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The intestinal mucosa is a physiological barrier for most microbes, including

both commensal bacteria and invading pathogens. Under homeostatic conditions,

immunoglobulin A (IgA) is the major immunoglobulin isotype in the intestinal mucosa.

Microbes stimulate the production of IgA, which controls bacterial translocation and

neutralizes bacterial toxins at the intestinal mucosal surface. In the intestinal mucosa,

dendritic cells (DCs), specialized antigen-presenting cells, regulate both T-cell-dependent

(TD) and -independent (TI) immune responses. The intestinal DCs are a heterogeneous

population that includes unique subsets that induce IgA synthesis in B cells. The

characteristics of intestinal DCs are strongly influenced by the microenvironment,

including the presence of commensal bacterial metabolites and epithelial cell-derived

soluble factors. In this review, we summarize the ontogeny, classification, and function

of intestinal DCs and how the intestinal microenvironment conditions DCs and their

precursors to become the mucosal phenotype, in particular to regulate IgA production,

after they arrive at the intestine. Understanding the mechanism of IgA synthesis could

provide insights for designing effective mucosal vaccines.
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INTRODUCTION

The intestine is the largest mucosal tissue in the human body and is composed of the small intestine,
caecum, and large intestine. Dietary components are absorbed and digested at the intestinal
mucosa, which has a surface area of ∼400 m2 (1). This tissue contains the largest number of
immune cells and 1014 commensal bacteria, consisting of 500–1,000 different species (2), which
cooperatively maintain intestinal homeostasis.

Since the intestinal mucosa covered with epithelial monolayer limits the invasion of commensal
bacteria or pathogens, it serves as a first line of defense for the body (1). The homeostatic
mucosal defense consists of at least two distinct barriers: epithelial and immunological barriers.
The epithelial barrier prevents the systemic invasion of microbes by tight junctions, mucus coating,
and antimicrobial peptide secretion by intestinal epithelial cells (iECs). On the other hand, the
immunological barrier is largely accomplished by immunoglobulin A (IgA) antibodies, which
prevent microbes from binding to the iECs, suppress the microbes’ growth and virulence, and
neutralize their toxins. Paradoxically, these barriers are fully developed and maintained by the
continuous stimulation with commensal bacteria.

In humans and mice, ∼80% of the total plasma cells in the body are located in the intestinal
mucosa, where they secrete dimeric IgA under steady-state conditions (40–60 mg/kg/day or
3–5 g/day in human) (3, 4). Interestingly, circulating IgA is mainly monomeric in humans, but
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largely oligomeric, composed of 2–4 monomers, in mice. In
addition, unlike mouse IgA, human IgA is composed of two
subclasses, IgA1 and IgA2, and the latter is predominant in
the mucosa (3). Homeostatic IgA (which also functions as
a natural antibody) is induced in the intestinal mucosa by
continuous stimulation with commensal bacteria, and is also
detectable in circulation. Indeed, little IgA is detected in the
intestinal secretions and sera of germ-free and neonatal mice
and its production is restored soon after the colonization of
commensal bacteria (2), indicating that commensal bacteria
induce the development of the mucosal immune system. The
homeostatic IgA is basically poly-reactive with low affinity,
which can bind to common antigens on the microbes,
including lipopolysaccharides, capsular polysaccharides, and
flagellin; notably, some commensal bacteria (20–50%) are coated
with the IgA (5, 6). Mice that lack secretory IgA exhibits
biased composition of commensal bacteria, known as dysbiosis,
suggesting that IgA regulates the absolute number and diversity
of the commensal bacteria through their growth inhibition and
elimination (7–9). In contrast, some IgA-coated bacteria can
form colonies within the mucus layer to secure a niche segregated
from competing species (10). Interestingly, commensal bacteria
coated with high levels of IgA are more pathogenic than low IgA-
and non-coated bacteria, in an induced colitis model (8).

Dendritic cells (DCs), which are widely distributed
throughout organs and tissues, are specialized antigen-
presenting cells with dual roles in inducing tolerance to
self-antigens and inducing immunity to non-self antigens (11).
The DCs in the intestine are preferentially localized beneath
the epithelial monolayer, where they detect luminal antigens,
including commensal bacteria, dietary antigens, and damaged
iEC-associated components, to survey luminal environments.
As intestinal DCs continually sample luminal antigens in the
steady-state, they appear to be tolerogenic. Indeed, intestinal
DCs that have engulfed orally administered antigens or apoptotic
epithelial components migrate into the draining mesenteric
lymph nodes (MLNs), where they suppress immune responses
against these antigens through the induction of CD4+Foxp3+

regulatory T cells (Tregs) (12). In addition, intestinal DCs
carrying live commensal bacteria induce IgA class switching in B
cells after they arrive at the MLNs (13). Thus, DCs are integrally
involved in maintaining intestinal homeostasis by transporting
luminal antigens to the draining lymph nodes. The unique
functions of DCs are thought to be acquired under the influence
of intestinal microenvironments.

Here we review and discuss current understanding of the
ontogeny and conditioning of and regulation of IgA synthesis by
DCs in the intestinal microenvironments, largely based on the
knowledge obtained from mouse models.

GALT AND RELATED TISSUES

The gut-associated lymphoid tissues (GALT) include Peyer’s
patches (PPs) and isolated lymphoid follicles (ILFs) (14). Both are
covered with an epithelial monolayer called the follicle-associated
epithelium (FAE), which contains microfold cells (M cells) that

are specialized for antigen uptake, but are not connected to
the afferent lymphatics (14). In the PPs, B cell follicles are
covered by subepithelial dome (SED) that lies beneath the FAE,
and are surrounded by T cell zones (interfollicular regions;
IFR). The SED contains numerous DCs, which engulf luminal
antigens such as live microbes and undigested dietary antigens.
In comparison with the PPs, ILFs have no distinct T cell zone and
B cell follicles are relatively smaller and less mature.

