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Summary

� The documentation of biodiversity distribution through species range identification is crucial

for macroecology, biogeography, conservation, and restoration. However, for plants, species

range maps remain scarce and often inaccurate.
� We present a novel approach to map species ranges at a global scale, integrating polygon

mapping and species distribution modelling (SDM). We develop a polygon mapping algorithm

by considering distances and nestedness of occurrences. We further apply an SDM approach

considering multiple modelling algorithms, complexity levels, and pseudo-absence selections

to map the species at a high spatial resolution and intersect it with the generated polygons.
� We use this approach to construct range maps for all 1957 species of Fagales and Pinales

with data compilated from multiple sources. We construct high-resolution global species rich-

ness maps of these important plant clades, and document diversity hotspots for both clades in

southern and south-western China, Central America, and Borneo. We validate the approach

with two representative genera, Quercus and Pinus, using previously published coarser range

maps, and find good agreement.
� By efficiently producing high-resolution range maps, our mapping approach offers a new

tool in the field of macroecology for studying global species distribution patterns and support-

ing ongoing conservation efforts.

Introduction

Changes in climate (IPCC, 2019) and land use (Meyer et al.,
1994) rapidly alter environmental conditions and suitability for
species (Walther et al., 2002; Tittensor et al., 2014). As a
result, species extinction rates are up to hundreds of times
higher than historic background rates, making effective mea-
sures to protect the remaining biodiversity urgent (De Vos
et al., 2015; Pimm & Joppa, 2015). Such protective measures
rely on accurate knowledge of current species ranges, as well as
predictions of changes therein under future climatic scenarios
(Ara�ujo & Williams, 2000; Heller & Zavaleta, 2009; Bellard
et al., 2012). Knowledge on current species ranges provides
insight into the factors that shape these ranges (Wang et al.,
2010), which is crucial for the prediction of future change
(Heller & Zavaleta, 2009; Bellard et al., 2012). Furthermore,
by combining accurate species range maps with knowledge on
the geographical patterns of specific threats (e.g. climate

change, human activities), the conservation status of species
can be quantified (e.g. International Union for Conservation
of Nature (IUCN) Red List of Threatened Species; Bland
et al., 2015). Full documentation of species ranges is challeng-
ing, as the ecology of many species remains unknown or
poorly documented (Pimm et al., 2014), global distribution
information is often missing or incomplete (Wisz et al., 2008;
Duputi�e et al., 2014), and regional information is scattered
across diverse datasets and sources (Serra-Diaz et al., 2017).
Data collection is especially challenging for diverse taxa with
many (but poorly monitored) species, such as plants (Butchart
et al., 2005). As a result, plant species ranges are much less
documented compared with many animal clades, and existing
documentation is often restricted to specific regions or clades
(Miller et al., 2012). This lack of documentation limits the
study of global macroecological factors shaping plant diversity
and slows down the process of designing global conservation
priority settings (Miller et al., 2012; Bland et al., 2015).
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The recent sharp increase in freely accessible online data opens
the possibility for increased automation in the production of
global distribution maps (W€uest et al., 2020). For example, the
Global Biodiversity Information Facility (GBIF; http://www.gbif.
org/) is the largest database for species occurrence records (Beck
et al., 2014) and contains data from diverse sources, including
museum records, inventory campaigns, and citizen science pro-
jects such as iNaturalist (http://www.inaturalist.org/) and Les
Herbonautes (http://lesherbonautes.mnhn.fr/). Furthermore, an
increasing proportion of natural history collections are being digi-
tized and integrated into data networks (e.g. Botanical Informa-
tion and Ecology Network (BIEN); Maitner et al., 2018) and the
construction of regional atlases and datasets (e.g. Global Inventory
of Floras and Traits (GIFT); Weigelt et al., 2020) continues,
building up extensive records of (past) specimen occurrences,
national forest inventories, and species checklists. This digitization
process is ongoing and some of these datasets are far from being
complete, with urban regions or areas along roads more likely to
be surveyed than more remote or inaccessible areas (Kadmon
et al., 2004; Araujo & Guisan, 2006). Furthermore, the different
datasets are not integrated and available data formats vary. Never-
theless, these growing public databases are providing useful high-
quality data, which may be used to map species ranges, especially
when datasets are combined (Duputi�e et al., 2014). Given the
large amount of available data and the ongoing improvement in
the quantity and quality of these datasets over time, the genera-
tion of accurate and open-access range maps will benefit from the
development of an automated mapping pipeline.

