ≤ h. As shown in Fig. 5, N1 and N2 have the consist-
ent tendency with the variation of the Hamming dis-
tance between the pairs of l-mers in T.
Furthermore, we use (1) and (2) to evaluate Nr(D'), the

number of candidate motifs generated from the refer-
ence sequence set D'. It is defined as the sum of the
number of common candidate motifs shared by each
pair of l-mers in D' (i.e., in every two sequences in D').

NrðD0Þ ¼
X

1≤i<j≤jD0j
Nrðsi; sjÞ ð1Þ

Nrðsi; sjÞ ¼
X

x∈l si;x0∈l sj

Md x; x0ð Þj j ð2Þ

Our method of selecting reference sequences includes
two steps. The first step is to compute the number of can-
didate motifs generated from every two sequences in D, in

Table 1 Notations used in this paper

Notation Explanation

|x| The length of a string, the size of a set, or the number of elements in a matrix.

D, D' D is the set of input sequences. D' is the set of reference sequences.
D = {s1, s2, …, st} and D' = {sr1, sr2, …, srk}, satisfying D' ⊂ D.

t The number of sequences in the input sequence set D, namely |D| = t.

k The number of required reference sequences, namely |D'| = k.

n The length of each input sequence.

x ∈ls The string x is an l-length substring of the sequence s.
In other words, x is an l-mer in the sequence s.

s[i] The ith character in the string s.

s[i…j] A substring of the string s starting from the ith position to the jth position.

dH(x, x') The Hamming distance between two strings x and x' of the same length.

Md(x, x') The common candidate motifs of two l-mers x and x'.
Md(x, x') = {y: |y| = |x| = |x'|, dH(y, x)≤ d, dH(y, x')≤ d}.

Nr(D') The number of candidate motifs generated from the reference
sequences set D', calculated by (1).

Nr(si, sj) The number of candidate motifs generated from
two sequences si and sj, calculated by (2).

min(i, j) The minimum value between two integers i and j.
min(i, j) = i if i ≤ j, j otherwise.

sim(si, sj) The similarity of two sequences si and sj.
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order to quickly evaluate the number of candidate motifs
generated from the specified k reference sequences in the
next step. The second step is to select k sequences from D
to form the reference sequence set D' such that the number
of candidate motifs generated from D' is as small as pos-
sible. In the following, we describe the two steps in detail.

Step 1: computing the number of candidate motifs
We compute the number of candidate motifs generated
from every two sequences si and sj in D according to (2).
For an l-mer x in si and an l-mer x' in sj, the number of
their common candidate motifs |Md(x, x')| depends on
their Hamming distance dH(x, x') [18]. The details about
how to compute |Md(x, x')| are described in [18]. In
implementing RefSelect, we store the values of |Md(x, x')|
under different dH(x, x') in a table in advance. Once we
know dH(x, x'), we can immediately get |Md(x, x')| by
looking up the table in O(1) time.
Thus, the core operation of (2) is to compute the

Hamming distance between every two l-mers x ∈lsi and
x' ∈lsj. For any two sequences of length n, we have O(n2)
pairs of l-mers. A simple method is to traverse all these
pairs of l-mers; for each pair of l-mers x and x', the
Hamming distance can be computed in O(l) time by
comparing the characters x[i] and x'[i] for 1 ≤ i ≤ l. The
time complexity of this method is O(ln2).
We introduce a more efficient method to compute the

Hamming distance between every pair of l-mers in si and sj.
We fill an n × n matrix M, where the element in row a (1 ≤
a ≤ n) and column b (1 ≤ b ≤ n) is denoted by M[a, b]. Let
lmin =min(a, b), str1 = si[a – lmin + 1…a], str2 = sj[b – lmin +
1…b]; then, M[a, b] is the number of such position i that

str1[a – lmin + i] = str2[b – lmin + i] for 1 ≤ i ≤ lmin, namely
M[a, b] = lmin − dH(str1, str2). For example, in Fig. 2, a < b,
str1 = si[1…a], str2 = sj[b – a + 1…b], and then M[a, b] = a −
dH(si[1…a], sj[b – a + 1…b]), which denotes the number of
positions where the two characters are identical in the
alignment of str1 and str2.
In filling the matrix M, we initialize M[a, b] with 0 for

the case of min(a, b) = 0, and obtain M[a + 1, b + 1]
based on M[a, b]:

M aþ 1; bþ 1½ � ¼ M a; b½ � þ 1; if si aþ 1½ � ¼ sj bþ 1½ �
M a; b½ �; otherwise

;

�
ð3Þ

where both a and b range from 0 to n.
With the matrix M, we use (4) to compute the Ham-

ming distance between a pair of l-mers str1' and str2',
where str1' = si[a – l + 1…a] and str2' = sj[b – l + 1…b]
are the l-mers at the position a (a ≥ l) of si and the pos-
ition b (b ≥ l) of sj, respectively.

dH str1
0; str2

0ð Þ ¼ l − M a; b½ � − M a − l; b − l½ �ð Þ
ð4Þ

Our method is mainly to fill the matrix M. That is, we
need to compute n2 elements one by one for any two n-
length sequences si and sj. In computing each element
M[a, b] by (3) in O(1) time, we simultaneously compute
the Hamming distance between the l-mer at position a
(a ≥ l) of si and that at position b (b ≥ l) of sj by (4) in
O(1) time. Therefore, the time complexity of computing
the Hamming distance for all pairs of l-mers in two se-
quences is reduced to O(n2).

