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Water regulates the residence time of
Benzamidine in Trypsin

Narjes Ansari 1, Valerio Rizzi 1 & Michele Parrinello 1

The process of ligand-protein unbinding is crucial in biophysics. Water is an
essential part of any biological system and yet, many aspects of its role remain
elusive. Here, we simulate with state-of-the-art enhanced sampling techniques
the binding of Benzamidine to Trypsin which is a much studied and paradig-
matic ligand-protein system. We use machine learning methods to determine
efficient collective coordinates for the complex non-local network of water.
These coordinates are used to perform On-the-fly Probability Enhanced Sam-
pling simulations, which we adapt to calculate also the ligand residence time.
Our results, both static and dynamic, are in good agreementwith experiments.
We find that the presence of a water molecule located at the bottom of the
binding pocket allows via a network of hydrogen bonds the ligand to be
released into the solution. On a finer scale, even when unbinding is allowed,
another water molecule further modulates the exit time.

The process of ligand-protein unbinding is crucial in biophysics and
its full understanding would enhance not only our knowledge but
also benefit the design of new drugs. In particular, two quantities are
of great relevance, the ligand binding free energy and the inverse of
the residence time koff1. Being able to compute reliably these two
quantities would be of great help. Here we describe a strategy that
makes it possible to calculate accurately both quantities. We
demonstrate this assertion with a state-of-the-art simulation of the
Trypsin-Benzamidine system2–13 and we find that the unbinding pro-
cess can be more complex than what one could have anticipated.
Although Trypsin-Benzamidine is one of the simplest cases of
protein-ligand systems, high-resolution crystallographic experi-
ments have recently demonstrated the presence of an extensive
water structure in the binding cavity14. Our study reveals that water
has not only a structural role but a dynamical one, since it regulates
the unbinding process via a complex rearrangement of hydrogen
bonds (HBs). In particular, the presence of a water molecule at a
specific position in the binding cavity allows the unbinding process
to take place. As the ligand begins to leave its binding pose, the
number of watermolecules in the binding cavity increases, leading to
a finer regulation in which water determines two possible escape
pathways with a koff differing by one order of magnitude.

Several technical advances have made this study possible.
Ligand unbinding is a rare event that takes place on a timescale of

milliseconds and thus its study requires the use of an enhanced
sampling method. Here, we profit from the flexibility and efficiency
of the On-the-fly Probability Enhanced Sampling (OPES) method15,
that is the latest evolution of Metadynamics16,17. Like umbrella
sampling18 and other enhanced sampling methods19, OPES is based
on the use of a set of collective variables (CVs) that are functions s(R)
of the atomic coordinates R and describe the slow modes of the
system. A good choice of s(R) is essential to obtain converged results
in an affordable time. To determine good CVs we use two machine-
learning-based tools that we recently developed, Deep Linear Dis-
criminant Analysis (Deep-LDA)20 and Deep Time-lagged Independent
Component Analysis (Deep-TICA)21. In building these CVs, we shall
pay great attention to the role of water and make use of the experi-
ence gained in ref. 22.

Standard OPES is very efficient in calculating static properties
such as binding free energies, but, in doing so, it alters the natural
dynamics of the system so that a sensitive quantity like koff cannot be
easily extracted. Nevertheless, it has been pointed out that if an
enhanced sampling method can be engineered such that no bias is
added to the transition region, the value of koff can still be
computed23–27. Here we show that by an appropriate setting of the
input parameters, OPES can be made to satisfy this condition. We call
this approach OPES flooding (OPESf)

28 since it is inspired by the
flooding approach26 and use it to calculate the ligand residence time.
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Results
Enhanced sampling technique for estimating free ener-
gies: OPES
To accelerate the occurrence of binding and unbinding events, we use
OPES15. This method allows the system to overcome kinetic barriers by
transforming the original CV probability distribution P(s) into a
smoother and thus simpler to sample one Ptg(s). In the variant of OPES
that we use here, we transform the s probability distribution

PðsÞ=
R

δðs�sðRÞÞe�βV ðRÞdR
Z , where β = 1/kBT is the inverse temperature, V(R)

the interaction potential and Z = ∫e−βV(R)dR the partition function, into
the smoother well-tempered distribution Ptg(s)∝ [P(s)]1/γ 17, where the
parameter γ > 1 regulates the broadening of the target distribution. In
standard metadynamics this transformation is achieved by iteratively
building a bias potential V(s), while in OPES one instead reconstructs
the probability distribution P(s) on-the-fly. At iteration step n, the
probability distribution Pn(s) is estimated as

PnðsÞ=
Pn

k wkGðs, skÞPn
k wk

ð1Þ

whereG(s, sk) aremultivariate Gaussian kernels evaluated at every step
k, the weightswk = e

βVk�1ðsk Þ are computed from the bias at step k − 1. In
turn, the bias is

VnðsÞ= 1� 1
γ

� �
1
β
log

PnðsÞ
Zn

+ ϵ
� �

ð2Þ

where Zn is a factor that measures the configuration space thus far
explored and ϵ is a very important parameter that controls the max-
imum bias that can be deposited in the system.