Current estimates list over 380 000 species of vascular plants
(Cheek et al., 2020), which is far more than any other existing
group for which mapping efforts have been attempted. Because
mapping so many species at the global scale is challenging, pre-
vious mapping attempts have mainly focused on direct mapping
of species richness using statistical models (Kier et al., 2005;
Kreft & Jetz, 2007). Otherwise, the enormous challenge of
mapping individual species ranges has, so far, been approached
using methods in three categories (Graham & Hijmans, 2006;
Rocchini et al., 2011): (1) expertise-based mapping (e.g. Rahbek
& Graves, 2001); (2) mapping based on predictions derived
from species distribution modelling (SDM; e.g. Vasconcelos
et al., 2012); and (3) mapping based on polygons or hulls (con-
vex hulls or concave hulls) derived from occurrence records (e.g.
Morueta-Holme et al., 2013). Each of these methods has its
benefits and drawbacks. Expert-drawn range maps are usually
coarsely resolved, are limited to well-known taxa or regions,
often overestimate or underestimate distribution ranges (Gra-
ham & Hijmans, 2006; Hurlbert & Jetz, 2007), and are usually
time-consuming to create. SDM typically account for abiotic
conditions but not for historical dispersal and connectivity
(Guisan & Thuiller, 2005; Pollock et al., 2014). As a result,
their outcome represents the potential niche of a species rather
than the actual distribution range (Guisan & Thuiller, 2005;
Merow et al., 2017), which may include nonnative ranges. Poly-
gons around known observation points may underestimate the
range of a species if observations do not cover its range well
(Burgman & Fox, 2003) or overestimate it if unsuitable areas

among observation points are not masked out (Meyer et al.,
2017). For coarse-resolution (> 100 km) range maps, polygon-
mapping (e.g. Rodr�ıguez-Casal & L�opez-Pateiro, 2010; Hagen
et al., 2019) is useful. For instance, Sundaram et al. (2019)
mapped conifer assemblages in 100 km 9 100 km grid cells
across the globe using the a-hull approach. Applying the same
approach for 43 635 tree species, Xu et al. (2020) quantified
global patterns in tree diversity and found correlations between
(spatially varying) temperature changes since the Last Glacial
Maximum (LGM) and global diversity patterns such as species
turnover and nestedness. Mapping approaches can be improved
significantly by taking into account both general distribution
limits via polygon mapping and the suitability of local abiotic
conditions using SDM, thereby minimizing the limitations of
the individual approaches (Graham & Hijmans, 2006; Merow
et al., 2017; Di Febbraro et al., 2018).

In this study, we present an integrated mapping approach to
construct standardized global species range maps by combining
polygon mapping with SDM. We develop a new polygon map-
ping algorithm by introducing new parameters considering dis-
tances and nestedness of occurrences. We explore SDM features
related to modelling algorithm and complexity settings, and
pseudo-absence selection. We integrate maps from both algo-
rithms and take the intersection as the final species range map.
To validate the performance of our method, we integrate occur-
rence data from a large variety of sources and map the distribu-
tion of species from two major plant lineages: the orders of
Fagales and Pinales. Both are globally distributed (Govaerts &
Frodin, 1998; Yang et al., 2017), are locally dominant in a wide
range of ecosystems and environments (Manos & Stanford,
2001; Brodribb et al., 2012), and include both widely distributed
and rare or endemic species (Fragni�ere et al., 2015; Yang et al.,
2017). Moreover, these orders are well suited for the purpose of
our study, as occurrence data are relatively abundant. These two
clades are of high ecological and economic value and are often
the protagonists in ecological and evolutionary studies (e.g. Wang
& Ran, 2014; Xing et al., 2014; Xu et al., 2019), but high-
resolution distribution and richness maps are not yet available.
Improved global mapping of species in these clades would signifi-
cantly contribute to the macroecology and biogeography studies,
while improving the chances of successful in situ conservation
(Ferrier, 2002), and also supporting efforts to conserve genetic
diversity in viable ex situ populations (Huam�an et al., 2000).

Materials and Methods

The workflow includes five main parts (Fig. 1): data collection,
data cleaning, parameter optimization, mapping by integration
of SDM and polygons, and map validating. The working envi-
ronment is in R (R Core Team, 2013), and the scripts for data
cleaning, parameter optimization, and mapping are accessible
online (https://gitlab.ethz.ch/gdplants/gdplants/). This code can
be flexibly applied to any plant clade or region of interest. Illus-
trated here for Fagales and Pinales, the species range and richness
maps can be efficiently constructed for other clades following the
data science workflow.
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Data collection and merging

We retrieved occurrence information for Fagales (including Betu-
laceae, Casuarinaceae, Fagaceae, Juglandaceae, Myricaceae,
Nothofagaceae, and Ticodendraceae families) and Pinales (in-
cluding Araucariaceae, Cephalotaxaceae, Cupressaceae, Phyllo-
cladaceae, Pinaceae, Podocarpaceae, Sciadopityaceae, and
Taxaceae families) from 48 databases (see Supporting Informa-
tion Table S1 for details). To reduce the risk of underestimation
of species ranges in regions for which observational data are
scarce, we included not only text-based datasets but also existing
distribution maps, which were either already available in the form
of raster or shape files or were digitized by our team. The 48
databases used in this study consist of online data sources, journal

articles, and books containing regional checklists, expert-drawn
maps, and occurrence points. For two large online data sources,
specific packages in the R environment are available: we used the
RGBIF package (Chamberlain et al., 2017) to access the GBIF and
the BIEN package (Maitner et al., 2018) for the BIEN (data down-
loaded in October 2018). We retrieved data from all other
sources manually. We converted all occurrence data into decimal
longitude/latitude format in the World Geodetic System 1984
(EPSG 4326).