Fig. 1 An example of selecting reference sequences. In this example, we select three reference sequences from four input sequences. Each
sequence contains two l-mers. A thick line indicates that more candidate motifs are generated by the associated two l-mers
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Step 2: selecting reference sequences
After getting the number of candidate motifs generated
from every two sequences in D, we can evaluate the num-
ber of candidate motifs generated from a set of reference
sequences according to (1). In this section, we introduce
how to select a set of reference sequences that generates a
small number of candidate motifs.
First, let us consider the exhaustive search strategy.

For the data set D consisting of t sequences, after evaluat-
ing the number of candidate motifs for every possible k
sequences in D, the exhaustive search regards the k
sequences corresponding to the minimum number of can-
didate motifs as the reference sequences. Its time com-
plexity is as follows.

O
t
k

� �
� k

2

� �� �

Obviously, the running time of the exhaustive search
grows dramatically with the increase of the number of
input sequences t and the number of selected reference
sequences k. A simple experiment can show that the ex-
haustive search is too time-consuming for large input: we
set |Σ| = 4, n = 200, q = t = 200 and k = t × 5 % = 10, and
the running time of the exhaustive search exceeds one day
on personal computers.
In order to quickly select reference sequences, we con-

vert the problem to graph clustering. The t sequences in
D are taken as t nodes in a graph. The similarity be-
tween two nodes si and sj is related to the number of
candidate motifs generated from si and sj (i.e., Nr(si, sj)).
We hope that the nodes corresponding to the reference
sequences with small number of candidate motifs form a

dense subgraph, and they belong to the same cluster
after graph clustering. We use the MCL algorithm [25]
to complete clustering, and set the inflation parameter
as 1.8 following [26]. We describe the details involved in
clustering as follows.

Similarity measure
We design the similarity of two nodes (sequences) si and sj
based on Nr(si, sj). Simultaneously, we consider the follow-
ing two factors.
First, we further increase the effect of the pairs of l-mers

in si and sj with small Hamming distance on the total num-
ber of candidate motifs generated from si and sj. By doing
this, it is helpful for the clustering process to distinguish
different reference sequence sets that lead to different num-
ber of candidate motifs. Specifically, we use (5) instead of
(2) to evaluate the number of candidate motifs generated
from two sequences si and sj.

Nr
0 si; sj
� � ¼ X

x∈lsi;x0∈l sj

Md x; x0ð Þj j
dH x; x0ð Þ þ 1

ð5Þ

Second, we aim to put a set of sequences D' to the
same cluster such that every two sequences si and sj in
D' generate a small number of candidate motifs. So, we
should ensure that si and sj have a larger similarity when
they generate a smaller number of candidate motifs. Fi-
nally, we compute the similarity of si and sj as follows:

sim si; sj
� � ¼ 1

Nr
0 si; sj
� �� max

1≤i<j≤t
Nr

0 si; sj
� �

: ð6Þ

Fig. 2 Illustration of fast computation of Hamming distance. This figure shows an example for explaining how to compute the Hamming
distance between every pair of l-mers in two input sequences
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Cluster refinement
The clustering process may produce more than one
cluster, and there may not be exact k nodes in each clus-
ter. We refine each obtained cluster C in order to get a
set of k reference sequences. Then, we sort the sets of
reference sequences and output the set with the highest
score.
For the cluster C with only one node, we take it as an

invalid cluster, since the node in C has a low similarity
with other nodes. For the cluster C with two or more
nodes, it corresponds to three cases: (a) there are exact k
nodes in C; (b) there are more than k nodes in C; (c)
there are less than k nodes in C. For Case (a), we can get
the reference sequence set D' directly by using the k se-
quences in C. Next, we introduce how to refine C under
Cases (b) and (c).
For Case (b), we use greedy strategy to select k

sequences from C (|C| > k) to form D'. First, we initialize
D' with {sa, sb} such that sim(sa, sb) =max{sim(si, sj)} for all
si, sj ∈ C and si ≠ sj. Then, we repeatedly choose a node sr
satisfying (7) from C −D' and add it to D' until |D'| = k.

sr ¼ argmax
si∈C−D0

X
sj∈D0

sim si; sj
� � ð7Þ

For Case (c), we use the similar method to choose k − |C|
nodes from D −C, and add them to C to form D'. First, D'
is initialized with C. Then, we repeatedly choose a node sr
satisfying (8) from D −D' and add it to D' until |D'| = k.

sr ¼ argmax
si∈D−D0

X
sj∈D0

sim si; sj
� � ð8Þ

Figures 3 and 4 show examples under Case (b) with k =
3 and Case (c) with k = 4, respectively. Differences be-
tween the two cases are: in Case (b), we get D' by selecting
reference sequences (nodes) from the sub-graph corre-
sponding to the cluster C; while in Case (c), we get D' by
selecting reference sequences (nodes) from the whole
graph and adding them to C.
We describe how to refine a cluster C in Algorithm

1. Because the process that we select reference se-
quences by using greedy strategy is similar to the Prim
algorithm for computing minimum spanning tree, the
time complexity of Algorithm 1 is O(|C|2lg|C|) and
O((t − |C|)2lg(t − |C|)) under Case (b) and Case (c),
respectively.

