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Abstract

The Aedes aegypti mosquito serves as a major vector for viral diseases, such as dengue,

chikungunya, and Zika, which are spreading across the globe and threatening public health.

In addition to increased vector transmission, the prevalence of insecticide-resistant mosqui-

toes is also on the rise, thus solidifying the need for new, safe and effective insecticides to

control mosquito populations. We recently discovered that cinnamodial, a unique drimane

sesquiterpene dialdehyde of the Malagasy medicinal plant Cinnamosma fragrans, exhibited

significant larval and adult toxicity to Ae. aegypti and was more efficacious than DEET–the

gold standard for insect repellents–at repelling adult female Ae. aegypti from blood feeding.

In this study several semi-synthetic analogues of cinnamodial were prepared to probe the

structure-activity relationship (SAR) for larvicidal, adulticidal and antifeedant activity against

Ae. aegypti. Initial efforts were focused on modification of the dialdehyde functionality to pro-

duce more stable active analogues and to understand the importance of the 1,4-dialdehyde

and the α,ß-unsaturated carbonyl in the observed bioactivity of cinnamodial against mosqui-

toes. This study represents the first investigation into the SAR of cinnamodial as an insecti-

cide and antifeedant against the medically important Ae. aegypti mosquito.

Author summary

Aedes mosquitoes are the primary carriers of Zika, dengue, chikungunya, and yellow fever

viruses around the globe. Given the emergence of insecticide-resistance in this genus and

unprecedented ‘globalization’ of mosquito-borne viruses, new chemicals to control these

mosquitoes (e.g., insecticides, repellents) are urgently needed. In the continuation of our

search for new and safe natural product derived insecticides, we generated semi-synthetic
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derivatives of cinnamodial (CDIAL), previously identified as an insect antifeedant, repel-

lent and insecticide, to give insights into the important features of the molecule that can

contribute to the observed activities. Since the antifeedant and repellent activity of CDIAL

are found to be mediated by modulation of a sensory receptor (TRPA1) in the mosquito,

we developed a structural model to understand how CDIAL interacts with TRPA1 and to

explain the difference in activities of CDIAL and the prepared derivatives. Our findings

aid in the development of plant-derived insecticides to control the Ae. aegypti mosquito

and justify continued efforts using TRPA1 as a target for new mosquito repellents.

Introduction

Mosquitoes are vectors of numerous human pathogens, such as the malaria parasite, dengue

virus, chikungunya virus, and Zika virus, which affect over 300 million people annually [1–3].

While the majority of the burden has been shouldered by Africa and South-East Asia the global

disease distribution is widening. The worldwide incidence of dengue has risen 30-fold in the

past 30 years, and more countries are reporting their first outbreak of the disease [3]. Chikun-

gunya and Zika viruses, both historically limited to parts of Africa and Asia, have recently

emerged into global threats with increased transmission in the Americas [4,5]. The arboviruses

that cause dengue, Zika, chikungunya and yellow fevers can all be transmitted to humans by

the mosquito Aedes aegypti (L.). According to the World Health Organization more than half

of the world’s population lives in areas where this mosquito species is present, including sev-

eral southern regions in the United States [2]. While significant progress has been made in

developing therapeutics and vaccines for mosquito-borne pathogens, more effective and low-

cost means to treat and prevent these diseases are still underdeveloped or unavailable [6,7].

Vector control strategies remain the primary method to control and prevent the spread of

mosquito-borne diseases [8]; chiefly, control of mosquitoes with insecticides is often the only

method proven to reduce vector populations during an emerging epidemic [9].

The major classes of insecticides used in vector control strategies include the pyrethroids,

carbamates, organophosphates, and neonicotinoids, which all target the nervous system of

insects [10–13]. While their activity has made them very effective at reducing mosquito popu-

lations, they are non-selective, killing beneficial insects and in some cases small vertebrate ani-

mals, which has caused the removal of some agents such as DDT and other organochlorine

compounds from the vector control arsenal [14]. Excessive use of the remaining groups of

insecticides, however, has led to the selection of insecticide-resistant mosquito populations

[15–17]. Moreover, no new public health insecticides have been developed in the past 40 years

[18]. Thus, it is imperative that we replenish our chemical toolbox by identifying new agents

that exhibit novel mechanisms of action with high selectivity to mosquitoes.

Plants have been an indispensable source of novel compounds possessing pharmacological

activities relevant to public health [10]. Pyrethroids, for instance, the most widely used insecti-

cides in the United States and the only class approved for insecticide treated nets [19], are

derived from natural pyrethrins isolated from the flowers of Tanacetum cinerariifolium (Tre-

vir.) Sch.Bip. (Asteraceae) [20]. Recently, we have identified that an extract of Cinnamosma
fragrans Baill. (Canellaceae), a plant used in Malagasy traditional medicine, is antifeedant,

repellent, and toxic to Ae. aegypti mosquitoes. In our efforts to isolate and characterize the bio-

active compounds from C. fragrans, we identified cinnamodial (CDIAL, 1), a drimane sesqui-

terpene with promising toxicity to larval and adult female Ae. aegypti mosquitoes [21]. In

addition to exhibiting a similar toxic profile against pyrethroid-susceptible and -resistant
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strains of Ae. aegypti, CDIAL was more efficacious than DEET [N,N-Diethyl-meta-tolua-

mide]–the gold standard for insect repellents–at repelling mosquitoes from feeding on blood

[21]. Moreover, we demonstrated that the mechanism of the antifeedant activity of CDIAL

was through the activation of transient receptor potential A1 (TRPA1) channels [21].