Data cleaning

To account for synonymous, unresolved, misspelled, or wrong
species names and wrong or missing family names, we

Fig. 1 Diagram of the workflow of data
collection, data cleaning, parameter
optimization, map construction, and map
validation.
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standardized, corrected, or added names, following the Catalogue
of Life (https://www.catalogueoflife.org/; accessed in April 2021).
We kept only records with standardized species names, and we
removed all duplicate records. We attributed all subspecies to
species, and we removed hybrid species. To account for the
records of cultivated species or records that were assigned to
incorrect coordinates, we removed records falling within a 10 km
radius around country capitals, within a 5 km radius around
country centres, within a 1 km radius around biodiversity institu-
tions, within a 1° radius around the GBIF headquarters (Copen-
hagen, Denmark), and within a 0.5° radius around longitudinal/
latitudinal coordinates 0,0 using the R-package COORDINATE-
CLEANER (Zizka et al., 2019). We evaluated whether observations
were made in the species’ native range using the regional-level
distribution database, Royal Botanic Gardens, Kew, UK
(POWO, 2019; accessed in February 2019), which includes most
families of Fagales (except Juglandaceae and Myricaceae) and all
Pinales families. For each species, we generated a 2° buffer
around the Kew distribution range and removed records outside
this buffer. We manually checked species for which the cleaning
process resulted in more than 50% of records being deleted, and
we manually retrieved erroneous treatments. As uneven distribu-
tion of occurrence records may increase the uncertainty on both
the shapes and connectedness of hulls, and may cause underesti-
mation of species ranges in regions with sparse occurrences due
to the deviation of weight in SDM mapping, for species with > 50
occurrences, we removed occurrences closer to each other than
0.1° using the ‘desaggregation’ function in the R-package
ECOSPAT (Di Cola et al., 2017).

Species distribution modelling

For SDM, we used nine environmental variables related to tem-
perature, precipitation, and soil conditions as predictive variables.
Climate variables included average annual temperature, aridity
(annual precipitation divided by annual potential evapotranspira-
tion), frost change frequency, precipitation in the driest quarter,
mean diurnal temperature range, and precipitation seasonality.
These factors represent basic resource requirements, metabolic
modifiers, or disturbance constraints to plant growth and sur-
vival. We extracted these climate variables from Climatologies at
High resolution for the Earth’s Land Surface Areas (CHELSA v.2.1;
Karger et al., 2017). We downloaded the soil variables organic
carbon content, pH, and clay content from SoilGrids (Hengl
et al., 2014, 2017; http://soilgrids.org). We extracted all variables
at a 30 arc-s resolution and converted them to the World Geode-
tic System 1984 (EPSG 4326) projection. The total set of nine
variables has a rather low multicollinearity (Pearson’s r < |0.78|,
highest correlation is between precipitation in the driest quarter
and precipitation seasonality).

We considered four algorithms for modelling: generalized lin-
ear models (GLMs; Nelder & Wedderburn, 1972), generalized
additive models (GAMs; Hastie & Tibshirani, 1990), generalized
boosting machines (GBMs; Friedman, 2001), and random forest
(RF) models (Breiman, 2001). For each algorithm, we imple-
mented three complexity levels with regard to model

formulation, resulting in 12 different models (Brun et al., 2020).
We ran the SDM analyses in R using the packages GAM (Hastie,
2018), RANDOMFOREST (Liaw &Wiener, 2002), and GBM (Green-
well et al., 2018). The number of predictors we considered per
species was constrained by the number of available occurrence
data, such that the number of observations available was at least
10 times the number of predictors used (Harrell Jr et al., 1996).
If the final number of presences was between 20 and 30, we fitted
bivariate models based only on the mean annual temperature and
aridity; if the number of presences was between 30 and 40, we
also added the third most important predictor, organic carbon
content; if the number of presences was between 40 and 90, with
every increase of 10 occurrences we added frost change frequency,
precipitation in the driest quarter, soil pH, mean diurnal temper-
ature range, and precipitation seasonality one after another to the
predictor set. If 90 or more filtered presence observations were
available, we considered the full predictor set. For species with
fewer than 20 occurrence records, we did not execute the SDM
mapping. For each species, we projected the environmental suit-
ability across the study area based on the six models achieving the
highest scores in the true skill statistic (TSS; Allouche et al.,
2006), as evaluated by a three-fold random cross-validation. We
converted model-based projections to binary presence/absence
using the threshold that maximized TSS. We then summed the
binary projections and assumed the species to be present in areas
where all six models predicted presence. We generated the SDM
maps at 1 km resolution.