After cluster refinement, if we obtain more than one
reference sequence set D', we score each D' by (9), and
then output the D' with the highest score.

score D0ð Þ ¼
X

si∈D0;sj∈D0;i≠j

simðsi; sjÞ ð9Þ

Whole algorithm
This section gives the whole algorithm of RefSelect.

In line 1 of the pseudocode, we initialize D' with an
empty set. Lines 2 to 5, corresponding to the first step of
RefSelect, compute the similarity of any two nodes (se-
quences). The core operation of this step is to compute
the Hamming distance from all l-mers in si to all l-mers
in sj in O(n2) time, for any two sequences si and sj in D.
Therefore, the time complexity of this step is:
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O
t
2

� �
� n2

� �
:

Lines 6 to 10, corresponding to the second step of
RefSelect, cluster the t sequences in D by using the
MCL algorithm and refine each obtained cluster. The
time complexity of clustering is O(t3). The time com-
plexity of refining clusters is negligible with respect to
the time complexity of the first step. So, the time com-
plexity of RefSelect is:

O
t
2

� �
� n2 þ t3

� �
:

In executing RefSelect, we need O(tn) space to store
the input sequence set D, O(n2) space to store the matrix
M for computing Hamming distance, and O(t2) space to
store the similarity matrix of t input sequences. So, the
space complexity of RefSelect is O(tn + n2 + t2).

Parallel implementation
To efficiently deal with large data sets, we can further
accelerate RefSelect by using parallel processing. RefSe-
lect consists of two steps, and we mainly use parallel
processing for the first step. The reasons are (1) the first
step is the bottleneck of the whole RefSelect algorithm
in running time as shown in Table 6, and (2) the first
step is easy to parallelize, because it repeatedly calculates
the number of candidate motifs generated from two se-
quences si and sj in D and each calculation is independ-
ent of the others.
We implement the parallel version of RefSelect by

using OpenMP [27, 28], which provides a flexible pro-
gramming model for shared memory architectures and
allows to add parallelism into serial codes easily by using
one or several OpenMP directives. The pseudocode is
shown in Algorithm 3, where we add an OpenMP “for”
directive before the inner iterations of the first step to
split parallel iteration spaces across threads.

Fig. 3 An example of cluster refinement for |C| > k. This figure shows an example of cluster refinement in the case that there are more than k
nodes in the cluster C

Fig. 4 An example of cluster refinement for |C| < k. This figure shows an example of cluster refinement in the case that there are less than k
nodes in the cluster C
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The reason why we add the directive before the inner
iterations (line 4) rather than the outer iterations (line 2)
is for the consideration of load balancing among threads.
Note that, the number of inner iterations is not fixed for
each outer iteration. If we add the directive before the
outer iterations, the smaller the value of i, the more
computational work will be needed by the thread pro-
cessing the ith outer iteration.

Results and discussion
Analysis of effect of Hamming distance on candidate
motif number
First, we consider the case of two l-mers x and x', and
analyze the effect of their Hamming distance dH(x, x')

on the number of their common candidate motifs |Md(x,
x')|. Tables 2 and 3 give the values of |Md(x, x')| with
dH(x, x') varying from 0 to 2d under the DNA and pro-
tein data, respectively. In both tables, the values are ob-
tained by using two challenging PMS problem instances.
We can find that |Md(x, x')| increases with the decrease
of dH(x, x') for both the DNA and protein data.
Second, we consider the case of h (h > 2) l-mers con-

taining pairs of l-mers with different Hamming distance,
and analyze the effect of Hamming distance on the num-
ber of common candidate motifs shared by the h l-mers.
In our example, we set h as 3 and the three l-mers x1, x2
and x3 can form three pairs of l-mers; then, we fix dH(x1,
x2) = 2d − 2 and vary dH' = (dH(x1, x3) + dH(x2, x3))/2 from
2d − 2 to 2d − 7. Figure 5(a) and (b) give the tendency of
the number of common candidate motifs |Md(x1, x2, x3)|
in contact with the decrease of dH' on (19, 7) problem
instance for the DNA data and (19, 9) problem instance
for the protein data, respectively. The y-axis is in log-
scale. We can see that no matter for the DNA or protein
data, |Md(x1, x2, x3)| increases with the decrease of dH'.
In other words, when h (h > 2) l-mers contain some pairs
of l-mers with a relatively small Hamming distance, they
generate a relatively large number of candidate motifs.
Also, the tendency of |Md'(x1, x2, x3)| = |Md(x1, x2)|
+ |Md(x1, x3)| + |Md(x2, x3)| is given in Fig. 5. Both
|Md'(x1, x2, x3)| and |Md(x1, x2, x3)| increase with the de-
crease of dH', namely they have the consistent tendency.
In addition, Tables 2 and 3 also give the probability

that the Hamming distance between two random l-mers
x and x' is i (0 ≤ i ≤ 2d), denoted by pi and calculated by