The goal of the present study was to investigate the structural basis of the insecticidal and

antifeedant activities of 1 against Ae. aegypti by generating a series of semi-synthetic CDIAL

derivatives. Our efforts led to the discovery of 10 ((-)-6ß-Acetoxy-9α-hydroxydrim-7-ene-

12-methyl-12-one-11-al) as a CDIAL derivative with superior and similar insecticidal activity

against larvae and adult females, respectively, but weaker antifeedant activity against adult

females. Herein, we describe the re-isolation of 1, analog generation, and biological evaluation

of synthetic derivatives. Additionally, in order to understand the mechanisms of the most

active compounds, the observed structure-activity relationship (SAR) and potential interaction

of the active compounds with several nucleophilic residues of the mosquito TRPA1 are

discussed.

Methods

General experimental procedures

Optical rotations ([α]D) were measured with an LED light source monitoring at 589 nm in ace-

tonitrile at 20 oC. The instrument used was an Anton Paar MCP 150 polarimeter (Anton Paar

OptoTec GmbH, Seelze-Letter, Germany). Ultraviolet (UV) absorption spectra were measured

in a 1 cm quartz tank using a Hitachi U-2910 UV/vis double-beam spectrophotometer (Hita-

chi High-Technologies America, Schaumburg, IL, USA). Infrared (IR) spectra were obtained

on a Nicolet 6700 FT-IR spectrometer (Thermo Scientific, Waltham, MA, USA). The 1D (1H,
13C, selective COSY and NOESY) and 2D (COSY, HSQC, HMBC, and NOESY) NMR spectra

were recorded at 300 K (26.85 oC) in CDCl3 for all compounds except for 5 and 19 which were

measured in methanol-d4, 7 which was measured in acetonitrile-d3, and 16 was measured in

pyridine-d5 on a Bruker Avance III HD 400 MHz instrument (Bruker, Billerica, MA, USA)

using standard Bruker pulse sequences. 1H chemical shifts are reported in parts per million

(ppm) and are referenced to the residual CDCl3 signal (δ 7.26 ppm), methanol-d4 signal (δ
3.34 ppm), pyridine-d5 signal (δ 7.22 ppm), or acetonitrile-d3 signal (δ 1.96 ppm). 13C chemical

shifts are reported in ppm and are referenced to the residual CDCl3 signal (δ 77.36 ppm),

methanol-d4 signal (δ 49.86 ppm), pyridine-d5 signal (δ 123.87 ppm) or acetonitrile-d3 signal

(δ 118.77 ppm). Deuterated NMR solvents were purchased from Cambridge Isotope Laborato-

ries (Tewksbury, MA, USA). High-resolution mass spectra (HRESIMS) were acquired on a

hybrid spectrometer utilizing a linear ion trap and Orbitrap (LTQ Orbitrap, ThermoFisher

Scientific Inc., Bremen, Germany) equipped with an ESI source in the positive-ion mode, with

sodium iodide (NaI) being used for mass calibration. The spectrometer was equipped with an

Agilent 1100 HPLC system (Agilent Technologies, California, USA) including a binary pump,

UV detector, and autosampler. Data acquisition and analysis were accomplished with Xcalibur

software version 2.0 (Thermo Fisher Scientific Inc., Bremen, Germany). The samples were pre-

pared at a concentration of ~10 μg/mL in ACN, and the injection volume was set at 30 μL.

Flash and open-column chromatography were performed with SilicaFlash P60 (230–400

mesh; SiliCycle Inc., Quebec City, Canada) using solvent systems as described. Ratios of sol-

vent systems used for chromatography are expressed in v/v as specified. Analytical thin-layer

chromatography was performed on aluminum-backed precoated silica gel plates (0.24 mm;

Dynamax Adsorbant, Inc., Darmstadt, Germany). Spots were visualized under UV light (254

& 320) and by spraying with modified Godin’s reagent (vanillin/EtOH-Perchloric acid, 1:1, v/

v) and H2SO4-water (15%) followed by heating. Commercially available chemicals were used

PLOS NEGLECTED TROPICAL DISEASES Structural insights into the activities of drimane sesquiterpenes against Ae. aegypti

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008073 February 26, 2020 3 / 21

https://doi.org/10.1371/journal.pntd.0008073


as purchased. Ice/water was used as the temperature bath to achieve 0˚C and dry ice/acetone

was used to achieve −78 oC. Dry tetrahydrofuran (THF) and dichloromethane (CH2Cl2) were

obtained from an Innovative Technology PureSolv system (Inert, Massachusetts, USA). Unless

otherwise noted, reactions were performed in oven-dried glassware under an atmosphere of

dry argon.

Plant material

The stem bark of C. fragrans was purchased at the market of traditional medicines, Analakely/

Antananarivo, (Madagascar). The bark was identified by comparison with the authentic sam-

ple in the Herbarium of PBZT (Parc Botaniqueet Zoologique de Tsimbazaza, Antananarivo,

Madagascar). A voucher specimen of the bark (LivCF2016) was deposited at the College of

Pharmacy, The Ohio State University (Columbus, Ohio).

Extraction and isolation

The air-dried stem bark of C. fragrans was pulverized and the powder (400 g) was extracted

with dichloromethane for 5 days at room temperature. The extract was filtered and concen-

trated in vacuo to yield a yellow-brown oily residue (80.68 g, 20.2% on dry plant material). The

residue was divided into fractions using column chromatography over silica gel, eluting with a

gradient system of hexanes–EtOAc (from 4:1 to 0:1). Cinnamodial (1) was recrystallized using

hexanes–EtOAc (1:1) as colorless crystals (5.28 g, 1.32% on dry plant material).