To determine the most appropriate pseudo-absence sampling
strategies and complexity levels, we explored 192 ensembles of
the combination of four algorithms (GLM, GAM, GBM, and
RF), six complexity levels, and seven sampling strategies to fit the
SDM. We applied the parameterization following the method of
Brun et al. (2020). Initially, we set up 24 modelling strategies by
combining six levels of complexity in each of the four models: (1)
in GLM, we set the polynomial degree to 1, 2, 3, 4, 5, or 6; (2)
in GAM, we set the degrees of freedom to 1, 2, 3, 5, 10, or 15;
(3) in GBM, we set the maximum number of trees to 100, 200,
300, 500, 1000, or 10 000; and (4) in RF, we the set the mini-
mum node size to 1000, 500, 20, 10, 3, or 1.

The seven different pseudo-absence strategies were: random,
target-group, geographic, density, geographically stratified, envi-
ronmentally stratified, and environmentally semi-stratified (see
Notes S1 for details). At the exploration stage, we used each of
these sampling strategies to draw 8000 pseudo-absences and
complemented those with 2000 points sampled with the
environmentally-stratified approach. Adding environmentally-
stratified pseudo-absences guaranteed that the entire environmen-
tal space was considered for model training, and that uninformed
model extrapolations were avoided. We combined presences and
pseudo-absences of each species into a presence–absence dataset.
For all presences and for all pseudo-absence sampling methods,
we ensured that the final points selected were at least 5 arc-min
apart from each other to avoid spatial autocorrelation and bias
from overly dense sampling.

We used Kew’s regional-level distribution maps as a reference,
randomly drawing 2000 presence points (inside the distribution
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ranges) and 10 000 absence points (as described earlier), which
we used as independent validation data to evaluate the various
parameterization settings. We assessed the results of different
ensembles of pseudo-absence strategies and modelling strategies
based on TSS values. We selected the pseudo-absence strategy
with the highest mean TSS value among the 24 modelling meth-
ods (the geographically stratified approach; see Notes S2;
Table S6; Figs S1, S2 for details). Then, for each of the four mod-
elling methods, we selected the three complexity levels with the
highest TSS values under the selected pseudo-absence strategy for
all species: a polynomial degree of 1, 2, or 3 for GLM, degrees of
freedom of 2, 3, or 5 for GAM, a maximum number of trees of
500, 1000, or 10 000 for GBM, and a minimum node size of 10,
3, or 1 for RF. For each species, we applied these 12 modelling
strategies for the SDM mapping.

Generating species geographic boundaries

We developed a polygon (hull) range mapping algorithm for the
generation of species ranges from species occurrence data. We
defined six main bioregions: Nearctic, Palearctic, Afrotropic,
Indomalaya, Australasia, and Neotropic (Antarctica and Oceania
were excluded from this analysis; Fig. S3; The Nature Conser-
vancy, 2009). For rare species with fewer than four occurrences,
we created a polygon by simply drawing a 0.5° buffer around the
occurrences. For all other species, the algorithm identified cluster
points (an occurrence or occurrences within a certain distance)
and removed outliers (occurrence(s) isolated from cluster points).
Within each bioregion, the cluster points were grouped into clus-
ter(s) based on the k-means algorithm, and polygons (or a point
buffer) were drawn surrounding these clusters. We then assem-
bled the multiple polygons in each bioregion into a single shape-
file per species, which we then converted to a raster. To define a
cluster point and an outlier, we defined two parameters: (1) the
minimum number of points needed to be considered a cluster
(minimum cluster size); and (2) the minimum distance for a
point or points (depending on cluster size) to be considered as an
outlier (outlier distance). To test the parameters, we randomly
sampled 200 species from all species as a subset. Using this sub-
set, we explored the parameters by setting: (1) minimum cluster
size to 1, 2, 3, 5, 7, or 9; and (2) outlier distance to 1°, 2°, 3°, 5°,
or 7°. We used these 30 parameter sets to generate different poly-
gon maps, and overlaid these polygons with the maps from SDM
mapping for each species. We then calculated two indices to eval-
uate the results of this exploration: (1) the number of species with
polygon maps generated; and (2) the fraction of occurrences
falling within the combined map (overlap between range poly-
gons and SDM).

Nearly half of the species had fewer than 20 occurrences whose
ranges could not be further optimized by SDM mapping. To bal-
ance potential overestimation by a larger distance and underesti-
mation by a smaller distance, and to reduce potential outliers, for
the final mapping we considered a cluster to be a group of two or
more occurrences (minimum cluster size = 2), and an outlier to
be a single occurrence that is at least 5° away from a cluster (out-
lier distance = 5°) (see results for details).

Producing species distribution maps and lineage richness
maps, and evaluation

We selected the best-performing parameter combination as the
optimal combination. For species with > 20 occurrences, we
obtained the final distribution map by determining the overlap
between the polygon map and the SDM map. For species with
fewer than 20 occurrences, the final distribution map was equal
to the polygon map. Finally, we generated lineage richness maps
by stacking the final species distribution maps.