Machine learning-based CVs: Deep-LDA and Deep-TICA
As in our previous work22, we use the machine learning-based Deep-
LDA method20 to design effective CVs to be used in conjunction with
OPES. The method is based on the time-honored Linear Discriminant
Analysis technique29 employed in classification applications. Our aim is
to build a CV that is able to distinguish between two sets of data. In our
case, data come fromunbiased simulations of the system in the bound
(B) and unbound (U) states.

In standard LDA, one optimizes Fisher’s ratio wTSbw
wTSww

to obtain the
linear combination s(R) =wTd(R) of descriptors d(R) that best sepa-
rates the two states. Fisher’s ratio is written in terms of the scatter
matrix Sb = μB � μU

� �
μB � μU

� �T and the within matrix Sw = SB + SU,
where μB,μU indicate the average descriptors values and SB, SU the
descriptors variance matrices in the two states. The vector w that
maximizes this ratio is the direction that optimally discriminates the
states and provides the best-separated projection of the data in the
one-dimensional s space30.

In Deep-LDA, the set of Nd descriptors d is fed into a neural net-
work (NN) that is trained by applying the LDA criterion to the last
hidden layer h of the network. In analogy with LDA, a projection of the
Nh components of the last hidden layer produces the Deep-LDA CV
s =wTh. ThisCV, being by construction a non-linear combinationof the
original input descriptors d, is more expressive than a simple linear
combination and has been successfully applied to solve a number of
problems22,31,32. As s tends to produce sharp distributions, we apply the
cubic transformation sw = s + s3 22,33 to make the CV more easily
applicable to enhanced simulations.

While often successful in driving a system forth and back
between different states, a Deep-LDA CV does not encode any
information on the transition state. This information could have
been obtained if one had access to a long dynamical trajectory in
whichmany state-to-state transitions did occur. In this case, a way
of building a good CV, would have been to use the Time-lagged

Independent Component Analysis34,35, in which one looks for the
most slowly decorrelating modes. These slow modes can be
found using the variational principle36. If the modes are expres-
sed as a linear combination of descriptors, the variational prin-
ciple leads to a generalized eigenvalue equation. As in Deep-LDA,
one can apply TICA not only to a linear combination of descrip-
tors but also to the last hidden layer of a NN. This greatly
improves the variational flexibility of the solution and thus its
quality. In its original formulation, this approach was meant to be
applied to unbiased trajectories. However, McCarty and
Parrinello37 using a linear approach and later Bonati et al.21 using a
non-linear one (Deep-TICA) have shown how to extract useful CVs
from biased simulations. The resulting Deep-TICA eigenfunctions
encode the slowmodes of the biased simulation used for training.
Here, we are going to apply Deep-TICA to the set ofNd descriptors
on a converged OPES trajectory where the Deep-LDA CV was
biased.

Enhanced sampling technique for estimating residence times:
OPES flooding
As discussed in the introduction, to calculate rates from a biased
simulations no biasmust be deposited in the transition region. In such
a case, the physical residence time t is related to the physical simula-
tion time tMD by23,24

t = heβV ðsÞiV tMD ð3Þ

where V(s) is the instantaneous bias potential and the acceleration
factor heβV ðsÞiV is computed as an average along the simulation. To
ensure that the condition underwhich Eq. (3) is satisfied,we introduce a
variation of OPES that we call OPESf

28 that is inspired by the variational
floodingmethod26. The condition forOPESf to allowcalculatingphysical
rates are easily satisfied. Themaximumamountof bias deposited canbe
controlledby the choice of the ϵparameter in Eq. (2),making sure that it
is lower than the free energy barrier. Furthermore via the parameter
EXCLUDED_REGION, one can prevent OPESf from depositing bias in a
preassigned region of configuration space. Since, from an initial free
energy surface (FES) estimate one can roughly estimate both the height
and the location of the transition, the setup of a subsequent OPESf rate
calculation is relatively simple and straightforward28.