Once having expressed gut-homing receptors, class-switched
B cells and effector T cells leave the PPs or ILFs and migrate
into the draining MLNs via the lymphatics. In this process, all-
trans-retinoic acid (RA) produced by DCs and stromal cells (SCs)
in the MLNs induces gut-homing receptor CCR9 and integrin
α4β7 on the lymphocytes (15, 16), so called “imprinting.” After
circulating through the thoracic duct and blood, they migrate
back to the intestinal lamina propria (LP), a connective tissue.
During the homing process, CCR9 and the integrin α4β7 bind to
CCL25 produced by iECs and mucosal addressin cell adhesion
molecule 1 (MAdCAM-1) on endothelial cells of the intestine,
respectively (17, 18), leading to their successful homing to the
LP. In addition, DCs in the PPs, ILFs, and LP migrate to the
MLNs in a CCR7-dependent manner, where they present luminal
antigens to naïve T cells (12, 13). Unlike lymphocytes, DCs do
not exit from the MLN to the efferent lymphatics at least under
steady-state conditions (13), indicating that the MLNs function
as a “firewall” to prevent the penetration of luminal antigen-laden
DCs into the periphery.

CLASSIFICATION, DISTRIBUTION, AND
FUNCTION OF INTESTINAL DENDRITIC
CELLS

DCs consist of two subsets: the monocyte-derived, colony-
stimulating factor 1/2 (CSF-1/2)-dependent DCs and the FMS-
like tyrosine kinase ligand (Flt3L)-dependent DCs (19); the
latter group can be classified further into classical DCs (cDCs)
and plasmacytoid DCs (pDCs) (Table 1). It is often difficult
to distinguish monocyte-derived DCs from macrophages based
on their cell surface markers and functions (19). LP cDCs
can be subdivided into at least three distinct subpopulations
based on the expression of CD103 (also known as integrin
αE), CD11b, XCR1, and SIRPα (also known as CD172a) (44),
i.e., CD103+CD11b−XCR1+cDC1 (hereafter, XCR1+ cDC1),
CD103+CD11b+SIRPα+cDC2 (hereafter, CD103+ cDC2), and
CD103−CD11b+SIRPα+cDC2 (hereafter, CD103− cDC2), all
of which depend on the transcription factor Zbtb46 for their
development (45, 46) (Table 1). In this regard, TFs required for
these cDC subsets are as follows; BATF3, Id2, or IRF8 for XCR1+

cDC1 (20–22), IRF4, Notch2, or KLF4 for CD103+ cDC2 (25–
27), Zeb2 for CD103− cDC2 (30) (Table 1). Likewise, based on
the expression of CD11b, CD8α, XCR1, and SIRPα, PP cDCs
are subdivided into several populations (47, 48). In addition, the
development of pDCs in the GALT is dependent on E2-2 and, to
a lesser extent, on Zeb2 (30, 32) (Table 1).

In the GALT, cDCs and macrophages express similar surface
markers (44). For example, macrophages activated in the
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TABLE 1 | DCs and their related populations in the intestine.

Subsets (location) Progenitors

in blood

Transcription

factors

Cytokines Functions Selected references

CD103+CD11b−

XCR1+cDC1

(LP)

Pre-cDC Zbtb46

Batf3

Irf8

Id2

Flt3L CD8+ T cell generation

CD4+CD8αα+ IEL generation

Th1 generation

Treg generation

Cross-presentation

CCR9/α4β7 expression

(12, 20–24)

CD103+CD11b+

SIRPα+ cDC2

(LP)

Pre-cDC Zbtb46

Irf4

Klf4

Notch2

Flt3L Th17 generation

Th2 generation

IgA+ B cell generation

Treg generation

(25–29)

CD103−CD11b+

SIRPα+ cDC2 (LP)

Pre-cDC Zbtb46

Zeb2

Flt3L Th17 generation (30, 31)

CD11CintB220+

Singlec H+ pDC

(LP, PP, MLN)

pDC E2-2 Flt3L Treg generation

IgA+ B cell generation

(30, 32, 33)

Monocyte-derived

CX3CR1+ DC

(LP, PP)

Ly6C+

monocyte

Runx3

Irf4

Pu.1

CSF1

CSF2

Th1 generation (34–41)

Monocyte-derived

Tip-DC

(LP, PP)

Ly6C+

monocyte

(*) CSF1

CSF2

IgA+ B cell generation (42, 43)

Only intestinal DC subsets whose origin, transcription factors, cytokines necessary for differentiation and functions are clear are listed. *Transcription factors required for Tip-DCs

development remain unclear. LP, lamina propria; MLN, mesenteric lymph nodes; PP, Peyer’s patches.

intestine are CD11chiMHC class IIhi, which closely resemble
cDCs, and CD11c+CX3CR1

hi cells in the LP are now regarded
as macrophages rather than DCs based on their functions,
ontogeny, and TF requirements. In addition, CD103−CD11b+

LP cells, originally referred to as cDCs, are turned to be composed
of a large number of monocyte-derived macrophages and a small
number of CD103− cDC2 (31, 49, 50). In this regard, intestinal
macrophages can be characterized by their expression of CD64,
Mer tyrosine kinase, and CD169 in addition to a classical marker
F4/80 (44). Indeed, most of the CD103−CD11b+ LP cells express
these markers (31). The formal distinction of intestinal DCs and
macrophages need their anatomical distribution and biological
functions, in addition to their surface marker expression, as
discussed below.

Among the LP DC subsets, CD103+ DCs, which possibly
include XCR1+ cDC1 and CD103+ cDC2, are preferentially
localized in the center of villus, whereas CD103− DC2 reside
around them (51). XCR1+ cDC1 are required for the generation
and maintenance of intestinal intraepithelial T cells. They also
cross-present iEC-derived antigens to CD8+ T cells and promote
the differentiation of Th1 cells and Tregs in the GALT (23, 24).
On the other hand, CD103+ cDC2 induce Th17 cells and IgA+ B
cells under steady-state conditions (26, 28) and protective Th2
immunity to the parasitic worms, Nippostrongylus brasiliensis
and Schistosoma mansoni (27, 29). Although CD103− cDC2
cells are also able to induce Th17 cells at least in vitro (31),
it remains unclear whether they contribute to intestinal Th17
cell homeostasis (Table 1). cDC2 and pDCs localized in the
PPs induce IgA synthesis in a commensal bacteria-dependent

manner (13, 33, 52). PP pDCs migrate into the intestinal LP in
a CCR9-dependent manner (53) and maintain Tregs, leading to
the induction of oral tolerance (54, 55). Interestingly, intestinal
pDCs do not produce large amounts of type 1 IFNs (33, 56, 57).
The role of DCs and their related cells in intestinal IgA synthesis
is described later in the section “ROLE OF DENDRITIC CELLS
IN INTESTINAL IGA PRODUCTION.”