We evaluated species distribution maps and lineage richness
maps separately. We manually checked all distribution maps
using resources including Flora of China (eFloras, 2020), The
PLANTS Database of the US Department of Agriculture (USDA
& NRCS, 2020), PlantZAfrica (http://pza.sanbi.org/), Flora
Malesiana (http://portal.cybertaxonomy.org/flora-malesiana/)
and Plants of the World Online of Kew (POWO, 2019). We used
four levels to assess the consensus: (1) total mismatch; (2) similar-
ity between our maps and the references but with a large area
missing or additional in either; (3) similarity between our maps
and the references but with a small area missing or additional in
either; and (4) complete match (see Notes S3 for details).

As there are available regional distribution maps for Quercus
(Xu et al., 2019) and coarse-resolution maps for Pinus (Critch-
field & Little, 1966), we evaluated the richness maps of the two
genera by comparing our high-resolution richness maps of Quer-
cus (431 species) and Pinus (110 species) with previously pub-
lished richness maps separately. We determined the similarity by
calculating the correlation using Spearman’s q.

Results

Occurrence data collection

We collected 5934 880 valid occurrence records from 48
databases (Table S1) for the 15 families in the two lineages,
including 6065 different species names. After correcting species
names using the Catalogue of Life (2021) and data cleaning, we
retained 1932 species, covering all families and genera of Fagales
and Pinales (Table S2). There were 1318 species with > 20
records, 84 species (e.g. Quercus robur, Pinus sylvestris, Juniperus
communis) of which had more than 10 000 records (Pinus
halepensis had the largest number of records: 242 561). There
were 402 species with 4–20 records, which was insufficient for
SDM; and 208 rare species with fewer than four records, which
was insufficient for polygon mapping (Fig. 2; Table S3). For 84
species, > 50% of the records were removed during data cleaning
(Table S3). By manually checking these species, we determined
that most of them represent widely cultivated or rare species with
only few occurrence records available, implying that the applied
cleaning procedures were justified. All occurrence records of three
species, Quercus bawanglingensis, Quercus obconicus, and Betula
glandulosa, were mistakenly removed and we manually retained
these records. Specifically, for Fagales, we originally collected
3134 710 records. Correcting for species names and occurrence
data cleaning left us a dataset encompassing 2372 272 records,
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1326 (98.1%) of the 1351 (excluding hybrid species) Fagales
species of the Catalogue of Life (Tables S2–S4). For Pinales, we
originally collected 2800 170 records. After the final data clean-
ing, the dataset encompassed 2246 672 records with all 606
Pinales species (except hybrid species) of the Catalogue of Life
(Tables S2–S4). For the missing 25 species, we searched the liter-
ature for their occurrence information and added them into the
database (Table S5).

Performance of species distribution models

From the seven pseudo-absence generating strategies, the geo-
graphically stratified strategy scored the highest mean TSS

(0.580), followed by the random strategy (0.579), the environ-
mentally stratified strategy (0.578), the environmentally semi-
stratified strategy (0.571) and the target-group (0.567 with all
species as the target group, and 0.546 with the family as the target
group). The geographic strategy and the density strategy yielded
low performance, with mean TSS values of 0.445 and 0.362,
respectively (Table S6). The difference among the five strategies
with the highest TSS values was not significant (P-value = 0.99).
To avoid the uncertainties potentially introduced by random
sampling, we selected the geographically stratified strategy as the
pseudo-absence generating strategy for all SDM. The assessment
of the different SDM methods and complexity levels yielded high
performance for low complexity GLMs (polynomial degree = 1,

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Density maps of occurrence records (log-transformed) collected for Fagales (a) and Pinales (b). Sampling bias for Fagales (c) and Pinales species (d),
where each block shows the number of species with specific numbers (log-transformed) of validated records collected. Sampling bias between different
bioregions for Fagales (e) and Pinales (f), where each block shows the number of species with specific numbers of validated records collected.
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2, or 3) and GAMs (degrees of freedom = 2, 3, or 5), and for
high complexity GBMs (maximum number of trees = 500, 1000,
or 10 000) and RF models (minimum node size = 10, 3, or 1)
(Table S6). All selected models except those from medium and
complex GLMs (with degree of the polynomial = 2 and 3) had
mean TSS scores above 0.6. The mean TSS value of the 12
models under the geographically stratified strategy was 0.641
(Table S6).

Parameter optimization of polygon mapping

In the polygon parameter exploration, the 30 possible parameter
combinations resulted in different numbers of species for which
polygon maps could be generated and a different fraction of
occurrences falling within the combined map (Table S7). The
parameter combinations of outlier distance and minimum cluster
size yielding the best performances regarding the number of
species for which polygon maps could be generated were: (7°, 1),
(5°, 1), (7°, 2), (3°, 1), (5°, 2), and (2°, 1) (the number of maps
generated ranges from 198 to 188 for 200 species, Table S7).
Among these parameter combinations, the fraction of occur-
rences falling inside the combined area did not differ significantly
(0.87 on average, P-value = 0.969, Table S7).