Designing water CVs
In our OPES simulations we shall use as CVs the distance z from the
binding site and a CV that encodes water behavior. Water is known to
play a non-trivial role in ligand binding38–46, therefore we want to use
the power of machine learning techniques to capture and encode its
behavior in a CV, generalizing the strategy thatwe have proposed for a
smaller host-guest system in ref. 22. The choice of an effective set of
descriptors d is critical as it must capture the solvation in different
situations that are relevant to the binding-unbinding process, i.e., the
ligand itself, the binding position, the binding pocket, and the
binding path.

Some of the descriptors can be identified following physical
intuition. For instance, to describe ligand’s solvation we focus on its
charged tail and use the coordination number of water around the
Carbon atom of the amidine group ({G}) (see Fig. 2c). Regarding the
binding position, we analogously evaluate the coordination number
between water and the Carbon atom of the carboxylate group in
residue Asp189 ({H}). These choices are similar in spirit to other sol-
vation variables that have been devised in the past22,47–51.

However, we follow a different approach to describe water
behavior around the binding pocket and along the binding path. The
S1 binding pocket of apo Trypsin form (see Fig. 1) is known from high
resolution experiments14,52 to be characterized by the presence of a
set of deeply buried water molecules. These water molecules have a
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long residence time and form what has been called in ref. 14 the
reservoir. To encode their role in the descriptor set, we propose a
general method that can be applied to describe trapped water
molecules in biological systems. This method consists of four steps:
(1) selecting the α-Carbon atoms of the relevant part of the protein
that encloses water (label 1 of Fig. 2a), (2) building the convex hull
surface with the coordinates from step 1 (label 2 of Fig. 2a), (3) col-
lecting the position of the water molecules that lie within the convex
hull for longer than a pre-defined lifetime, and (4) clustering the
collected data using a K-means clusteringmethod to determine areas
of high water density and their centers (label 4 of Fig. 2a). We call
those points hydration spots ({Vi}) and use them as centers around
which we calculate water coordination. The method is implemented
in a Python script53. Following ref. 54, we also investigated the role of
the ionic density and found that it does not play a relevant role in this
system (see Supplementary Information (SI)).

In Trypsin, we restrict the analysis to the region around the S1
binding pose where we build the convex hull. That area encloses both
the deeply buried water molecules and the binding path of the ligand
(see Fig. 2b). From a number of unbiased trajectories (both in states B
and U) we collect the positions of the water molecules that have a
residence time inside the convex hull longer than 100 ps. Then, using
the clustering method introduced in step 4, we identify 16 Vs (see
Fig. 2c) positions. The number of clustering centers is chosen so that
the relative distance between the Vs lies in a range of 2–3 Å. We find
that there is a correspondence between the V5–V12 centers and the
position of the reservoir water molecules reported in ref. 14. Further-
more, V3 lies at the position of the long-lived water molecule that
stabilizes binding and that in ref. 14 is calledW1. We use as descriptors
all the water coordination on ({G}, {H}, {Vi}) to generate Deep-LDA sw
and Deep-TICA st water CVs.

Static properties: Binding free energy, enthalpy, and entropy
To calculate the binding free energy, we perform an OPES simulation
using 32 walkers, biasing z and the Deep-LDA water CV sw, for a total
simulation time of 3.2 μs. More details about the simulation are pro-
vided in the SI. Convergence is achieved as several binding and
unbinding events occur in a quasi-static regime of the bias (see Sup-
plementary Fig. 2). For comparison, in the SI, we present an analogous

simulation in which we bias only z. In that case, the sampling is much
worse quality and convergence is not reached (see Supplementary
Figs. 3–5). In Fig. 3a, we show the FES projection on z, calculated as a
block average with an error bar that is within the line width of the plot.
We calculate the free energy difference between the B and U states
using the funnel correction in Eq. (4) obtaining a value of 6.36 ±0.07
kcal/mol, in an embarrassing and certainly fortuitous agreement with
the experimental value of 6.36 kcal/mol55,56.

The high level of accuracy that the combination of OPES and good
quality CVs, makes it possible to estimate separately enthalpy ΔU and
entropy ΔS of binding. This is achieved by converging binding free
energy calculations in a range of temperatures and using the rela-
tionship ΔF =ΔU − TΔS. In Table 1 we report our estimate for these
thermodynamic quantities and observe that they are also in good
agreement with experiments. Further details about these simulations
are provided in the SI.