Antigen Sampling by and Trafficking of DCs
In the PPs, CCR6+ cDCs in the SED move into the FAE
via the CCR6-CCL20 interaction to sample luminal microbes,
e.g., Salmonella typhimurium, that invades across the FAE and
then migrate into the IFR, where they activate S. typhimurium-
specific T cells (58). Monocyte-derived CX3CR1

+ cells that
are defined by TFs including Rnux3/p33, IRF4, and Pu.1
are in close contact with the FAE and express lysozyme, a
representative antimicrobial enzyme (34–38) (Table 1). The
lysozyme+ CX3CR1

+ cells extend dendrites into the lumen
through the transcellular pores of M cells to capture and kill
S. typhimurium (39, 59). Interestingly, some PP cDCs carrying
luminal antigens migrate into the MLNs in a CCR7-dependent
manner (13).

In the LP, CX3CR1
+ macrophages are preferentially localized

beneath the epithelial layer via the interaction with iEC-derived
CX3CL1 (also known as fractalkine). They can directly sample
luminal antigen by extending dendrites through their expression
of tight junction-related proteins (60, 61) and can also sample
luminal microbes transported through M cells in the villous
epithelium (62). Although phagocytic activity of CX3CR1

+
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macrophages is much greater than CD103+ DCs, antigen-
presenting capacity is in an opposite way (51).

These findings lead to the question how CD103+ DCs
recognize luminal antigens. Some activated CD103+ DCs, which
express tight junction-associated proteins, migrate into beneath
the epithelial layer, where they sample luminal soluble antigens
by extending their dendrites into the lumen, or engulf the
antigens delivered in the LP through goblet cell transcytosis
(63, 64). Intriguingly, CD103+ cDC2 can get indirectly luminal
antigens through amembrane transfer system called trogocytosis.
In brief, CD103+ cDC2 receive soluble antigens with some
membrane from CX3CR1

+ macrophages through gap-junctions
formed between these cells, thereby inducting oral tolerance
(65). This cooperative process may compensate for the poor
phagocytic activity of CD103+ DCs.

After acquiring luminal dietary antigens, CD103+ LP DCs
migrate in a CCR7-dependent manner into the MLNs via the
afferent lymphatics, then present the antigens to naïve T cells
(51, 66). Unlike the CD103+ DCs, CX3CR1

+ macrophages in
the LP do not migrate into the MLNs in steady-states. However,
under inflammatory conditions, the CX3CR1

+ LP macrophages
and related cells appear tomigrate into theMLNs (40, 67). During
dysbiotic colitis, Ly6C+ inflammatory monocytes enter into the
LP of inflamed colon, where they give rise to CX3CR1

intCCR7+

macrophages that have a capacity to migrate into the MLNs (40).
In addition, CX3CR1

+ LP cells carrying Salmonella can migrate
in a CCR7-dependrnt manner into the MLNs in antibiotic-
treated dysbiotic mice (67), suggesting that healthy microbiota
may restrict CX3CR1

+ cell migration.

CONDITIONING OF DENDRITIC CELLS IN
THE INTESTINE

Mucosal DCs functionally differ from non-mucosal DCs, and
their functional properties are likely to be influenced by the
unique microenvironment at each mucosal site. Intestinal DCs
are no exception and conditioned by commensal bacterial and
dietary antigens directly or indirectly through iECs under steady-
state conditions.

Commensal Bacterial Conditioning of DCs
Commensal bacterial products directly condition DCs in the
GALT. The human commensal bacteria Bacteroides fragilis-
derived polysaccharide A (PSA) induces inducible nitric oxide
synthase (iNOS) in monocyte-derived DCs through Toll-like
receptor 2 (TLR2) signaling (68) (Table 2). In colitis models,
PSA-conditioned DCs prevent the colonic inflammation by
generating IL-10-producing Tregs in the MLNs (70, 77, 78). In
addition, the iNOS+ DCs likely contribute to IgA synthesis as
described in the following section.

Commensal bacteria-derived short-chain fatty acids (SCFAs),
i.e., acetate, butyrate, and propionate, condition DCs. Butyrate
binds to G-protein-coupled receptor 109a (GPR109a) on DCs
to generate RA-producing DCs, which prime IL-10-producing
Tregs (71) (Table 2). Acetate conditions DCs to produce RA
in a GPR43-dependent manner, leading to IgA production by

B cells (72). Interestingly, unlike acetate, butyrate that induces
DC production of RA fails to generate IgA-producing PCs (72).
The functional differences between these SCFAs in inducing
IgA remain to be elucidated. In addition, commensal bacteria-
derived lactate and pyruvate bind to GPR31 and induce dendrite
protrusion of CX3CR1

+ LP macrophages, effectively capturing
enteric pathogens (73) (Table 2). Of note, macrophage expression
of GPR31 and recruitment to the epithelium is induced by
CX3CR1-CX3CL1 interaction between macrophages and iECs
(61, 73). Live bacteria also condition DCs. Under homeostatic
conditions, commensal bacteria Enterobacter and Alcaligenes
species survive within intracellular compartment of GALT DCs
for several days and condition DCs to produce TGF-β, BAFF,
IL-6, inducing IgA synthesis (13, 69) (Table 2).