Species range maps and evaluation

In total, we generated 1957 species range maps, including 1141
maps based on combining polygon and SDM maps, 549 maps

generated only from polygons, and 267 maps using point buffers.
The maps based on combinations of polygons and SDM covered
78% (median value) of the original polygon maps (Table S8),
indicating that SDM results generally modified the polygon maps
by removing regions of unsuitable habitat. We manually
inspected the 1690 combined or polygon maps by comparing
them to the references, and 93% of the maps showed a good
match (with a rating of level 3 or level 4, Table S9).

We compared the resulting richness maps with previously pub-
lished richness maps and found they matched similar patterns
(Figs 3, S4). We compared Quercus richness maps against those
presented by Xu et al. (2019) and found a similar pattern (Spear-
man’s q = 0.83) with no significant difference (t-value = 0.19,
P-values = 0.84), and in 135 out of 180 regions the difference in
richness between our maps and those of Xu et al. was < 6. This
generally indicates a high level of agreement between the two sets
of maps. Our approach produced more species in eastern North
America, western Europe, and eastern and south-eastern Asia,
but fewer species in western North America, Central America,
eastern Europe, north-eastern Asia, and Himalayan regions. We
found that the regions with the highest species diversity are
located in south-central China, eastern North America, and Cen-
tral America, where the difference between our richness map and
that of Xu et al. (2019) was also largest (Fig. 3a,c,e). Comparing
our richness maps with those generated by the maps of Critch-
field & Little (1966), we found a similar pattern (Spearman’s
q = 0.73), with the maps produced by our pipeline generating
significantly more species (t-value = 16.28, P-values < 0.01). In
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most regions of the world, our richness map had more species,
and the largest richness difference was found in Central America,
where there is a hotspot of Pinus. In some regions in eastern and
north-eastern Asia, our richness map generated fewer species
(Fig. 3b,d,f).

Species richness patterns

We found that Fagales and Pinales have similar distribution pat-
terns (Spearman’s q = 0.77). They are both distributed globally
and have their main biodiversity centre in southern China
(Fig. 4). For Fagales, secondary biodiversity centres are located in
south-eastern North America, Central America, and Borneo. For
Pinales, additional biodiversity centres are located along the west
coast of North America, and in Central America, central Japan
and New Caledonia (Fig. 4). Both Fagales and Pinales follow a
latitudinal diversity gradient, with a peak in richness at around
30°N. Family-level distribution maps are available in Notes S4;
Fig. S5.

Discussion

Species range maps are central for fundamental research in
macroecology and biogeography (Rocchini et al., 2011), as well
as for conservation and restoration programmes (Ferrier, 2002;
Miller et al., 2012). However, detailed distribution maps are still

lacking for most vascular plant species at a global scale. Previous
efforts to map plant species ranges and diversity properties were
limited to a few taxa (e.g. Pinus; Critchfield & Little, 1966), a
specific geographic extent (e.g. China; Wang et al., 2010), or used
often simple polygon mapping at coarser resolution when applied
globally (e.g. 1°, Guo et al., 2020). Integration of different
datasets including the increasing online databases (as listed in
Table S1; Serra-Diaz et al., 2017) opens possibilities for novel
data science approaches to map plants globally. Here, we demon-
strate that based on global database compilations, our compre-
hensive pipeline can transform the scattered distribution
information into global distribution maps in batch-mode pro-
cessing (Fig. 1). Notably, comparing to previous approaches, our
algorithm can automatically identify and map ranges of different
populations for species with disjunct distribution, by appropriate
parameter settings, as well as optional filters such as bioregion
partitions and environmental associations. Moreover, we propose
a comprehensive SDM mapping algorithm composed of four
modelling methods of differing complexity and seven pseudo-
absence sampling strategies. Our open pipeline helps to map dis-
tribution ranges more accurately and allows to define settings that
are specific to the characteristics of the target clades. It can thus
be expected that our pipeline will boost the availability of species
range maps for future research and conservation planning. Later,
we discuss elements of the pipeline that may help users of
the pipeline to optimize their applications, including data

(a)

(b)

Fig. 4 Biodiversity distribution maps of the
species richness of Fagales (a) and Pinales (b)
mapped as 1 km 9 1 km grid cells.
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preparation and cleaning steps, and the core process of mapping
species distributions.