Table 2 The effect of Hamming distance on the candidate motif number and occurrence probability for a pair of l-mers under the
DNA data

i =dH(x, x') (13, 4) (15, 5) (17, 6) (19, 7)

|Md(x, x')| pi |Md(x, x')| pi |Md(x, x')| pi |Md(x, x')| pi

14 - - - - - - 3.4 × 103 2.0 × 10−1

13 - - - - - - 2.7 × 104 1.6 × 10−1

12 - - - - 9.2 × 102 1.9 × 10−1 1.1 × 105 9.7 × 10−2

11 - - - - 6.5 × 103 1.3 × 10−1 3.2 × 105 4.9 × 10−2

10 - - 2.5 × 102 1.7 × 10−1 2.4 × 104 6.7 × 10−2 7.5 × 105 2.0 × 10−2

9 - - 1.5 × 103 9.2 × 10−2 6.4 × 104 2.8 × 10−2 1.6 × 106 6.6 × 10−3

8 7.0 × 101 1.3 × 10−1 5.0 × 103 3.9 × 10−2 1.4 × 105 9.3 × 10−3 2.9 × 106 1.8 × 10−3

7 3.5 × 102 5.6 × 10−2 1.3 × 104 1.3 × 10−2 2.8 × 105 2.5 × 10−3 5.0 × 106 4.0 × 10−4

6 1.1 × 103 1.9 × 10−2 2.7 × 104 3.4 × 10−3 5.0 × 105 5.3 × 10−4 8.2 × 106 7.2 × 10−5

5 2.5 × 103 4.7 × 10−3 5.1 × 104 6.8 × 10−4 8.5 × 105 8.8 × 10−5 1.3 × 107 1.0 × 10−5

4 5.2 × 103 8.6 × 10−4 9.0 × 104 1.0 × 10−4 1.4 × 106 1.1 × 10−5 2.0 × 107 1.1 × 10−6

3 9.3 × 103 1.2 × 10−4 1.5 × 105 1.1 × 10−5 2.1 × 106 1.1 × 10−6 3.0 × 107 9.5 × 10−8

2 1.7 × 104 1.1 × 10−5 2.5 × 105 8.8 × 10−7 3.4 × 106 7.1 × 10−8 4.6 × 107 5.6 × 10−9

1 2.6 × 104 5.8 × 10−7 3.7 × 105 4.2 × 10−8 4.9 × 106 3.0 × 10−9 6.4 × 107 2.1 × 10−10

0 6.6 × 104 1.5 × 10−8 8.5 × 105 9.3 × 10−10 1.1 × 107 5.8 × 10−11 1.3 × 108 3.6 × 10−12
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Fig. 5 The effect of Hamming distance on the number of candidate motifs for three l-mers. This figure shows the effect of Hamming distance on
the number of candidate motifs for three l-mers x1, x2 and x3. The used (l, d) is set as (19, 7) and (19, 9) under the DNA data and protein data,
respectively. We fix dH(x1, x2) = 2d − 2 and vary dH' = (dH(x1, x3) + dH(x2, x3))/2 from 2d − 2 to 2d − 7. |Md(x1, x2, x3)| is the number of common
candidate motifs shared by the three l-mers. |Md'(x1, x2, x3)| = |Md(x1, x2)| + |Md(x1, x3)| + |Md(x2, x3)| is the sum of the number of common candidate
motifs shared by each pair of l-mers. a it is for the DNA data. b it is for the protein data

Table 3 The effect of Hamming distance on the candidate motif number and occurrence probability for a pair of l-mers under the
protein data

i= dH(x, x') (13, 6) (15, 7) (17, 8) (19, 9)

|Md(x, x')| pi |Md(x, x')| pi |Md(x, x')| pi |Md(x, x')| pi

18 - - - - - - 4.9 × 104 3.8 × 10−1

17 - - - - - - 4.0 × 106 1.8 × 10−1

16 - - - - 1.3 × 104 3.7 × 10−1 1.4 × 108 5.3 × 10−2

15 - - - - 9.4 × 105 1.6 × 10−1 2.6 × 109 1.1 × 10−2

14 - - 3.4 × 103 3.7 × 10−1 2.8 × 107 4.1 × 10−2 3.1 × 1010 1.8 × 10−3

13 - - 2.2 × 105 1.4 × 10−1 4.6 × 108 7.6 × 10−3 2.4 × 1011 2.2 × 10−4

12 9.2 × 102 3.5 × 10−1 5.6 × 106 3.1 × 10−2 4.5 × 109 1.0 × 10−3 1.3 × 1012 2.1 × 10−5

11 5.1 × 104 1.1 × 10−1 7.6 × 107 4.9 × 10−3 2.9 × 1010 1.1 × 10−4 5.4 × 1012 1.7 × 10−6