Synthesis

The following cinnamodial analogues were prepared according to the semi-synthetic methods

described in the supporting information: cinnamodiacid (5), cinnamodimethylester (6), cin-

namo-N,11-dihydro-11-pyridazinol (7), 7ß-hydroxy-cinnamopyridazine (18), and Cinnamo-

dial 12-ethylene acetal (11). The preparation of 6-O-acetyl-12α-methyl-pereniporin A (8), 6-

O-acetyl-12ß-methyl-pereniporin A (9), (−)-6ß-Acetoxy-9α-hydroxydrim-7-ene-12-methyl-

12-one-11-al (10), 12α/ß-methyl-pereniporin A (12), (1’S/R)-1’-((8aS)-5,5,8a-trimethyl-

1,4-dioxo-1,4,4a,5,6,7,8,8a-octahydronaphthalene-2-yl)ethyl formate (13), and Cinnamothia-

zolidine (16) are described below.

6-O-acetyl-12α-methyl-pereniporin A (8) and 6-O-acetyl-12ß-methyl-pereniporin A

(9). To a solution of 1 (50 mg, 0.16 mmol) in dry THF (1 mL), methylmagnesium bromide

(36.4 mg, 0.486 mmol, 3 equiv) in THF (162 μL) was added dropwise at −78 oC. The reaction

mixture was maintained at this temperature, with stirring for 30 min, after which it was

allowed to reach r.t. and maintained for another 1.5 h. The reaction mixture was then

quenched with NH4Cl (1 mL of a saturated aqueous solution). The aqueous solution was

extracted with EtOAc (2 mL × 3) and the combined organic layers dried over anhydrous

MgSO4, filtered, and concentrated. The resulting residue was purified by column chromatog-

raphy with hexanes–EtOAC (from 3:1 to 2:1) as eluents to afford two diastereomeric com-

pounds 8 and 9.

Compound 8 (7.14 mg, 14%) as a colorless oil: ½a�
20

D −165 (c 1, ACN); IR (KBr) νmax 3427,

2948, 2931, 2869, 1735, 1463, 1372, 1242, 1069, 1024, 983, 960, and 756 cm−1; 1H NMR (400

MHz, CDCl3) δ 5.65 (1H, dd, J = 4.0, 1.7 Hz, H-7), 5.61 (1H, td, J = 4.4, 1.4 Hz, H-6), 5.27 (1H,

s, H-11), 4.41 (1H, qt, J = 6.6, 1.6 Hz, H-12), 3.90 (1H, d, J = 10.4, 11-OH), 2.05 (3H, s, H-17),

2.03 (1H, d, J = 4.0 Hz, H-5), 1.88 (1H, td, J = 13.3, 4.4 Hz, H-1α), 1.63 (1H, qt, J = 13.5, 3.2 Hz,

H-2ß), 1.50 (1H, dquint J = 13.8, 3.4 Hz, H-2α), 1.40 (1H, overlapped, H-1ß), 1.39 (3H, d,

J = 6.6 Hz, 12-CH3), 1.38 (1H, overlapped, H-3ß), 1.27 (1H, td, J = 13.0, 2.9 Hz, H-3α), 1.16
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(3H, s, H-15), 1.15 (3H, s, H-14), 0.99 (3H, s, H-13); 13C NMR (100 MHz, CDCl3) δ 170.7

(C = O, C-16), 146.6 (C, C-8), 120.9 (CH, C-7), 98.1 (CH, C-11), 78.5 (C, C-9), 73.3 (CH, C-

12), 67.7 (CH, C-6), 45.9 (CH, C-5), 45.0 (CH2, C-3), 38.8 (C, C-10), 34.0 (C, C-4), 33.3 (CH3,

C-13), 31.9 (CH2, C-1), 24.9 (CH3, C-14), 23.0 (CH3 at C-12), 22.0 (CH3, C-17), 19.1 (CH3, C-

15), 18.3 (C, C-2); HRESIMS m/z 347.18280 [M + Na]+ (calcd for C18H28O5Na, 347.18290).

Compound 9 (21.26 mg, 40%) as a yellow oil: ½a�
20

D −90 (c 1, CH3CN); IR (KBr) νmax 3434,

2949, 2925, 2868, 1737, 1721, 1462, 1445, 1371, 1242, 1218, 1068, 1022, 986, 958, 913, and 756

cm−1; 1H NMR (400 MHz, CDCl3) δ 5.62 (1H, td, J = 4.4, 2.0 Hz, H-6), 5.51 (1H, dd, J = 4.0,

2.1 Hz, H-7), 5.39 (1H, s, H-11), 4.77 (1H, qt, J = 6.2, 2.1 Hz, H-12), 2.06 (3H, s, H-17), 2.04

(1H, d, J = 4.0 Hz, H-5), 1.85 (1H, td, J = 13.2, 4.4 Hz, H-1α), 1.64 (1H, qt, J = 13.4, 3.1 Hz, H-

2ß), 1.50 (1H, dquint J = 13.8, 3.4 Hz, H-2α), 1.37 (1H, overlapped, H-3ß), 1.28 (1H, over-

lapped, H-1ß), 1.27 (1H, overlapped, H-3α), 1.26 (3H, d, J = 6.1 Hz, 12-CH3), 1.14 (3H, s, H-

14), 1.11 (3H, s, H-15), 0.98 (3H, s, H-13); 13C NMR (100 MHz, CDCl3) δ 170.9 (C = O, C-16),

146.6 (C, C-8), 118.8 (CH, C-7), 96.2 (CH, C-11), 79.3 (C, C-9), 73.3 (CH, C-12), 67.6 (CH, C-

6), 45.5 (CH, C-5), 45.0 (CH2, C-3), 38.4 (C, C-10), 33.9 (C, C-4), 33.0 (CH3, C-13), 32.0 (CH2,

C-1), 24.8 (CH3, C-14), 22.1 (CH3, C-17), 18.7 (CH3 at C-12), 18.6 (CH3, C-15), 18.3 (C, C-2);

HRESIMS m/z 347.18276 [M + Na]+ (calcd for C18H28O5Na, 347.18290).