Biodiversity patterns of Fagales and Pinales

In this study, for the first time, we present high-resolution species
richness maps for Fagales and Pinales, as well as for subordinate
families (Figs 4, S5). Our tests against independent, regional dis-
tribution maps indicate that the species richness distributions for
Pinus and Quercus were consistent with previous coarser mapping
approaches (Fig. 3), demonstrating the power of our approach
for future mapping of plant families at a comparably high spatial
resolution. With the maps generated in this study, we found a
congruent pattern between the two clades, especially the biodiver-
sity in south-(west)ern China and Central America (Fig. 4). Shel-
ter and cradle theory (L�opez-Pujol et al., 2011; Hipp et al., 2018;
Sosa et al., 2018; Sundaram et al., 2019), climate and environ-
ment heterogeneity (Qian et al., 2007; Noss et al., 2015; Dakhil
et al., 2021; also see Notes S5; Table S10 for a primary analysis),
and deep-history tectonic events (Manos & Stanford, 2001;
Svenning, 2003; Bouchal et al., 2014; Xing et al., 2014; Xing &
Ree, 2017; Zheng et al., 2018; Zhang et al., 2021) have been pro-
posed to explain the biodiversity hotspots and related patterns.
However, due to the different evolutionary history of the two
clades, further explorations are still needed to reveal the common
or unique mechanisms behind these congruent patterns. Never-
theless, our visualization and mapping of species richness patterns
provides insights for further studies of those clades.

Data quality and mapping validation

We have acquired a unique collection of occurrence data from
various data sources (Fig. 2; Table S1) to produce a compilation
of species range maps for two important temperate tree clades.
Among the compiled occurrences, about 9% were removed due
to invalid species names and afterwards about 8% were removed
due to incorrect distributions (Tables S3, S4), indicating the
importance of data cleaning. The R-package COORDINATE-
CLEANER helped us to clean about 20% of the invalid occurrences,
removing dubious records without the need of a distribution ref-
erence checklist (e.g. species in Juglandaceae and Myricaceae),
providing a useful tool for data cleaning. After the data cleaning
and mapping steps, the validation with Quercus and Pinus indi-
cated overall good performance of our mapping approach at a
large scale. At smaller scales, more discrepancies were observed;
for instance, the single data source of Critchfield & Little (1966)
led to a smaller range area in most regions (Fig. 3b,d,f). Mean-
while, mapping bias may also introduce differences between the
two sets of maps at small scales; for example, in northern Asia,
the Pinus species in our maps have smaller distribution ranges
(Fig. 3b,d,f), represented primarily by two species, Pinus pumila
and Pinus sibirica. These two species are widely distributed across
north-central Asia and north-eastern Asia, respectively. However,
their ranges created by polygon mapping are small and scattered
due to unevenness and a deficiency of occurrences (Fig. 2; Meyer
et al., 2016). In such cases of data deficiency, adjusting

parameters manually could help reduce this problem to some
extent. Given the lack of high-resolution mapping of the two
clades, it is impossible to quantitively evaluate each of the species
ranges at a fine scale, but the evaluation of the species range maps
demonstrates that overall robust patterns are recovered (Fig. 3;
Table S9).

Parameter optimization

The development of mapping pipelines requires an optimization
procedure to increase precision (Burgman & Fox, 2003; Che-
faoui & Lobo, 2008; Barbet-Massin et al., 2012; Li & Wang,
2013; Merow et al., 2014; Meyer et al., 2017), which guides the
selection of optimal parameters. In particular, the complexity of
SDM algorithms may strongly influence the results of suitability
maps (Iturbide et al., 2015; Merow et al., 2017; Brun et al.,
2020). Brun et al., (2020) found that intermediate parameteriza-
tion complexity performed best, and model performance peaked
at 10–11 variables. In our study, we observed that intermediate
parameterization complexity in GLM (polynomial degree = 2)
and GAM (degree of freedom = 5) had higher TSS values, while
complex parameterization in GBM (maximum number of trees =
10 000) and RF (minimum node size = 1) scored higher
(Table S6). Furthermore, the output of SDM is influenced by
selected pseudo-absences (Iturbide et al., 2015), as absences
provide a contrast to presence data to indicate potentially unsuit-
able conditions (VanDerWal et al., 2009). Different strategies
were shown to result in different model performances (Table S6;
Senay et al., 2013). In our parameter optimization, we found that
the three environmentally or geographically-stratified strategies
and the random strategy all generally performed well at the global
scale (Table S6). However, in a study on oak distribution in
Europe, random sampling underestimated areas of high suitabil-
ity because false absences introduced uncertainty, especially when
occurrences failed to represent the realized niche (Chefaoui &
Lobo, 2008; Iturbide et al., 2015). To reduce false absences, envi-
ronmentally or geographically weighted strategies have been pro-
posed to generate pseudo-absences, which have proved to have
better performance in classification and machine learning algo-
rithms (Barbet-Massin et al., 2012), as was applied in this study.