10 1.1 × 106 2.1 × 10−2 6.0 × 108 5.6 × 10−4 1.3 × 1011 9.1 × 10−6 1.8 × 1013 1.1 × 10−7

9 1.2 × 107 2.8 × 10−3 3.0 × 109 4.9 × 10−5 4.4 × 1011 6.0 × 10−7 5.0 × 1013 5.7 × 10−9

8 7.0 × 107 2.7 × 10−4 1.1 × 1010 3.3 × 10−6 1.3 × 1012 3.2 × 10−8 1.2 × 1014 2.5 × 10−10

7 2.7 × 108 1.9 × 10−5 3.2 × 1010 1.8 × 10−7 3.1 × 1012 1.3 × 10−9 2.8 × 1014 8.6 × 10−12

6 8.3 × 108 9.9 × 10−7 8.0 × 1010 7.2 × 10−9 7.1 × 1012 4.4 × 10−11 5.9 × 1014 2.4 × 10−13

5 2.1 × 109 3.9 × 10−8 1.8 × 1011 2.3 × 10−10 1.5 × 1013 1.2 × 10−12 1.2 × 1015 5.5 × 10−15

4 4.7 × 109 1.1 × 10−9 3.8 × 1011 5.4 × 10−12 3.0 × 1013 2.4 × 10−14 2.3 × 1015 9.6 × 10−17

3 9.8 × 109 2.4 × 10−11 7.5 × 1011 9.5 × 10−14 5.7 × 1013 3.6 × 10−16 4.3 × 1015 1.3 × 10−18

2 2.0 × 1010 3.4 × 10−13 1.5 × 1012 1.2 × 10−15 1.1 × 1014 3.8 × 10−18 8.0 × 1015 1.2 × 10−20

1 4.1 × 1010 3.0 × 10−15 2.9 × 1012 8.7 × 10−18 2.1 × 1014 2.5 × 10−20 1.6 × 1016 6.9 × 10−23

0 8.4 × 1010 1.2 × 10−17 6.0 × 1012 3.1 × 10−20 4.3 × 1014 7.6 × 10−23 3.1 × 1016 1.9 × 10−25
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(10). As seen from the tables, pi decreases with the de-
crease of the Hamming distance i.

pi ¼
 

l

i

!
ðjΣj−1Þi
jΣjl

ð10Þ

For two n-length sequences si and sj, let Ei denote the
expected number of the pair of l-mers x ∈lsi and x' ∈lsj
with dH(x, x') = i. It is calculated by (11). The bold values
in Tables 2 and 3 indicate that Ei is less than 1 in the
case of n = 600.

Ei ¼ n−l þ 1ð Þ2 � pi ð11Þ
Although they rarely occur in two sequences, some

pairs of l-mers with Ei < 1 are usually contained in the
whole data set. The reasons are: first, the whole data set
can form multiple pairs of sequences, which increases
the probability of the occurrence of the pairs of l-mers
with Hamming distance i; second, the conservation of
motifs makes some highly similar motif instances form
some pairs of l-mers with Ei < 1.
From the tables, when Ei is less than 1, the value of

|Md(x, x')| is relatively large, especially for the protein
data. Thus, the more pairs of l-mers with Ei < 1 in the
reference sequence set, the more candidate motifs gener-
ated by the algorithms.

Results on practical time improvement of PMS algorithms
In this section we check the validity of RefSelect as follows.
First, we use RefSelect to select k reference sequences from
the given t input sequences, and adjust the order of the t

input sequences by preposing the k sequences; RefSelect is
implemented in C++ and its running time is denoted by
Trs. Second, we test pattern-driven PMS algorithms on the
input sequences of original order and that of new order,
obtaining the running time T1 and T2, respectively. Finally,
we compare T1 with Trs+T2.
Three pattern-driven PMS algorithms qPMS7 [19],

TravStrR [20] and PMS8 [23] are chosen to participate
in the test. They are all newly proposed algorithms and
outperform the previous exact algorithms on challenging
instances. Notice that qPMS9 [24] is also a newly pro-
posed PMS algorithm with good time performance;
we do not choose it as a tested algorithm and related
discussion is given in the applicability of RefSelect
section. All the tested algorithms are executed on a
2.67 GHz single core and a 4 Gbyte Memory, except
for PMS8, which is executed on a 16-core platform in
solving the (21, 10) and (23, 11) instances of the pro-
tein data.
In the experiments, we generate data sets following

[5]. First, we randomly generate t sequences of length n
and a motif m of length l, and randomly choose q (0 <
q ≤ t) out of the t sequences; then, for each of the q
sequences, we generate a random motif instance m' that
differs from m in at most d positions, and implant m'
into a random position of the sequence. For each spe-
cific test instance, we generate five data sets to get an
average result.
First, we fix t = 20, n = 600 and q = 20, and give in Tables 4

and 5 the results on challenging instances of the protein
and DNA data, respectively. For qPMS7 and TravStrR, k is