Conditioning of DCs by IECs
iECs are heterogeneous populations composed of enterocytes,
enteroendocrine cells, goblet cells, tuft cells, Paneth cells, and M
cells, all of which are derived from intestinal stem cells (ISCs) at
the crypt bottom (1). Paneth cells and mesenchymal cells around
intestinal crypts express various types of Wnt, an essential factor
for the maintenance of ISCs (79). Interestingly, Wnt/β-catenin
signaling imprints DCs and macrophages to become tolerogenic,
and they produce RA, IL-10, and TGF-β (74). In addition, goblet
cell-derived mucus and mucus-coated bacteria also conditions
CD103+ DCs to produce IL-10, TGF-β, and RA through a
galectin-3-dectin-1-FcγRIIB receptor complex that promotes β-
catenin signaling, leading to Treg induction (75) (Table 2). The
ability of iECs to condition DCs is acquired upon their interplay
with commensal bacteria. For instance, SFB anchored deeply into
iECs trigger iEC production of serum amyloid A (SAA), which
conditions LP DCs to produce IL-6 and IL-23 (76) (Table 2).
Commensal bacteria-derived butyrate stimulates iECs to produce
RA, thereby inducing tolerogenic DCs (80).

pDCs are amajor producer of type 1 IFNs in viral and bacterial
infections (57). Interestingly, PP pDCs isolated from naïve mice
do not produce type 1 IFNs upon the stimulation with TLR9
ligand (mucosal-type pDCs), due to their local conditioning by
TGF-β, IL-10, and prostaglandin E2 produced by iECs and SCs
(56). In addition, continuous type 1 IFN signaling during pDC
development generates mucosal-type pDCs (81). In this context,
we found that the GALT SCs produce constitutively low amounts
of type 1 IFNs through continuous stimulation by commensal
bacteria, which condition pDCs to express membrane-bound
B cell-activating factor belonging to the tumor necrosis factor
family (BAFF) and a proliferation-inducing ligand (APRIL),
leading to T cell-independent IgA CSR (33). These findings
indicate that commensal bacteria condition DCs indirectly
through iECs and SCs (Table 2).

IGA PRODUCTION IN THE INTESTINE

Mechanism of IgA Synthesis in the
Intestine
Murine B cells are divided into conventional B2 cells and
primitive B1 cells by different expression of surface molecules
CD5, CD11b, and CD23, and their origin, distribution, and
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TABLE 2 | The effect of intestinal microenvironmental conditioning factors on DCs and their related populations.

Conditioning factors Target cells Receptors Conditioned

cell-derived factors

Induction of effector cells References

LIVE BACTERIA

Enterobactor spp. PP cDC (Phagocytosis) Not determined lgA+ B cells (13)

Alcaligenes spp. PP cDC (Phagocytosis) BAFF, IL-6, TGF-β lgA+ B cells (69)

BACTERIAL PRODUCTS

Polysaccharide A Mo-DC TLR2 iNOS Th1 (68)

Polysaccharide A BM pDC TLR2 MHCII, ICOSL, CD86 Treg (70)

Butyrate Mo-DC GPR109A Retinoic acid Treg, Tr1 (71)

Acetate Mo-DC GPR43 Retinoic acid lgA+ B cells (72)

LactateIPyruvate LP MP GPR31 Not determined (Dendrite protrusion) (73)

iEC-DERIVED FACTORS

Wnt LP cDC Frizzeld Retinoic acid Treg (74)

LP MP IL-10, TGF-β

Mucus LP cDC Galectin-3

-Dectin-1-

FcγRIIB

-complex

Retinoic acid IL-10,

TGF-β

Treg (75)

Serum amyloid A LP cDC CD36 IL-6, IL-23 Th17 (76)

SC-DERIVED FACTORS

IFN-α/IFN-β PP/MLN IFNAR1/IFNAR2 BAFF, APRIL lgA+ B cells (33)

pDC

BM, bone marrow; GPR, G-protein-coupled receptor; iEC, intestinal epithelial cells; LP, lamina propria; MLN, mesenteric lymph node; Mo-DC; monocyte-derived DC; MP, macrophages;

PP, Peyer’s patch; SC, stromal cells; TLR, Toll-like receptor.

antigen-specificity. CD5−CD11b−CD23+ B2 cells (hereafter,
B cells) are originated in the BM, and distributed into the
secondary lymphoid organs including the GALT, and undergo
somatic hyper mutation (SHM) and class switch recombination
(CSR) to produce high-affinity antibody with biological effector
functions (3, 4). The Ig gene rearrangement is mediated by
activation-induced cytidine deaminase (AID), which is induced
by activation signals via B cell receptor (BCR), TLRs, CD40,
and CD40-related molecules, i.e., BAFF and APRIL (3, 4,
82). In contrast, fetal liver-derived B1 cells are subdivided
into CD5+CD11b+CD23− B1a and CD5−CD11b+CD23− B1b
subsets, both of which are distributed to the peritoneal cavity,
thoracic cavity, and intestinal LP, where they undergo limited
SHM and CSR to produce low-affinity antibodies (83).

IgM+ naive B cells acquire surface IgA by undergoing CSR
from Cµ (encoding IgM) to Cα (encoding IgA) in the constant
region of the Ig heavy chain after they arrive at the PPs. To this
end, naive B cells interact with antigen-primed CD4+ follicular
helper T (Tfh) cells in the light zone of PPs and then move
toward the dark zone of PPs to complete both CSR and SHM
(3, 4) (Figure 1). In this process, IgA CSR can be accomplished
in the absence of T cells as described later. During the SHM
and CSR, B cells that express C-X-C motif chemokine receptor
5 (CXCR5) are retained within the dark zone of PPs through
the interaction with its ligand CXCL13, which is produced by
follicular DCs and SCs (84). B cells that have completed IgA
CSR exit the PPs in a S1P- and CXCR4-dependent manner and
migrate into the MLNs in a CCR7-dependent manner (85, 86),
where DC- and SC-derived RA imprints gut-homing specificity

onto the IgA+ B cells. The IgA+ B cells including plasmablasts
home into the intestinal LP, where they differentiate into IgA-
producing plasma cells (3, 4, 14, 17). Dimeric or polymeric IgA
binds to polymeric immunoglobulin receptor (pIgR), which is a
precursor of secretory components on the basolateral surface of
iECs, and the IgA-pIgR complex is transported via transcytosis
into their apical surface, where the portion of pIgR in the complex
is proteolytically cleaved to release into the intestinal lumen as a
secretory IgA (3).