In contrast to the large number of studies on SDM, polygon
(hull) mapping methods are generally applied in simple form and
their optimization is not explored. A common parameter is to
determine if the polygons around the occurrence points are con-
nected (Bivand & Rundel, 2017). In the a-hull method, an addi-
tional parameter a is used to determine the disk radius
(Rodr�ıguez-Casal & L�opez-Pateiro, 2010). Since hull methods
are regularly criticized for their tendency to overestimate
(Burgman & Fox, 2003; Graham & Hijmans, 2006; Meyer et al.,
2017) due to their simple parameterization, exploration of new
parameters and their optimization are useful, especially for
species with too few occurrences to create a SDM map. Here, we
used a more complex approach than previously done in hull map-
ping methods by introducing two parameters: outlier distance
and minimum size of a cluster. By exploring these parameters, we
conclude that a large outlier distance may result in overestimated
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ranges, as outliers are erroneously included in the range or a cor-
ridor is formed connecting the clusters, while a small outlier dis-
tance might generate more separated polygons that lead to a
scattered distribution pattern, underestimating the real distribu-
tion range of a species. Further, a large value for the minimum
size of a cluster may mistakenly remove the occurrences from a
disjunct small population, while a small value may fail to remove
outliers. Therefore, the optimization of these parameters was
important in generating accurate maps. Since the majority of our
species have relatively few occurrences (Fig. 2; Table S3) and the
datasets were cleaned thoroughly, we ended up using an outlier
distance of 5° and a small minimum cluster size of two, thereby
keeping a large number of occurrence points (Table S7). How-
ever, for species with a large number of occurrences, this parame-
ter set sometimes failed to remove outliers. For example, for
Abies balsamea, a minimum cluster size set to < 7 would produce
a polygon that includes the outliers in the western coast outside
its natural range in eastern North America (POWO, 2019). Fil-
tering based on environmental layers (e.g. elevation or tempera-
ture) can help remove unsuitable area in polygons, and especially
in this study, polygon deficiency was generally solved after over-
laying the SDM maps, which illustrates that combining the two
mapping approaches enabled us to map species ranges more accu-
rately compared with using individual approaches only.

Challenges and future improvements

Besides methodological limitations, our mapping approach is
impacted by incompleteness and uncertainties in the occurrence
data. A first uncertainty is associated with the cleaning of pres-
ence data, which might not entirely remove problematic records
(Zizka et al., 2020). In particular, the records of nonnative
species, especially those close to native ranges, may not always be
successfully cleaned, which could cause overestimation of the
species range. For instance, Larix decidua is native to central
Europe and surrounding regions (POWO, 2019), but due to its
widespread cultivation, the surrounding North Sea regions are
also included in our reconstructed map.

A second uncertainty is associated with a lack of records. For
instance, in this study, the accuracy of species distribution in Bor-
neo should be further improved. Though it is widely accepted
that Indonesia is a hotspot of plant biodiversity, the number of
occurrence records collected there was relatively low, even after
searching for datasets in several languages (Fig. 2; this data defi-
ciency is also described by Collen et al. (2008); Raes et al. (2009)
and Cahyaningsih et al. (2021)), which may have led to underes-
timated ranges and species numbers in this region.

Third, our approach is dependent on the quality of the inde-
pendent reference checklist used for data cleaning. In Kew’s
regional-level distribution database, mainland China is only
divided into nine regions: China North-Central, China South-
Central, China Southeast, Hainan, Inner Mongolia, Manchuria,
Qinghai, Tibet, and Xinjiang. North-Central China, Inner Mon-
golia, and South-Central China in particular cover extensive areas
with high intra-regional environmental variability (Ren et al.,
2007). In contrast, Kew’s database divides North and Central

America into much smaller regions, leading to more accurate val-
idation of distribution maps in these regions. Therefore, a good
reference checklist for data cleaning is important for enhancing
map quality at finer scales. When working at smaller spatial
scales, finer regional checklists are recommended to remove out-
liers.

While most maps are accurate, we identified some artefacts,
particularly in maps of tropical and subtropical species, where
ranges are overestimated or underestimated, or where artefactual
linear range borders are observed, especially in Lithocarpus and
Quercus. We expect that the main reason for these artefacts is
insufficient data for rare and narrow-ranged species. Since our
pipeline is automated and therefore easily applicable to data
updates, future versions of the presented maps will increase in
accuracy as data coverage increases. Solutions for supplementing
and completing datasets might come from national forest inven-
tories (Serra-Diaz et al., 2017) and citizen science projects (e.g.
iNatualist and eBird; Bradter et al., 2018), and a data merging
workflow, such as the one developed in this study, could be used
to add these data to already existing datasets. Furthermore,
although our pipeline could reduce uncertainty, an improvement
in public databases is still necessary and requires the support of
taxonomists and improved AI identification technology.

Conclusion

In conclusion, our study highlights the power of combining mul-
tiple occurrence and range datasets, as well as the crucial impor-
tance of improved data cleaning methods and the collection of
additional data through innovative approaches in biodiversity
science (e.g. citizen science projects and online observation
reporting), for the global mapping of species distribution ranges.
The maps generated here are provided to the scientific commu-
nity open access, and future efforts will include expanding the
mapping to more families and regularly updating existing maps
as more data become available. The mapping approach developed
here will further the field of macroecology and the study of global
distribution patterns and may significantly aid future conserva-
tion efforts.
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