(−)-6ß-Acetoxy-9α-hydroxydrim-7-ene-12-methyl-12-one-11-al (10). Compound 9 (ca.

20 mg, 0.062 mmol) was dissolved in chloroform and left at room temperature for 22 days,

concentrated and purified via column chromatography (hexanes–EtOAc 2:1) to yield 10 (4.49

mg, 22%) as a colorless oil: ½a�
20

D −211 (c 1, ACN); UV (ACN) λmax (log ε 3.37) 218 nm; IR

(KBr) νmax 3450, 2948, 2930, 2870, 1737, 1673, 1463, 1372, 1233, 1030, 1055, 1030, and 756

cm−1; 1H NMR (400 MHz, CDCl3) δ 9.69 (1H, d, J = 0.92 Hz, H-11), 7.00 (1H, d, J = 4.9 Hz,

H-7), 5.84 (1H, t, J = 4.8 Hz, H-6), 4.09 (1H, d, J = 1.1, 9-OH), 2.36 (3H, s, 12-CH3), 2.14 (3H,

s, H-17), 1.99 (1H, d, J = 4.5 Hz, H-5), 1.79 (1H, td, J = 13.2, 4.5 Hz, H-1α), 1.61 (1H, over-

lapped, H-2ß), 1.52 (1H, overlapped, H-2α), 1.38 (1H, overlapped, H-3ß), 1.30 (3H, s, H-15),

1.27 (1H, overlapped, H-3α), 1.15 (3H, s, H-14), 1.05 (1H, overlapped, H-1ß), 1.01 (3H, s, H-

13); 13C NMR (100 MHz, CDCl3) δ 200.6 (CH, C-11), 199.8 (C, C-12), 170.6 (C = O, C-16),

141.1 (C, C-8), 140.3 (CH, C-7), 78.3 (C, C-9), 66.7 (CH, C-6), 44.6 (CH, C-5), 44.4 (CH2, C-

3), 41.7 (C, C-10), 34.2 (C, C-4), 33.0 (CH3, C-13), 32.3 (CH2, C-1), 25.9 (CH3 at C-12), 25.1

(CH3, C-14), 21.9 (CH3, C-17), 20.2 (CH3, C-15), 18.1 (C, C-2); HRESIMS m/z 345.16742 [M

+ Na]+ (calcd for C18H26O5Na, 345.16725).

12α/ß-methyl-pereniporin A (12). To a solution of 1 (100 mg, 0.324 mmol) in dry THF

(1 mL), methylmagnesium bromide (121.27 mg, 1.621 mmol, 5 equiv) in THF (0.540 mL) was

added dropwise at −78 oC. The reaction mixture was maintained at this temperature, with stir-

ring, for 2 h. At this time, it was quenched with NH4Cl (2 mL of a saturated aqueous solution).

The aqueous solution was extracted with EtOAc (4 mL × 3) and the combined organic layers

washed with brine (4 mL), dried over anhydrous MgSO4, filtered, and concentrated to yield

crude 12 (120.68 mg) as a 1:2 diasteromeric mixture of 12α-methyl-pereniporin A and 12ß-

methyl-pereniporin A, respectively. IR (KBr) νmax 3415, 2972, 2947, 2924, 2869, 1710, 1461,

1383, 1216, 1081, 1065, 1026, 985, 961, and 757 cm−1; 1H NMR (400 MHz, CDCl3) δ (major

isomer, C-12ß) 5.62 (1H, dd, J = 4.0, 2.1 Hz, H-7), 5.38 (1H, s, H-11), 4.79 (1H, qt, J = 6.3, 2.3

Hz, H-12), 4.55 (1H, td, J = 4.5, 2.3 Hz, H-6), 1.85 (1H, td, J = 13.3, 4.5 Hz, H-1α), 1.82 (1H, d,

J = 5.3 Hz, H-5), 1.66 (1H, qt, J = 13.5, 3.3 Hz, H-2ß), 1.51 (1H, dquint J = 13.3, 3.9 Hz, H-2α),

1.38 (1H, overlapped, H-3ß), 1.34 (3H, s, H-14), 1.32 (3H, d, J = 6.2 Hz, 12-CH3), 1.28 (1H,

overlapped, H-3α), 1.27 (1H, overlapped, H-1ß), 1.15 (3H, s, H-15), 1.11 (3H, s, H-13); 13C

NMR (100 MHz, CDCl3) δ 144.7 (C, C-8), 123.2 (CH, C-7), 96.4 (CH, C-11), 79.7 (C, C-9),

73.2 (CH, C-12), 66.2 (CH, C-6), 46.7 (CH, C-5), 44.9 (CH2, C-3), 38.3 (C, C-10), 34.4 (C, C-
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4), 33.2 (CH3, C-13), 32.5 (CH2, C-1), 25.2 (CH3, C-14), 19.3 (CH3, C-15), 18.9 (CH3 at C-12),

18.4 (C, C-2); HRESIMS m/z 305.17252 [M + Na]+ (calcd for C16H26O4Na, 305.17233).