T Cell-Dependent IgA Synthesis
T cell-dependent (TD) IgACSR takes place largely in follicular B2
cells that reside in the GCs of PPs, where antigen-specific high-
affinity antibodies are induced in response to enteric microbes
including pathogens (3, 4) and atypical commensal bacteria such
as SFB (5, 8). These microbes enter into the SED through M cell
transcytosis and direct sampling by macrophages (39, 58, 59).
Some macrophages may transfer bacterial antigens to DCs that
migrate into the IFR, where they prime T cells (58, 65) (Figure 1).
In the GCs, IgM+ naïve B cells differentiate into IgA+ B cells
upon their stimulation by CD40 ligand on activated T cells
and by TGF-β1 expressed by multiple cell-types, including iECs,
DCs, SCs, and T cells (3, 4, 87) (Figure 1). Furthermore, these
processes are promoted by additional factors, as described below.

The GALT contains various types of CD4+ T cells. Among
them, Tfh cells that express CXCR5, programmed cell death
1 (PD-1), and IL-21 play a pivotal role in inducing TD IgA
CSR (88, 89). In the PPs, Tfh cells migrate and localize to
the edge of B cell follicles, where they stimulate activated B
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FIGURE 1 | T cell-dependent generation of IgA+ B cells in the GALT. In the PPs, dendritic cells (DCs) that engulf directly or indirectly (via antigen transfer by CX3CR1
+

cells) luminal bacteria produce IL-6 and move from the SED to the IFR, where they prime CD4+ T cells to generate follicular helper T (Tfh) cells, which are derived from

Tregs and Th17 cells. Tfh cells move into the follicle, where they interact with IgM+ B cells in a cognate manner (MHC-TCR and CD40-CD40L). In addition, Tip-DCs

induce the expression of TGF-β receptor (TGFβR) through their production of nitric oxide (NO). Subsequently, B cells differentiate into IgA+ B cells through AID

expression in response to TGF-β, IL-21 (produced by Tfh cells), and RA (produced by DCs). IgA+ B cells migrate into the intestinal lamina propria (LP), where they

differentiate into IgA-producing plasma cells.

cells with IL-21 to promote IgA CSR. This migration process
is regulated by the interaction of CXCR5 on Tfh cells with its
ligand CXCL13, which is secreted from follicular DCs (87). PD-1
plays an integral role in inducing an appropriate IgA repertoire
in the PPs through the maintenance of Tfh cell number, leading
to homeostatic interaction with the commensal bacteria (90)
(Figure 1). However, the mechanisms by which Tfh cells regulate
IgA repertoire remain unclear.

Tfh cells are derived from Tregs and Th17 cells in the PPs
(91, 92). In an adoptive transfer experiment using T cell-deficient
mice, transferred Tregs induce the formation of GCs in the PPs,
where they differentiate into IL-21-producing Tfh cells through

a down-regulation of Foxp3 and reciprocal up-regulation of
Bcl6, a transcription factor critical for CXCR5 induction (91).
In a separate study, Th17 cells that were adoptively transferred
into T cell-deficient mice were converted into Tfh cells in
the PPs (92) (Figure 1). These findings led us to ask which
factors convert Th17 cells into Tfh cells in the PPs. In this
regard, the conversion of Th17 cells into Tfh cells is induced by
commensal bacteria-derived TLR2 ligands that activate T cell-
intrinsic MyD88 signaling, leading to the induction of antigen-
specific high-affinity IgA (93). The relative contribution of Tregs
and Th17 and the role of DCs in the conversion into Tfh cells
remain unknown.
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T Cell-Independent IgA Synthesis
Quantities of IgA in the sera and intestinal secretions are
somewhat reduced in mice lacking T cells or CD40 that are
critical for T cell help and GC formation (33, 42, 94–96),
indicating that IgA CSR can also be induced in T cell- and
GC-independent manners (Figure 2). In addition, SHM is not
completely accomplished in the Ig variable regions of these mice,
leading to induction of low-affinity IgA (95, 96).

T cell-independent (TI) IgA CSR occurs in B1 cells, especially
B1b cells, and extrafollicular B2 cells of the GALT, where
homeostatic IgA is constitutively produced by the stimulation
with commensal bacteria (5, 33, 94, 96–102). In this context,
CD103+ cDC2 capture these bacteria that are transported into
the LP through transcytosis by M cells and goblet cells and direct
sampling by macrophages (60–64), leading to TI IgA synthesis
(Figure 2). In general, TI IgA production is predominantly
mediated by B1b cells (5, 102). In this context, approximately 40%
of the total IgA-producing plasma cells in the LP are of peritoneal
B1 cell origin (83, 94, 101). Upon stimulation with TLR2 ligands,
the B1 cells exit the peritoneal cavity by downregulating CD9 and
integrins α1, α6, and β1, and some of them migrate into the LP
(103). Similar to peritoneal B1 cells, conventional B2 cells also
produce IgA independently of T cells upon the stimulation with
BAFF and APRIL, which are both structurally similar to CD40
ligand (33, 42, 99, 100, 104), or their stimulation with TI antigens,
TLR ligands, and possibly TGF-β (105) (Figure 2).

The homeostatic IgA contributes to the maintenance of
commensal bacterial homeostasis. Tcrb−/−Tcrd−/− mice, which
lack T cells, have IgA antibodies that are reactive to commensal
bacteria, suggesting that the production of the IgA is mediated
by the TI pathway (5, 94). In addition, the homeostatic IgA can
eliminate some pathogens such as rotavirus and S. typhimurium
until pathogen-specific high-affinity IgA is secreted into the
intestinal lumen (106, 107), implying that the TI pathway
temporarily substitutes for the TD pathway during the early
phase of infection.