Table 4 Running time and speedup for the protein data

(l, d) qPMS7 TravStrR PMS8

T1 Trs + T2 speedup T1 Trs + T2 speedup T1 Trs + T2 speedup

(15, 7) min 93.00s 85.00s 6.58 5.80s 5.63 s 1.00 2.21 s 3.64 s 1.89

ave 722.40s 109.80s 7.51 s 7.49 s 288.33 s 178.43 s

max 2596.00s 122.00s 8.89 s 8.74 s 1126.80s 544.00s

(17, 8) min 131.00s 120.00s 7.68 11.88 s 8.98 s 4.03 390.13 s 8.52 s 5.85

ave 1204.40s 156.80s 76.98 s 19.10s 1647.89 s 281.83 s

max 3742.00s 214.00s 207.32 s 54.01 s 3092.82 s 719.78 s

(19, 9) min 820.00s 140.00s 86.22 11.58 s 11.25 s 76.38 189.07 s 17.11 s 2.21

ave 18502.20s 214.60s 1591.67 s 20.84 s 14619.67 s 6629.83 s

max 37121.00s 287.00s 4355.44 s 30.23 s 53376.12 s 17235.40s

(21, 10) min 191.00s 161.00s >118.94 22.47 s 22.28 s 61.63 18268.00s 3022.00s >9.65

ave -o 671.40s 1745.09 s 24.25 s -o 17905.40s

max -o 1783.00s 6453.27 s 53.06 s -o 31054.00s

(23, 11) min 53978.00s 242.00s >34.77 44.30s 12.19 s 15.56 6327.12 s 1608.23 s >12.89

ave -o 4970.00s 3033.99 s 195.04 s -o 13409.80s

max -o 17141.00s 10909.72 s 378.31 s -o 50421.00s

s: seconds; −o:over 48 hours; T1 and T2: running time of a PMS algorithm on the input sequences of original order and new order; Trs: running time of RefSelect;
min, ave and max: the minimum, average and maximum running time on five data sets; speedup: average T1/average Trs + T2.
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set as 2, while for PMS8 k is set dynamically under different
(l, d) instances according to [23]. From this experiment, we
find that:

(1)The running time of RefSelect on each of these data
sets is less than one second, which is nearly
negligible and not listed in Tables 4 and 5.

(2)RefSelect can make the tested algorithms solve the
PMS problem steadily in an efficient way. For
example, for the (19, 9) problem instance in Table 4,
the minimum and maximum running time of
qPMS7 are reduced to 140.00s and 287.00s from
820.00s and 37121.00s after using the reference
sequences selected by RefSelect.

(3)The speedup on the protein data is significantly
larger than that on the DNA data. We give the
explanation by using Tables 2 and 3. The fact that
Pattern-driven PMS algorithms sometimes show
poor performance is mainly caused by the pairs of l-
mers with Ei < 1 in the reference sequences; these l-
mers can generate more candidate motifs. The larger
the difference between the number of candidate mo-
tifs for Ei < 1 and that for Ei ≥ 1, the larger speedup
can be achieved. As can be seen from Tables 2 and
3, the difference on the protein data (large alphabet)
is significantly larger than that on the DNA data
(small alphabet).

(4)Larger speedup is achieved on larger (l, d) instances
for the protein data. This can also be explained by
Ei. That is, as shown in Tables 2 and 3, the
difference between the number of candidate motifs

for Ei < 1 and that for Ei ≥ 1 increases with the
increase of l and d.

Second, we discuss the case of q < t by fixing |Σ| = 20
(protein data), t = 20 and n = 600. In the above three al-
gorithms, we only choose qPMS7 as the tested algorithm
because PMS8 cannot solve the PMS problem with q < t
and TravStrR usually quits unexpectedly in our test en-
vironment. We select t – q + 2 reference sequences for
qPMS7, and test it by using the same (l, d) instances
with [19]. On the one hand, we set q as 15, and test
qPMS7 on different (l, d) instances; as shown in Fig. 6(a),
RefSelect makes qPMS7 perform better and the speedup
increases with the increase of l and d. On the other
hand, we fix (l, d) = (19, 8) and test qPMS7 by varying q
from 10 to 19; as shown in Fig. 6(b), RefSelect can ef-
fectively accelerate qPMS7 under different q.
Finally, we test the effect of the sequence length n on the

speedup brought by RefSelect for existing algorithms. In
the experiment, we fix |Σ| = 4 (DNA data) and q = t = 20,
and vary n from 100 to 500; the tested algorithm is qPMS7
and PMS problem instances are (21, 8) and (23, 9). The re-
sults are shown in Fig. 7. Overall, the speedup increases
with the decrease of n. This is because, according to (11)
and Table 2, the smaller the value of n, the larger the differ-
ence between the number of candidate motifs for Ei < 1 and
that for Ei ≥ 1.
The fact that RefSelect works better for short input se-

quences makes sense to motif discovery in next-generation
or high-throughput sequencing data sets, such as ChIP-
chip [29] and ChIP-seq [30] data sets. These data sets have