(1’S/R)-1’-((8aS)-5,5,8a-trimethyl-1,4-dioxo-1,4,4a,5,6,7,8,8a-octahydronaphthalene-

2-yl)ethyl formate (13). To a stirred solution of 12 (100.2 mg, 0.294 mmol, crude, obtained

from Grignard addition) in CH2Cl2 (2 mL) at 0 oC was added PCC (253 mg, 1.175 mmol). The

resulting mixture was warmed to room temperature and stirred for 2 h before it was diluted

with EtOAc (4 mL) and filtered through a short pad of Celite. The crude mixture was chro-

matographed on a silica gel column eluting with hexanes–EtOAc (4:1) to obtain 13 (26.77 mg,

27%) as a mixture of diastereomers (ca. 1:2 ratio of C-1’α and C-1’ß, respectively). UV (ACN)

λmax (log ε 3.74) 240.5 nm; IR (KBr) νmax 2934, 2872, 1729, 1685, 1464, 1380, 1292, 1231, 1166,

and 1019 cm−1; 1H NMR (400 MHz, CDCl3) δ (major isomer, C-1’ß): 8.02 (1H, d, J = 0.49, −-

OCHO), 6.54 (1H, d, J = 1.1 Hz, H-3), 5.72 (1H, qt, J = 6.5, 0.92 Hz, H-1’), 2.57 (1H, s, H-4a),

1.85 (1H, dm, J = 9.6 Hz, H-8ß), 1.62 (1H, m, overlapped, H-8α), 1.62 (2H, m, H-7ß/α), 1.48

(3H, d, J = 6.6 Hz, 1’-CH3), 1.43 (1H, dm, J = 13.4 Hz, H-6ß), 1.24 (3H, s, 5-ßCH3), 1.23 (3H, s,

8a-CH3), 1.15 (1H, td, J = 11.2, 4.8 Hz, H-6α), 1.14 (3H, s, 5-αCH3); 13C NMR (100 MHz,

CDCl3) δ 203.0 (C, C-4), 199.3 (C, C-1), 160.0 (CH, −OCHO), 148.2 (C, C-2), 135.9 (CH, C-

3), 66.4 (CH, C-1’), 61.8 (CH, C-4a), 51.3 (C, C-8a), 42.7 (CH2, C-6), 33.6 (C, C-5), 33.5 (CH2,

C-8), 32.7 (CH3, 5-αCH3), 21.9 (CH3, 5-ßCH3), 21.8 (CH3, 8a-CH3), 20.5 (CH3 at C-1’), 17.8

(C, C-7); HRESIMS m/z 301.14144 [M + Na]+ (calcd for C17H24O7Na, 301.14103).

Cinnamothiazolidine (16). Cinnamodial (1, 25.5 mg, 0.083 mmol) and L-cysteine methyl

ester HCL (14.2 mg, 0.83 mmol) were added to an NMR tube, followed by addition of pyri-

dine-d5 (0.6 mL), vortexed and incubated at 60 oC for 45 min. The mixture was intermittently

monitored throughout the incubation by NMR at 300.0 K. Compound 16 (98% as observed by
1H NMR) was produced after 45 min of incubation. ½a�

20

D −164 (c 1, CH3CN); UV (ACN) λmax

(log ε 3.72) 250 nm; IR (KBr) νmax 3367, 2950, 2928, 2867, 1736, 1677, 1460, 1439, 1371, 1239,

1205, 1167, 1031, and 754 cm−1; 1H NMR (400 MHz, C5D5N) δ 5.93 (1H, dd, J = 3.9, 1.2 Hz,

H-7), 5.90 (1H, br t, J = 4.3 Hz, H-6), 5.79 (1H, s, H-12), 5.05 (1H, dd, J = 7.2, 1.7 Hz, H-18),

4.77 (1H, s, H-11), 3.54 (1H, s, 19-OCH3), 3.50 (1H, dd, J = 10.8, 7.1 Hz, H-20a), 3.40 (1H, dd,

J = 10.8, 2.0 Hz, H-20b), 2.63 (1H, d, J = 4.9 Hz, H-5), 2.44 (1H, td, J = 13.6, 4.4 Hz, H-1α),

1.95 (3H, s, H-17), 1.80 (1H, dm, J = 13.6 Hz, H-1ß), 1.67 (1H, m, H-2ß), 1.48 (1H, dquint,

J = 13.7, 3.5 Hz, H-2α), 1.42 (3H, s, H-15), 1.31 (2H, dm, J = 9.2, 2.8 Hz, H-3α/ß), 1.20 (3H, s,

H-14), 0.97 (3H, s, H-13); 13C NMR (100 MHz, C5D5N) δ 172.5 (C, C-19), 170.6 (C, C-16),

144.9 (C, C-8), 122.9 (CH, C-7), 87.6 (CH, C-11), 78.4 (C, C-9), 72.3 (CH, C-12), 68.2 (CH, C-

6), 68.1 (CH, C-18), 52.3 (CH3, 19-OCH3), 45.8 (CH, C-5), 45.4 (CH2, C-3), 39.5 (C, C-10),

35.2 (CH2, C-20), 34.1 (C, C-4), 33.3 (CH3, C-13), 33.0 (CH2, C-1), 25.0 (CH3, C-14), 21.8

(CH3, C-17), 19.7 (CH3, C-15), 19.0 (CH2, C-2); HRESIMS m/z 426.19495 [M + H]+ (calcd for

C21H32NO6S, 426.19448), 448.17728 [M + Na]+ (calcd for C21H31NO6SNa, 426.17643), and

base peak is 408.18484 [M– 18 + H]+ (calcd for C21H30NO5S).

Mosquito cultures and rearing conditions

Eggs of the Liverpool (LVP) strain of Ae. aegypti were obtained through the MR4 as part of the

BEI Resources Repository, NIAID, NIH (LVP-IB12, MRA-735, deposited by M.Q. Benedict).

The eggs of the Ae. aegypti were reared to adults as described previously [22].

Toxicology assays

Larval and adult female toxicities were determined by established protocols [21,23,24]. In

brief, for larvae, 10 μL of a derivative (10 mM dissolved in 100% acetone) was added to six

wells of a 24-well tissue culture plate containing 1 mL of dH2O and five larvae per well,
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resulting in a final concentration of 100 μM (1% acetone). The screening concentration

(100 μM) was chosen based on preliminary scouting experiments with CDIAL (1) that resulted

in ~50% efficacy. After 24 h in normal rearing conditions (28˚C, 80% relative humidity), the

efficacy was assessed by counting the number of larvae per well that did not move after gentle

prodding with a micropipette tip or fine insect pin. As a negative and positive control, respec-

tively, the effects of 1% acetone and 100 μM CDIAL were tested in parallel.