ROLE OF DENDRITIC CELLS IN
INTESTINAL IGA PRODUCTION

In early studies, the induction of IgA production by DCs was
demonstrated by using co-culture systems including B cells, T
cells, and DCs. Human DCs enhance the IgA production by
CD40L-stimulated B cells (108, 109). In mice, CD11b+ cDC2
isolated from the PPs can preferentially induce IgA production
in the presence of T cells and antigens, and this process requires
IL-6R signaling (110) (Figure 1). The PP DCs carrying live
commensal bacteria induce IgA production by B cells in either
the presence or the absence of T cells (13), confirming that
intestinal DCs are capable of inducing IgA CSR in both TD and
TI manners. DC-associated molecules that induce IgA synthesis
are as described below.

TGF-β
Although TGF-β is constitutively expressed in multiple cell
types, its production is tightly regulated (111). In brief, TGF-β

is first synthesized as an inactive latent complex with latency-
associated peptide, and this complex cannot bind the TGF-
β receptor. The latent complex is then cleaved by matrix
metalloproteinases (MMPs) and/or integrins to release active
TGF-β. DCs, macrophages, and follicular DCs in the GALT
produce TGF-β through their expression of integrin αvβ8 and
MMP2/9/13, all of which are up-regulated by the stimulation
with TLR ligands and RA (100, 112, 113). As physiological
TLR ligands and RA are enriched in the GALT, these
machineries may explain the establishment of TGF-β-abundant
microenvironment in the GALT.

Retinoic Acid
In the intestine, RA is mainly derived from dietary and bile
retinol (vitamin A). In brief, retinol is oxidized to retinal
by alcohol dehydrogenase and further to RA by aldehyde
dehydrogenase (ALDH). DCs in the PPs and MLNs express
ALDH1 (encoded by Aldh1a1) and ALDH2 (encoded by
Aldh1a2), respectively, and induce IgA synthesis in an RA-
dependent manner in the presence of IL-5 and IL-6 (15, 114).
Similarly, CD103+ LP cDC2 expressing TLR5 induce IgA CSR
in peritoneal B cells through the production of RA and IL-6 in
the presence of flagellin (28) (Figure 2). These findings indicate
that intestinal DC-driven TI IgA production is largely dependent
on RA. However, RA alone is insufficient to induce IgA CSR in
naïve B cells (115).

BAFF and APRIL
BAFF and APRIL are produced as either soluble or membrane-
bound form by DCs and their related cells upon their stimulation
with TLR ligands, type I IFNs, IL-10, and TSLP (104, 105, 116).
Under steady-state conditions, intestinal DCs produce large
amount of BAFF or APRIL that directly induces IgA CSR in vitro
and promote the survival of post-switched IgA+ B cells and IgA-
producing plasma cells in the GALT (42, 52, 105) (Figure 2). In
addition to DCs, some intestinal CX3CR1

+ macrophages also
induce IgA production in a BAFF/APRIL-dependent but TLR-
and RA-independent manner (117) (Figure 2). In humans, IgA2
CSR, which is predominant in the colon, is dependent on APRIL
that is derived from iECs rather than from DCs (99), indicating
that themajor source of APRIL differs between humans andmice.
Transmembrane activator and calcium-modulating cyclophilin-
ligand interactor (TACI) and B cell maturation antigen (BCMA)
are common receptors for BAFF/APRIL (116). In this context,
TACI signaling does not involve SMADs (SMAD2/3/4) and
RUNX3, which bind to the TGF-β responsive element in Iα
promoters that is essential for IgA synthesis (3, 118), suggesting
that BAFF and APRIL probably activate Iα promoters in a TGF-
β receptor-independent manner. However, DC-driven TI IgA
production is partially inhibited by the neutralization of TGF-
β (52, 105), suggesting that TGF-β is additionally involved in
and optimizes BAFF/APRIL-induced IgA CSR. The serum IgA
level is selectively decreased in mice lacking APRIL or TACI (119,
120), and in patients carrying TACI mutations (121), confirming
that these cytokines are important for TI IgA production.
Consistently, IgA production from B cells of mice lacking TACI
and BCMA is impaired when co-cultured with PP DCs from
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FIGURE 2 | T cell-independent generation of IgA+ B cells in the GALT. In the isolated lymphoid follicles, dendritic cells (DCs) that sample luminal bacteria produce

TGF-β. DCs also produce BAFF and APRIL to generate IgA+ B cells that home into the lamina propria (LP) and differentiate into IgA-producing plasma cells (PCs). In

the LP, CD103+ cDC2 that sample luminal bacteria produce IL-6 and retinoic acid (RA). CX3CR1
+ cells produce BAFF and APRIL in response to nitric oxide (NO,

produced by Tip-DCs and PCs) and TSLP [produced by intestinal epithelial cells (iECs)]. RORγt+ innate lymphoid cells (ILCs) induce Tip-DCs in an LTα1β2-dependent

manner, which produce BAFF and APRIL by pDCs. In the presence of BAFF/APRIL, RA, and IL-6, IgM+ B cells generate IgA+ B cells, which differentiate into

IgA-producing PCs.

wild-type mice or stimulated with soluble BAFF and APRIL
(52, 119). In contrast, there is a controversial report that the
serum IgA level is not affected in April−/− mice (122), implying
that differences in the components of commensal bacteria among
individual strains of April−/− mice and between different animal
housing facilities may affect the IgA level, although the precise
reason remains unclear.