Table 5 Running time and speedup for the DNA data

(l, d) qPMS7 TravStrR PMS8

T1 Trs + T2 speedup T1 Trs + T2 speedup T1 Trs + T2 speedup

(15, 5) min 149.00s 128.00s 1.10 68.34 s 64.46 s 1.03 38.51 s 37.73 s 1.04

ave 173.00s 157.67 s 73.84 s 71.61 s 65.43 s 63.21 s

max 220.00s 196.00s 91.96 s 85.52 s 113.16 s 106.54 s

(17, 6) min 557.00s 504.00s 1.08 230.41 s 185.54 s 1.03 244.95 s 216.00s 1.04

ave 660.40s 611.80s 263.39 s 255.38 s 387.80s 371.42 s

max 884.00s 756.00s 322.78 s 319.74 s 601.29 s 601.20s

(19, 7) min 2520.00s 2357.00s 1.06 1009.06 s 970.67 s 1.05 1105.88 s 1092.14 s 1.04

ave 2911.00s 2737.20s 1116.18 s 1060.56 s 1834.32 s 1753.06 s

max 3846.00s 3553.00s 1281.81 s 1264.79 s 3064.09 s 2811.09 s

(21, 8) min 12144.00s 11343.00s 1.03 3403.84 s 3168.97 s 1.00 7997.65 7896.77 s 1.13

ave 12791.40s 12444.00s 4377.85 s 4357.19 s 12494.79 s 11102.56 s

max 13701.00s 14029.00s 5306.58 s 5301.84 s 14243.2 s 11395.31 s

(23, 9) min 61512.00s 61561.00s 1.07 14456.36 s 14184.14 s 1.00 23984.70s 22081.70s 1.11

ave 68741.60s 64022.60s 18234.85 s 18157.41 s 38705.98 s 34847.10s

max 77427.00s 68709.00s 21315.48 s 22094.73 s 61160.00s 61278.10s

s: seconds; −o:over 48 hours; T1 and T2: running time of a PMS algorithm on the input sequences of original order and new order; Trs: running time of RefSelect;
min, average and max: the minimum, average and maximum running time on five data sets; speedup: average T1/average Trs + T2.
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a better resolution for containing motifs than the traditional
promoter sequences. For example, the length of each se-
quence in ChIP-seq data sets is usually 200 base pairs,
while the length of a promoter sequence is about 1000 base
pairs. Therefore, RefSelect can bring a better practical time
improvement of the pattern-driven PMS algorithms on the
ChIP-seq data sets than that on the traditional promoter
sequences.

Assessment of RefSelect on large data sets
All experiments involved in the previous section focus
on the data sets of small scale, namely the number of
input sequences t is small. In recent years, with the
rapid development of high-throughput technologies,
which allows genome-wide identification of motifs, the

data sets such as ChIP-seq [30] contain hundreds or
more sequences. Thus, it is necessary to further assess
the time performance and validity of RefSelect on
large data sets.
First, we make the following settings in the experi-

ment: set the maximum value of t as 600, as the ChIP-
tailored version of MEME can effectively identify motifs
by using 600 sequences randomly selected from the
whole ChIP-seq data sets [31]; set k as 5 % × t, as most
of the sequences in ChIP-seq data sets contain motif
instances; set the sequence length n as 200, as the reso-
lution that ChIP-seq sequences contain motifs is higher
than that for traditional promoter sequences [9].
Since there is not an exact algorithm that can effi-

ciently deal with large data sets, we assess the validity of
RefSelect as follows. Let Noriginal denote the number of
candidate motifs generated from the first k sequences in
the original input sequences, and Nimproved denote the
number of candidate motifs generated from the k refer-
ence sequences selected by RefSelect. Then, we compute
Noriginal/Nimproved. A larger Noriginal/Nimproved indicates
more candidate motifs can be reduced.
On the above basis, we get the running time of

RefSelect and Noriginal/Nimproved on both the DNA
and protein data sets, by varying t from 50 to 600.
From the results shown in Table 6, we can find that:
(1) RefSelect can quickly select reference sequences
from these data sets, and its running time is inde-
pendent of the alphabet size; (2) the running time of
RefSelect increases with the number of input se-
quences t and exceeds one minute when tackling the
task of t = 600; (3) RefSelect can still reduce the gen-
erated candidate motifs, especially for the protein
data (large alphabet). Besides the running time of
the whole RefSelect algorithm, we also list the run-
ning time of the first step of RefSelect, which shows

Fig. 7 The effect of sequence length on the speedup for the DNA
data. This figure shows the effect of sequence length on the
speedup for the DNA data. We fix |Σ| = 4 and q = t = 20, and vary the
sequence length n from 100 to 500. The tested algorithm is qPMS7
and PMS problem instances are (21, 8) and (23, 9)

Fig. 6 The speedup brought by RefSelect for qPMS7 in the case of q < t. This figure shows the speedup brought by RefSelect for qPMS7 in the
case of q < t. a we fix q = 15 and vary (l, d) from (11, 4) to (21, 9). b we fix (l, d) = (19, 8) and vary q from 10 to 19
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that the first step is the bottleneck of the whole
RefSelect algorithm.
Second, we test the parallel version of RefSelect. It is

pretty common that a ChIP-seq data sets contains more
than one thousand sequences, and parallel processing is
a good choice in this case. In the experiment, we use
the protein data sets with k = 5 % × t and n = 200. We
give the running time in Table 7 by varying t from 200
to 1600 and the number of threads from 1 to 8. We can
find that the acceleration of RefSelect through parallel
processing is obvious, and the speedup is almost
linearly proportional to the number of threads.