For adults, 500 nL of a derivative (3 mM dissolved in 100% acetone) was applied to the tho-

rax of 10 adult females (3–7 days post emergence) to deliver a dose of 1.5 nmol per mosquito.

The screening dose (1.5 nmol/mosquito) was chosen based on preliminary scouting experi-

ments with CDIAL (1) that resulted in ~50% efficacy. After dosing, the mosquitoes were held

under normal rearing conditions in small plastic cages (32 oz. containers) and provided with

access to 10% sucrose. After 24 h, the efficacy was assessed by counting the number of treated

mosquitoes that were dead or unable to fly. As a negative and positive control, respectively, the

effects of 100% acetone and 1.5 nmol CDIAL were tested in parallel.

The toxicity of compound 13 was also tested by direct injection into the hemolymph of

adult females using an approach similar to Raphemot et al. 2013 [25]. In brief, 500 nL of 13 (3

mM dissolved in phosphate buffered saline, PBS, with 3% DMSO) was injected into the hemo-

lymph with a pulled-glass capillary attached to a Nanoject II injector (Drummond Scientific

Company, Broomall, PA) to deliver a dose of 1.5 nmol per mosquito. The efficacy was assessed

at 24 h as described above for adult females. As a negative and positive control, respectively,

3% DMSO (in PBS) and 1.5 nmol CDIAL (in PBS with 3% DMSO) were tested in parallel.

For all toxicity experiments, the mean efficacies of the derivatives and CDIAL were adjusted

for effects of the negative control using Abbott’s correction [26] and compared statistically

using a one-way ANOVA (Bonferroni post-test) or unpaired t-test (P< 0.05).

Antifeedant assays

A capillary feeding (CAFE) choice assay was used to determine the antifeedant activity of the

compounds [21,27,28]. In brief, groups of 5 adult female mosquitoes (3–10 days post-emer-

gence) were placed in Drosophila vials (28.5 x 95 mm) covered with cotton plugs. Two 5-μL

calibrated glass capillaries were inserted through the cotton into the vial. One capillary was

designated the ‘control’ and filled with 5 μL of 10% sucrose containing 1% DMSO (the solvent

of the compounds). The other capillary was designated the ‘treatment’ and filled with 5 μL of

10% sucrose containing 1 mM of CDIAL or a derivative (1% DMSO). The screening concen-

tration (1 mM) was chosen based on preliminary scouting experiments with CDIAL (1) that

resulted in an antifeedant index of ~0.5. All vials were placed in normal rearing conditions

(28˚C, 80% relative humidity) for 18–20 h after which the volume of sucrose consumed from

each capillary was measured visually with calipers. To determine if a compound possessed sig-

nificant antifeedant activity, the relative volumes consumed in the treatment vs. control

capillaries were compared with paired t-tests (P < 0.05). The relative volumes consumed in

each capillary were also used to calculate an antifeedant index by subtracting the volume con-

sumed from the treatment capillary from that of the control capillary and dividing by the total

volume consumed from both capillaries [21,27,28]. Each derivative was tested on 5–10 vials of

5 adult females. The mean antifeedant indices of the derivatives and CDIAL was compared sta-

tistically using a one-way ANOVA (Bonferroni post-test).

Computational modeling

The modeled structure of the AgTRPA1 monomer (amino acid residues: 537–1191) consists of

the last 4 repeats of ankyrin repeat (AR) domain, a transmembrane domain, a linker region
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between the AR and transmembrane domains, and a C-terminal domain. Several computa-

tional approaches were integrated to build different parts of the AgTRPA1 structure, including

ab initio modeling [29], homology modeling, and loop modeling [30], resulting in a tetrameric

structural model of AgTRPA1. This structure was constructed by first forming an AgTRPA1

monomer with GalaxyFill [31] using the cryo-EM structure of hTRPA1 (PDB ID: 3J9P) [32] as

a template. Subsequently, a tetramer was assembled with GalaxyHomomer [33] and ZDOCK

[34]. Lastly, the tetramer was embedded in a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine

(POPC) bilayer, and the system was minimized/relaxed with short (~10 ns) molecular dynam-

ics (MD) simulations using CHARMM36 force fields [35] and GROMACS [36].

CDIAL was docked to four potential binding pockets near key nucleophilic cysteine and

lysine residues (Cys621, Cys641, Cys665 and Lys710 in hTRPA1 and Cys684, Cys704, Lys728

and Lys777 in AgTRPA1) that have been implicated to form covalent bonds with electrophilic

agonists [37–39]. Among those, the pocket centered around Cys684 in AgTRPA1 was particu-

larly promising. All docking calculations were performed with the Lamarckian genetic algo-

rithm using Autodock 4.2 [40]. A 96×68×78 grid box with a grid spacing of 0.375 Å centered

around each of the four nucleophilic residues defined the region of the protein that the ligands

would explore. 500 docking runs were performed for each AgTRPA1 pocket.

Results and discussion

Isolation and identification of bioactive drimane sesquiterpenes

The powdered stem bark of C. fragrans (Canellaceae) was extracted with dichloromethane,

concentrated, and subjected to silica gel column chromatography and recrystallization to

afford cinnamodial (1) (Fig 1).