In Fig. 3b, we show the two-dimensional FES of binding projected
on z and sw, along with a number of representative snapshots of the
different states and their typical water arrangement. State B is the
global minimum of the FES and corresponds to the protein-ligand
crystallographic structure (e.g., PDB 3atl57). In line with experiments14,
theW1watermolecule connects the ligand to Trypsin residues Tyr228,
and Ser190, forming a total of 3 HBs. Furthermore, in the reservoir
region below residue Asp189 we observe on average the presence of 5
water molecules, in agreement with the X-ray structure14. State B1 is a
less stable binding pose where the ligand is in the same configuration
as B, but the reservoir contains on average one more water molecule.
In state I, the reservoir region contains another extra water molecule
that tends to bridge the amidine group of the ligand and the binding
site of Asp189, thus weakening binding. In the fully dissociated state U,
the binding cavity returns to its apo form in which the 5 water of the
reservoir are in the experimental structure of the holo form. The space
previously occupied by the ligand is replaced by about 4–5 water
molecules. The fact that in the apo form the reservoir structure of the
water is preserved underlines once more the relevance of this struc-
ture (see Fig. 3f).

Note that, as the ligand progresses towards the U state, the
number of water molecules in the binding site increases, underlining
the role of water throughout the whole unbinding process. In spite of

Benzamidine
z

xy

Asp189

Funnel

Restraint

Fig. 1 | The Trypsin-Benzamidine system. A cartoon representation of Trypsin
structure with the ligand Benzamidine and the Funnel restraint geometry. Oxygen,
Nitrogen, Hydrogen, and Carbon atoms are colored in red, blue, white, and yellow,

respectively. Theprotein is colored in green. A gray cone and cylinder represent the
funnel restraint. The (un)binding path of the ligand is aligned along the z-axis.
Relevant to binding residue Asp189 is highlighted.
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the limit of being trained on data coming exclusively from B and U,
the Deep-LDA CV in combination with OPES is able to capture this
non-trivial water behavior and converge the FES by virtue of the
ability of OPES to deal with non-optimal CVs58. Nevertheless, sw is not
able to resolve the diversewater arrangements in states such as B and
B1, as we shall see below. In order to capture the finer details of the
role of water in the binding pose, the intermediate states and the
path to unbinding, we use Deep-TICA to determine a new water CV
thatwe call st. SinceDeep-TICA is trainedon trajectories coming from
biased simulations, the resulting CV is informed on the water modes
that Deep-LDA is not able to resolve.

Using the data generated in the Deep-LDA-driven simulation,
we project in Fig. 4a, b the FES along different pairs of CVs: z, st
and sw, st, respectively. We find that st resolves the original B state
into states B and B’, with state B being about 12 kJ/mol more stable
than B’ (see Supplementary Fig. 8). From these two states, two
different unbinding pathways depart. We denote the states
belonging to the less stable branch with a prime. Figure 4d, e
shows typical configurations of the ligand and the surrounding
water molecules in state B and B’. The number of water molecules
in the reservoir is the same, but the water arrangement is differ-
ent. In B, water molecules are part of an extended HB network
that includes residue Asp189, while in state B’ this network is less
structured.

One striking difference between B and B’ is that in state B there is
one water molecule trapped deeply in the binding cavity, in an inter-
mediate position between residues Tyr182, Lys219 and Gln219 which
corresponds to descriptor V9 (see the semi transparent sphere in
Fig. 4d). The FES projection along V9 and st in Fig. 4c, confirms that V9
discriminates well between B and B’. Further analysis reveals that state
B presents a slightly larger volume of the reservoir region than B’ (see
Supplementary Fig. 7), which, in turn, possibly facilitates the formation
of an extended HB network. A study of the relative importance of the
water descriptors on the NN CVs can be also found in the SI (see
Supplementary Fig. 11).

The presence of a water molecule in V9 discriminates well
between B and B’, as can be seen, if we project the FES along V9 and st.