INVOLVEMENT OF NITRIC OXIDE IN IGA
SYNTHESIS

Nitric Oxide
Nitric oxide (NO) is a free radical molecule synthesized
from L-arginine by three different isoforms of NO synthase
(NOS): neuronal NOS (encoded by Nos1), inducible NOS
(iNOS, encoded by Nos2), and endothelial NOS (encoded
by Nos3) (123). Since gaseous NO is a small diffusible
molecule, it readily penetrates the microenvironment, where it
functions as a neurotransmitter, an immune modulator, and

a vasodilator. Furthermore, since NO can passively penetrate
cellular membranes, its main targets are intracellular proteins.
NO exerts its biological effects through at least two pathways:
heme iron- and S-nitrosylation (123). In the former pathway,
NO activates soluble guanylate cyclase (sGC) through iron
nitrosylation of the heme group, and the sGC catalyzes the
conversion of guanosine monophosphate (GMP) into second
messenger cyclic GMP, which activates protein kinase G. In the
latter pathway, NO controls the activity of various intracellular
signalingmolecules, including enzymes and transcription factors,
through S-nitrosylation of the cysteine thiol group (SNO).
In general, a low concentration of NO activates cGC and
transcription factors, such as NF-κB, whereas a high NO
concentration causes the SNO of signaling molecules (123).

Nitric Oxide Dependency of IgA Synthesis
iNOS is expressed in DCs and macrophages and mediates
large amounts of NO production upon its stimulation with
bacterial products and inflammatory cytokines, leading to the
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killing of bacteria. Upon infection with Listeria monocytogenes,
Ly6C+ inflammatory monocytes differentiate into TNF/iNOS-
producing cells (previously defined as Tip-DCs) in CCR2- and
MyD88-dependent manners (36, 124, 125). In the intestine,
the continuous stimulation by commensal bacteria may
induce “homeostatic inflammation,” which is essential for
IgA production and possibly iNOS expression. Supporting
this notion, commensal B. fragilis-derived PSA induces iNOS
expression and NO production in monocyte-derived DCs
(68). In this context, we showed that Nos2−/− mice and wild-
type mice that treated with iNOS inhibitors have a reduced
frequency of IgA+ B cells in the GALT and lower levels of
serum and fecal IgA (42). Notably, iNOS-expressing CD11c+

cells, which may correspond to the Listeria-induced Tip-DCs,
are preferentially induced in the GALT of wild-type mice,
in a manner involving the MyD88-dependent recognition of
commensal bacteria. Interestingly, such “naturally occurring”
Tip-DCs in the GALT are of inflammatory monocyte origin,
because they are absent in the GALT of Ccr2−/− mice (126)
(Table 2). In line with these findings, mice lacking Mcp-1, a
primary ligand for CCR2, show impaired IgA production in the
lung upon influenza infections (127). Importantly, the adoptive
transfer of Tip-DCs into Nos2−/− mice restores IgA levels in
the sera and feces. Tip-DCs have the potential to induce IgA
synthesis mediated by both TD and TI pathways (42). In the TD
pathway, Tip-DC-derived NO induces type II TGF-β receptor
on B cells (Figure 1), whereas NO induces the DC expression
of BAFF and APRIL in the TI pathway (Figure 2). Interestingly,
in the intestine, NO induces DC expression of CCR7, which is
essential for their migration into the MLNs (128), and TNF-α
is required for the expression of MMPs, which mediate TGF-β
activation (100) (Figure 2). Some Tip-DCs express ALDH1
and ALDH2 and an RA response element is located in the
promoter region of the Nos2 gene (129). Indeed, RA-treated
DCs, which have tolerogenic properties, induce the expression of
iNOS (130), suggesting that microenvironmental conditioning
factors, including bacterial and dietary components induce
iNOS expression in the intestinal DCs. Furthermore, RORγt+

innate lymphoid cells (ILCs) can induce iNOS expression in
intestinal DCs through their membrane-bound lymphotoxin
α1β2 expression, leading to TI IgA production (131) (Figure 2).
Given these observations, it is now clear that iNOS are expressed
in some CD11b+ DCs and their related cells under the influence
of intestinal microenvironments (41, 43, 52, 132), leading in
part to the establishment of prominent IgA-producing sites. In
addition to intestinal DCs and their related cells, some plasma
cells also express iNOS and regulate the composition of the
microbiota through an intrinsic NO-dependent IgA production
(133). Collectively, “homeostatic” iNOS-derived NO produced
by multiple cell types appears to contribute to the maintenance
of intestinal homeostasis.

EXTRAFOLLICULAR DC-B CELL
INTERACTION IN IGA SYNTHESIS

Recently, the SED of the PPs has attracted attention as a
new site for IgA CSR. In the SED, mesenchymal SCs located

close to the FAE express membrane-bound receptor activator
of nuclear factor-κ B ligand (RANKL), which is essential for
epithelial CCL20 production and M cell differentiation through
binding to its receptor RANK (134) (Figure 3A). Under steady-
state conditions, pre-GC IgD+ B cells that express CCR6 are
recruited in a CCL20-dependent manner into the SED, where
they are in close contact with cDC2 that have engulfed luminal
antigens transported through M cells, thereby initiating IgA CSR
(134). In parallel, the close interaction of B cells with the cDC2
expressing αvβ8 that activate TGF-β promotes IgA CSR in the
SED (135) (Figure 3A). In this context, Tip-DCs and pDCs are
predominant in the SED of the PPs (56, 126), implying that
they interact with B cells in a different fashion. In the SED,
group 3 ILCs condition αvβ8+ cDC2 (Figure 3A) and possibly
Tip-DCs to induce IgA synthesis through their expression of
lymphotoxin α1β2 (131, 135). B cells activated in the SED move
back to the GCs, where some of them appear to complete their
differentiation into IgA+ B cells through TD signaling (6, 135)
(Figure 3A).

We previously reported that pDCs in the GALT have
the potential to induce TI IgA CSR in a membrane-
bound BAFF/APRIL-dependent manner (33) (Figures 2, 3B).
Interestingly, the pDCs expression of BAFF/APRIL is induced by
type 1 IFNs produced, albeit at low levels, from intestinal SCs and
by NO from naturally occurring Tip-DCs. The SC expression of
type I IFNs is largely dependent on the stimulation by commensal
bacteria (33) (Figure 3B).