Derivatization of cinnamodial

Cinnamodial (1) is one of the approximately more than 80 naturally occurring terpenoids con-

taining an α,ß-unsaturated 1,4-dialdehyde functionality [41], specifically 1 belongs to the dri-

mane sesquiterpene class of compounds which includes the structurally similar compounds:

warburganal (2) and polygodial (3) (Fig 1). Unsaturated dialdehyde-containing compounds

exhibit diverse bioactivities [42,43], including antimicrobial [44], antifungal [44], molluscicidal

[45], and cytotoxicity [46]. Additionally compounds 1, 2 and 3 are pungent to humans [47–

49], possess antifeedant and insecticidal activity [50,51], and agonize Transient Receptor

Potential A1 (TRPA1) channels [21,41,49,52,53]. Most biological activities, including the anti-

feedant activity, of these drimane sesquiterpenes have been attributed to the α,ß-unsaturated

1,4-dialdehyde functionality of the molecules, forming adducts with free sulfhydryl groups

Fig 1. Chemical structures natural drimane-type compounds. Cinnamodial (1), warburganal (2), polygodial (3),

capsicodendrin (4). Compounds 1, 3, and 4 have been isolated from C. fragrans.

https://doi.org/10.1371/journal.pntd.0008073.g001
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[54,55] or primary amines such as the ε-amino group of lysine [56], [57]. Our previous results

showed that 1 could effectively kill mosquito larvae in an aqueous environment, penetrate the

cuticle of adult female mosquitoes, reduce the feeding of mosquitoes when added to a sucrose

solution, and reduce the propensity of mosquitoes to blood feed when dried onto the surface

of a membrane feeder. Despite these promising results, nonspecific reactions of dialdehydes

with endogenous free amines or water may reduce the bioavailability of these compounds. In

this work, initial semi-synthetic modification was focused on producing more stable deriva-

tives by replacing the two aldehyde groups while maintaining the α,ß-unsaturated system.

Cinnamodial (1) was used as starting material for derivatization and analog generation (Fig

2). Pinnick oxidation was employed to generate cinnamodiacid (5), wherein the C-11 and C-

12 aldehydes were successfully oxidized to the corresponding carboxylic acids. The dimethyl

ester derivative 6 was obtained by reacting 5 with (Trimethylsilyl)diazomethane. Reaction of 1

with hydrazine afforded a 2,3-dihydro-3-pyridazinol 7, which maintained the unsaturated

system.

It was envisioned that the more reactive C-12 aldehyde of 1 could be selectively transformed

into a methyl ketone by treatment with a methyl Grignard or methyl lithium reagent followed

by oxidation of the resulting secondary alcohol. Treatment of 1 with one equivalent of methyl-

magnesium bromide or methyl lithium instead produced two diastereomeric lactols 8 and 9,

instead of a secondary alcohol. As determined by NMR studies (see experimental), the lactols

8 and 9 differ at the C-12 position depending on whether the C-12 aldehyde of 1 was attacked

from the α or ß face, respectively (Fig 3). Lactol 9 was then converted into the desired com-

pound 10, with a C-11 aldehyde and C-12 ketone, upon incubation in deuterated chloroform.

However, the isomer 8 remained stable in deuterated chloroform and even resisted base-

induced lactol-opening / tautomerization with 1,8-Diazabicyclo(5.4.0)undec-7-ene (DBU), see

supporting information.

Fig 2. Derivatization of 1 into structural analogues. Reagents and conditions: (a) NaClO2, NaH2PO4�H2O, H2O2,

MeCN, H2O, r.t., 24 h; (b) TMS-CHN2, MeOH:Et2O, 0 oC, 30 min; (c) H2N-NH2, CH2Cl2:EtOH, 2 h; (d) MeOH, r.t.;

(e) HOCH2CH2OH, p-TsOH, benzene, reflux, 24 h.

https://doi.org/10.1371/journal.pntd.0008073.g002
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To understand the role of the unsaturated system and confirm the necessity of the C-12

unsaturated aldehyde for its observed biological activity [21], 1 was exposed to one equivalent

of ethylene glycol and a catalytic amount of p-toluenesulfonic acid in benzene to afford the

monoacetal 11 (Fig 2).

Plants and marine organisms have been shown to produce a number of cytotoxic quinones

and hydroquinones, including avarone, bolinaquinone, juglone, and lapachol (see S2 Fig in S1

File) [58,59]. Lapachol, isolated from Tabebuia avellanedae, and structurally related derivatives

have shown modest larvicidal activity against mosquitoes [60,61]. Further modifications of 1

were implemented to prepare a derivative potentially exhibiting mosquito toxicity without

antifeedant activity. We had previously shown that the carbon at C-9 bearing a hydroxyl in

capsicodendrin (4), could be transformed into a ketone by treatment with pyridinium chloro-

chromate [62]. Therefore, in order to produce a dihydroquinone, 1 was reacted with 5 equiva-

lents of the MeMgBr to alkylate the C-12 aldehyde and to cleave off the C-6 acetyl group

providing an isomeric mixture of deacetylated lactols 12α-methyl-pereniporin A and 12ß-

methyl-pereniporin A 12 (Fig 4). Pyridinium chlorochromate in dichloromethane was then

used to oxidize 12 into a mixture of C-12 isomers of (1’S/R)-1’-((8aS)-5,5,8a-trimethyl-

1,4-dioxo-1,4,4a,5,6,7,8,8a-octahydronaphthalene-2-yl)ethyl formate (13).

Model study on the nucleophilic addition of thiol or amino residues to

cinnamodial

Studies on natural sesquiterpenes containing the α,ß-unsaturated 1,4-dialdehyde moiety,

namely, polygodial (3), miogadial (14), and isovelleral (15) (Fig 5), have suggested that these

molecules activate TRPA1 through a mechanism different from that of reactive α,ß-unsatu-

rated aldehydes and isothiocyanates (see S3 Fig in S1 File) [63–67]. Specifically, α,ß-unsatu-

rated aldehydes such as the endogenous ligand (4-hydroxynonenal), the main odiferous

Fig 3. Synthesis of lactols 8 and 9, and formation of 10 from lactol 9. Reagents and conditions: (a) 1 equiv MeMgBr, THF, −78˚C, 2

h; (b) CDCl3, 22 d.

https://doi.org/10.1371/journal.pntd.0008073.g003

Fig 4. Synthesis of 1,4-dione 13. Reagents and conditions: (a) 5 equiv MeMgBr, THF, −78˚C, 2 h; (b) 3.3 equiv PCC,

DCM, 0 oC! r.t., 2 h.

https://doi.org/10.1371/journal.pntd.0008073.g004
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compound in cinnamon (cinnamaldehyde), and the irritant compound acrolein, activate the

TRPA1 channel by covalent modification of N-terminal cysteine residues [37,38,68,69]. Ses-

quiterpenes with a α,ß-unsaturated 1,4-dialdehyde moiety, on the other hand, have been

shown to undergo Paal-Knorr condensation reactions with lysine residues [49,53,70].