(3)(2)

(a)

(b)

V1

G

(c)

H

V2

V3

V4

V5

V6
V7 V8

V9

V10

V11

V12V13V15 V14

V16

(1)

(2)

(3)

(4)

(4)(1)

Fig. 2 | Identification of long-lived water molecules. a Graphical representation
of the four steps strategy used to identify the long-lived hydration spots. (1) α-
Carbon atoms of the residues located on a protein's outer surface, represented by
red dots. (2) Convex hull surface built from the α-Carbon atoms shown in (1). (3)
Distribution of the long-lived watermolecules inside the surface. (4) Centers of the
water distribution from step (3) obtainedwith a clustering algorithm.bConvex hull
surface built around the binding pose of Trypsin. c Position of the 16 hydration
spots Vi, shown by spheres. The hydration spots V5−V12 coincide with the position
of the reservoir water molecules of ref. 14 and the dark red spheres lie on the
binding path. The yellow sphere on V3 shows the position of the key W1 water
molecule14 that forms a hydrogen bond with the ligand. Black arrows indicate the
four possible paths of entrance/exit for water molecules in the binding pocket.
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Fig. 3 | Mechanistic interpretation of the binding process. a 1D free energy
surface of Trypsin-Benzamidine reconstructed using reweighting along z with the
statistical uncertainty within the line width. b 2D free energy landscape along z and

sw CVs. c–f Representative configurations of the relevant states are shown with a
focus on the solvation pattern around the ligand and the binding pose.
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Thus this molecule stabilizes the cavity HB network that is such an
important feature of this protein.

Dynamic properties: Ligand residence time
We compute the ligand-unbinding rate by employing the OPES
flooding technique28 on simulations that start from state B. In this
approach a choice of CVs that captures well the complexity of the
path from state B to state U is essential. The Deep-LDA coordinate
built only on the knowledge of the B and U states is not adequate to
the purpose. In fact, being able to fill all the different metastable
bound states is crucial for promoting transitions to the U state
without remaining stuck in intermediate states. For this reason,
besides z we use Deep-TICA CV st. By construction, st is able to
extract the slowmodes of the system and as a consequence to drive
it out of deep basins towards the transition state. The use of OPESf
for the calculation of rates requires that we define an excluded
region to avoid depositing bias in the transition state region. An

analysis of the FES in Fig. 4a suggests to prevent depositing bias in
the region z > 6 Å. We run a total of 55 ligand unbinding simulations
and, by using Eq. (3), we determine for each simulation a physical
ligand residence time t.

The distribution of transition times of a rare event dominated by a
single barrier is expected to be Poissonian 1

τ e
�t=τ where τ is the char-

acteristic time of the associated homogeneous process59. We fit all our
data to such a model and find that the quality of the fit is poor (see
Supplementary Fig. 13), as indicated by its low p-value. It is known that
complex biological processes present multiple timescales and are not
expected to necessarily follow such a simple model1,60,61. This led us to
further analyze the unbinding trajectories and to identify the presence
of two possible unbinding mechanisms: a faster and a slower one. The
key difference between the two is related in the water network
arrangement in the binding pocket (see Fig. 5). All unbinding events
start with the water reservoir acquiring an extra molecule and the
system reaching state B1 (see Fig. 5b). Then two possibilities occur. In
the faster case, the presence of a water molecule in the vicinity of W1
weakens the bond between the ligand andW1 (see Fig. 5c), which leads
to another water molecule to bind to residue Asp189 (see Fig. 5d) and
finally brings about the ligand-unbinding event. In the slower
mechanism, W1 is stable and, as the reservoir increases its water con-
tent (see Fig. 5e), eventually onewatermolecule bridges the ligand and
Asp189 (see Fig. 5f), driving the system towards unbinding. As reported
in Table 2, both mechanisms fit well the homogeneous model and
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Fig. 4 | Deep-TICAanalyis. 2DFES along st and a z,b sw, cV9. Ind and e, representative configurations of the ligand and its solvation pattern in states B andB’, respectively.
The location of V9 is highlighted with a semi-transparent pink sphere.

Table 1 | Our simulation estimates of the free energy,
enthalpy, and entropy of binding at T = 300K and corre-
sponding experimental data55,56

ΔF ΔU –TΔS

This work 6.36 ±0.07 4.12 ± 1.56 2.23 ± 1.56

EXP. 6.36 4.52 1.84
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present a discrepancy in the resulting τ of about one order of magni-
tude. In particular, the slower mechanism τ that takes place in about
60% of the simulations has a koff = 1/τ = 687 s−1 that is in close agree-
ment with the experimental value of koff = 600± 300 s−1 62.

To further validate the pathways that we observe, we perform a
set of OPESf simulations with an enlarged bias-free region z > 4 Å.
These simulations ensure that the steps that lead from state B1 to state
I occur in an unbiased regime (see Supplementary Fig. 14).We perform
simulationswhereboth z and st are biased andwhereonly z is biased. In
both cases, we observe pathways belonging to the slow and the fast
mechanism, in a similar proportion as the one from the full unbinding
simulations. More details are in the SI.