Applicability of RefSelect
For the proper use of RefSelect, we summarize the ap-
plicability of RefSelect as follows.

(1)RefSelect can accelerate such pattern-driven PMS
algorithms that use random or the first k ≥ 2
sequences in the input as reference sequences to
generate candidate motifs. For the efficient and
recently proposed PMS algorithms, RefSelect is
applicable for qPMS7, TravStrR and PMS8, but not
for qPMS9, which does not use fixed k reference
sequences to obtain h-tuples.

(2)RefSelect can deal with large data sets containing
hundreds or even more sequences.

(3)The speedup brought by RefSelect for PMS
algorithms is affected by the alphabet size. The
larger the alphabet size, the larger the speedup.

(4)The speedup brought by RefSelect for PMS
algorithms is also affected by the sequence length n,
which increases with the decrease of n.

(5)RefSelect works better on the challenging instances
with large l and d. For the challenging instances
with small l and d, however, it is not necessary to
use RefSelect, for they can be quickly solved by
existing PMS algorithms.

Moreover, it is necessary to declare the following two
points. First, the instability of the time performance is
not reported in the previous literatures [19, 20, 23].
This is because we find that in their experimental data,
the implanted motif instances differ from the motif in
exact d positions. In this case, the probability of con-
taining pairs of l-mers with Ei < 1 in the reference se-
quences is small, and accordingly the number of
generated candidate motifs is also small. But it should
be pointed out that, in reality motif instances differ
from the motif in at most d positions, which leads to
the execution time instability for some of the existing
algorithms.
Second, although RefSelect is not applicable for qPMS9,

which can solve challenging instances with larger l and d
than previous algorithms, our research is still valuable.
The reason is that qPMS9 cannot be used as a substitute
for other PMS algorithms; we found in the experiments
that qPMS9 sometimes exits unexpectedly with an out of
memory error. Particularly, this phenomenon becomes
frequent in dealing with challenging PMS instances of
large (l, d) such as (l, d) = (21, 10) and (23, 11).

Conclusions
We build the reference sequence selection problem and
propose a method named RefSelect to select reference

Table 6 Assessment of RefSelect on large data sets

t k DNA Sequences Protein Sequences

time timea Noriginal/Nimproved time timea Noriginal/Nimproved

50 3 0.5 s 0.4 s 2.37 0.4 s 0.4 s 15.79

100 5 2.0 s 1.9 s 2.56 1.8 s 1.7 s 15.41

200 10 8.2 s 8.0 s 1.85 7.3 s 7.1 s 14.20

300 15 18.6 s 18.1 s 2.43 16.2 s 15.9 s 18.31

400 20 33.5 s 32.5 s 2.52 28.7 s 27.9 s 18.42

500 25 52.4 s 50.6 s 2.78 44.9 s 43.5 s 16.64

600 30 75.8 s 73.5 s 2.56 66.8 s 64.8 s 15.98

s: seconds; time and timea: the running time of RefSelect and that of the first step of RefSelect; Noriginal and Nimproved: the number of candidate motifs generated
from the first k original input sequences and that for the k reference sequences selected by RefSelect.

Table 7 Running time of RefSelect using parallel processing

t Number of threads

1 2 4 8

200 7.3 s 4.4 s 2.4 s 1.5 s

400 28.7 s 17.1 s 9.3 s 4.9 s

600 66.8 s 37.7 s 20.5 s 10.6 s

800 127.9 s 67.3 s 38.0 s 21.1 s

1000 204.4 s 106.7 s 59.5 s 34.0 s

1200 295.1 s 154.4 s 84.3 s 49.7 s

1400 401.7 s 211.9 s 118.0 s 68.9 s

1600 524.0 s 277.1 s 160.1 s 92.3 s
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sequences for the pattern-driven PMS algorithms, in order
to solve the problem that many pattern-driven PMS algo-
rithms present execution time instability. RefSelect requires
a small amount of storage space and is capable of selecting
reference sequences efficiently and effectively. Also, the par-
allel version of RefSelect is provided for handling large data
sets. For the state-of-the-art algorithms qPMS7, TravStrR
and PMS8, RefSelect enables them steadily solve PMS
problems in an efficient way without doing any modifica-
tion to these algorithms.
Our work in this paper only focuses on selecting refer-

ence sequences for the pattern-driven PMS algorithms. It is
recommended that further research be undertaken in
selecting reference sequences for the iterative optimization
algorithms of finding motifs in large data sets. These algo-
rithms, such as MEME-ChIP [31], usually randomly select
hundreds of sequences from a large input to make motif
discovery, with a low chance of discovering infrequent mo-
tifs [32]. Thus, elaborate selection of sequences may help
them obtain more motif information.
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