MUCOSAL VACCINES

As the mucosa is the major entry site for most pathogens,
IgA secreted in the mucosal lumen has an important role in
preventing their penetration across epithelial barriers. Thus, the
efficient induction of antigen-specific IgA in the lumen has led
to successful mucosal vaccines such as oral and nasal vaccines
that are more effective than conventional intramuscular and
subcutaneous vaccines. However, mucosal vaccines for human
use are now available for only a few pathogens, due to the fact that
their safety has not been demonstrated and to a lack of effective
adjuvants and delivery systems (136). Although the mucosal
vaccines that are currently licensed for human clinical trials
consist of either live attenuated or inactivated pathogens, some
safety issues remain unresolved. In contrast, subunit vaccines
composed of molecules from pathogens are typically safer, but
offer less powerful immunogenicity due to their susceptibility
to digestion (136). In this regard, the establishment of delivery
systems to DCs within the GALT, i.e., PPs, is important. Given
that M cells transport and deliver luminal antigens to DCs
in the PPs, M cells and their surface molecules i.e., GP2, are
possible targets for effective vaccine delivery (137). Indeed, the
oral administration of anti-GP2-conjugated salmonella antigen
increases the host’s resistance against S. typhimurium infection in
mice (138).

The generation of long-living IgA-producing plasma cells
is also required for successful mucosal vaccines. In mice, the
maximum lifespan of intestinal IgA-producing plasma cells is
around 7–8 weeks (average half-life of 4–5 days) even under
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FIGURE 3 | Novel DC-B cell interaction in inducing IgA synthesis. (A) In the Peyer’s patches, stromal cells (SCs) interact with M cells to produce CCL20, which

induces the migration of IgM+CCR6+ B cells from the follicles into the SED through the CCR6-CCL20 interaction. B cells that migrated into the SED interact with

dendritic cells (DCs) that express integrin αvβ8, which is induced by LTα1β2 from RORγt+ innate lymphoid cells (ILCs). B cells activated in the SED migrate into the

follicles to generate IgA+ B cells through the induction of AID. (B) In the extrafollicular region of the mesenteric lymph nodes, SCs condition pDCs to express

membrane-bound BAFF/APRIL through their production of IFN-α/β, albeit at low levels, and possibly TGF-β, IL-10, and PGE2. Conditioned pDCs make close contact

with IgM+ B cells through BAFF/APRIL-TACI/BCMA interaction to induce AID expression for IgA class-switching.

steady-state conditions (139). The maintenance of long-living
plasma cells in the intestine appears to be mediated by BAFF,
APRIL, and IL-6. In addition, plasma cell-intrinsic iNOS-derived
NO increases their survival and longevity in non-mucosal
and mucosal tissues (133, 140). Given that Tip-DCs produce
gaseous NO (42, 124), they may complementarily prolong and
further enhance the survival of iNOS− and iNOS+ plasma cells,
respectively. In addition, commensal bacteria-derived lactate and
pyruvate condition intestinal macrophages to induce dendrite
protrusion, by which macrophages sample enteric pathogens in
the lumen (73), suggesting that these would be good candidates
for mucosal adjuvants that target DCs and macrophages.

In contrast to inbred mice, immune responses in humans vary
between individuals and there are evaluation limits of clinical
trials, suggesting the need for appropriate animal models for the
evaluation of mucosal vaccines. In this regard, the use of non-
human primates that are physiologically and immunologically

similar to humans is reasonable. Recently, rhesus macaque
models have been used to show that mucosal immunization with
a vector expressing simian immunodeficiency virus (SIV) protein
increases the numbers of pDCs and myeloid DCs in both the
rectal mucosal tissues and the blood, thereby inducing effective
TD mucosal immune responses (141, 142). Importantly, these
rectal DCs produce large amounts of BAFF, IL-6, and TNF-α to
induce SIV-specific IgA production (141). In addition, given the
limited availability of non-human primates, the development of
humanized mice having human immune systems and microbiota
might be useful in overcoming some of these problems.

As described, homeostatic IgA shapes the composition and
diversity of commensal bacteria, leading to the maintenance
of host health (6–9). Indeed, “mild” dysbiosis is induced in
IgA-deficient mice and patients with IgA-deficiency (7–9, 143).
In both humans and mice, antibiotic-induced dysbiosis causes
various diseases such as colitis, allergy, autoimmunity, obesity,
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autism, and infection (144). Importantly, intact composition of
commensal bacteria prevents colonization by pathogens in the
gut (145, 146) and homeostatic IgA eliminates some pathogens
(106, 107), implying that homeostatic IgA contributes to host
defense. In this context, the TI pathway that is critical for
homeostatic IgA production is similar between humans and
mice, except for the source of colonic APRIL (3, 4, 99),
suggesting that a thorough understanding of the TI pathway
should contribute to effective production of homeostatic IgA,
which regulates the healthy balance of gut microbes. Accordingly,
not only the induction of pathogen-specific IgA mediated by
the TD pathway but also the maintenance of homeostatic IgA
production by the TI pathway may present new pathways for the
development of mucosal vaccines.

CONCLUDING REMARKS

Accumulating evidences have been revealing that
microenvironmental factors, in particular commensal bacteria,
condition DCs to acquire their mucosal phenotype with
tolerogenic and IgA-inducing properties in the GALT. However,
little is known where and how individual or a group of
commensal bacteria condition DCs to induce intestinal IgA
synthesis. In this regard, we need to understand about the
characteristics of commensal bacteria that are preferentially
engulfed by intestinal DCs or that stimulate iECs to produce
conditioning factors for DCs.

In addition, we are just beginning to understand the role of
the close interaction between DCs and B cells in inducing IgA

synthesis in the extrafollicular foci such as the SED of the PPs.
Such collaborative actions between the conditioned DCs and B
cells before their interaction with T cells appear to be required
for the development of mucosal vaccines that will induce effective
immune responses, including antigen-specific and long-lasting
IgA production. In this context, commensal bacteria-derived
metabolites that condition DCs to induce long-living IgA+

plasma cells or to promote antigen sampling may be promising
adjuvants in the development of safe and effective mucosal
vaccines. Therefore, understanding the mechanisms of these
processes and their regulation will facilitate the development of
mucosal vaccines.
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