Discussion
Ourwork shows clearly thatwaterplays amajor role in the activationof
Trypsin and modulates the release process of Benzamidine. Through
the use of water-focused machine-learned CVs, we estimate static and
dynamic properties in excellent agreement with experiments and we
analyze the results with a level of resolution that lets us identify the
importance of each individual water molecules. We observe how the
presence of water in key positions affects the binding stability and
determines unbinding mechanisms with significantly different ligand
residence times. In conclusion, one might say that the set of reservoir
water molecules, present both in the apo and the holo form, are an
essential part of the enzyme, its structure, and its activity. We believe

that this is not just specific to the Trypsin-Benzamidine system and we
argue that water would play such a non-trivial role at least in all the
cases where the ligand has to negotiate its way out of a water-rich
enzymatic cavity.

Methods
We perform all simulations with the molecular dynamics code GRO-
MACS 2020.463 patched with PLUMED 2.864 and the Pytorch library
1.420,65.WeuseTIP3Pwater,while theprotein is describedby theAmber-
14SB force field and the ligand interactions are taken from the Amber
GAFF library66. We employ Ewald summation67 for long-range electro-
static interactions with a cutoff of 10 Å for both the Coulomb and the
van derWaals interactions. All simulations are run in the NPT ensemble
with a timestep of 2 fs.We use the Parrinello-Rahman barostat68 and the
stochastic velocity rescaling thermostat69, both with a coupling con-
stant of 1 ps. For more details, see Supplementary Methods.

We train a Deep-LDA CV by running unbiased simulations on
states B and U for 60 ns and evaluating the water coordination on a
descriptor set d made by the 18 components ({G}, {H}, {Vi}). For train-
ing, we take as state B the initial configuration used in ref. 70. We use a
NN made of 4 layers with 2.5 × 10−5 learning rate. To train the Deep-
TICA CV, we take the converged OPES trajectory used for calculating
the binding free energy and feed the descriptors set d to a NNmade of
4 layers with 1.0 × 10−4 learning rate and 0.07 lag time. Further details
can be found in the SI.

Oneof thedifficulties in ligand-unbindingproblemarises fromthe
fact that once the ligand leaves the protein, it has to explore a large
conformational space. To tackle this issue, we use the Funnel restraint
proposed in ref. 71. In this method, the space available to the ligand in
the unbound state is limited by confining it to a cylindrical volume
above the binding site (see Fig. 1) which introduces an entropic
restraint in the U state. To calculate the absolute free energy of bind-
ing, one needs to apply a correction to the apparent free energy W(z)
that comes from the simulation:

ΔF = � 1
β
log C0πR2

cyl

Z
B
dz exp �βðW ðzÞ �WUÞ

� �� �
ð4Þ

Fig. 5 | Two ligand unbinding mechanisms. Representative configurations of
states a B and b B1. c, e The pre-intermediate step of fast and slow mechanisms,
respectively. d, f The intermediate step of the faster (IF) and the slower (IS)
unbinding mechanisms. g Intermediate I1 that presents a number of water

molecules between ligand and the binding pose. The yellow sphere highlights the
location of the W1 water molecule. The green sphere indicates the position of the
water molecule that bridges the ligand and the Asp189 residue. The protein is
shown as a semi-transparent ribbon.

Table 2 | Ligand residence time

τ
(10−3 s)

koff (102 s−1) p-
value

μ
(10−3 s)

σ
(10−3 s)

Number
of events

All data 0.64 15.6 0.06 1.10 1.49 55

Faster path 0.18 55.4 0.62 0.23 0.29 23

Slower path 1.45 6.87 0.63 1.58 1.59 32

EXP. – 6.00 ± 3.00 – – – –

τ is the characteristic time froman exponentialfit59, koff = 1/τ, andp-valuemeasures the quality of
the fit.
μ and σ are the average and the standard deviation of the data, respectively. We show results
from all our data and from data split into the two observed mechanisms. The experimental
results are taken from ref. 62.
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where C0 = 1/1660Å−3 is the standard concentration, z is the distance
between the center ofmass of the ligand and the binding site along the
funnel’s axis,W(z) is the free energy along the funnel axis andWU is its
reference value in state U.

Data availability
All the inputs and instructions to reproduce the results presented in
this manuscript can be found in the PLUMED-NEST repository at
plumID:22.017. A tutorial on Deep-LDA training can be found at this
link, while a tutorial onDeep-TICA is at this link. Thepython script used
to determine areas of high water density and their centers can be
found at this link.
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