Since there have been no studies showing the reaction of CDIAL with thiol or amine resi-

dues, the reaction of L-cysteine methyl ester with CDIAL was used as a model system to study

the reaction of 1 with a biological substrate which may in principle react by either thiol or

amine addition. CDIAL was treated with L-cysteine methyl ester under basic conditions (in

pyridine) to afford cinnamothiazolidine (16). This adduct likely formed from the initial attack

by the primary amine at the more reactive C-12 aldehyde to give the azomethine A intermedi-

ate, which was then attacked by the thiol to form the thiazolidine 16 (Fig 6). The reaction prod-

uct and proposed reaction mechanism suggest that the α,ß-unsaturated 1,4-dialdehyde 1 may

also activate TRPA1 by forming reactive pyrrole-type conjugates with the amino groups pres-

ent in the protein, as demonstrated for warburganal 2, polygodial 3, and 1ß-acetoxy-9-deoxy-

isomuzigadial (17) [49]. Additionally, the attack of the azomethine A by the thiol of L-cysteine

methyl ester suggests that the reactive imine can be attacked by nearby nucleophilic groups,

such as the thiol of cysteine and hydroxyl groups of serine or threonine.

Toxicity to larval and adult female mosquitoes

All prepared CDIAL derivatives were screened for 24 h larvicidal activity against 1st instar Ae.
aegypti (Liverpool, LVP, strain) using a concentration of 100 μM in the rearing water [21]. At

this concentration, CDIAL killed ca. 70% of the larvae within 24 h (Fig 7A). Nearly all of the

CDIAL derivatives showed significantly lower efficacy than CDIAL. However, compounds 10

(86.5%) and 13 (100%) exhibited statistically greater efficacy than CDIAL (Fig 7A).

The derivatives were also screened for 24 h toxicity against adult female Ae. aegypti using a

dose of 1.5 nmol applied to the thoracic cuticle of each mosquito. At this dose, CDIAL incapac-

itated 68% of the mosquitoes within 24 h. All of the CDIAL derivatives were significantly less

efficacious than CDIAL except for 10, which was similar to CDIAL in efficacy (74%).

Although the acid 5, the ester 6, and the 2,3-dihydro-3-pyridazinol 7 derivatives maintained

the α,ß-unsaturated functionality of 1, they were inactive in the toxicity assays against larvae

and adult females. The lack of toxicity of 7 can be due to its conversion to the 7-hydroxy-pyri-

dazine 18, which has been observed in deuterated methanol at room temperature, and also

may occur in the carrier solvent used for the bioassays or upon exposure to the rearing water.

Since lactol derivatives 8, 9, and 12 were not toxic to larvae and adult females, we conclude

that the drimane skeleton with C-11 hemiacetal polar head groups is insufficient to elicit mos-

quito toxicity. These results are consistent with published findings that the biological activity

Fig 5. Chemical structures of α,ß-unsaturated 1,4-dialdehydes. Polygodial (3), 1ß-acetoxy-9-deoxy-isomuzigadial

(17), miogadial (14), (+)-isovelleral (15).

https://doi.org/10.1371/journal.pntd.0008073.g005
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of drimane-type compounds are reduced or lost when the aldehyde functionalities are modi-

fied [50,71,72]. Acetal protection of the C-12 aldehyde as in compound 11 also abolished the

toxicity to larvae and adult females, thus illustrating the crucial role of the conjugated C-12

aldehyde in eliciting a biological response. On the other hand, compound 10, a C-12 methyl

Fig 6. Reaction mechanism. Reaction mechanism of the reaction of 1 with L-cysteine methyl ester via a cationic

azomethine A to form the thiazolidine 16.

https://doi.org/10.1371/journal.pntd.0008073.g006

Fig 7. Toxic efficacy of cinnamodial and derivatives against larval (A) and adult female (B) Ae. aegypti. The efficacy values were calculated using Abbott’s correction

to account for control (100% acetone) mortality [26]. In A), compounds were added to the rearing water of 1st instar larvae (100 μM) and efficacy was defined as the

percentage of larvae that died within 24 h. In B), compounds were applied to the thoracic cuticle of adult females (1.5 nmol/mosquito) and efficacy was defined as the

percentage of adults that were incapacitated (dead or flightless) within 24 h. Values are means ± SEM based on at least 6 replicates of 5 larvae each or 3 replicates of 10

adult females each. The specific numbers of replicates for each are indicated in parentheses below the compound number. Shading indicates statistical categorization of a

derivative’s efficacy relative to CDIAL as determined by a one-way ANOVA with a Bonferroni post-test: gray = similar (P> 0.05); filled = superior (P< 0.05);

open = inferior (P< 0.05).

https://doi.org/10.1371/journal.pntd.0008073.g007
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ketone of 1, exhibited superior and similar efficacy to larvae and adult females, respectively,

relative to 1. Thus, the more stable methyl ketone can effectively replace the aldehyde moiety.

Remarkably, the dihydroquinone 13 exhibited superior larvicidal activity to 1 and was 100%

effective in the screening experiments (Fig 7A). Additional experiments determined the full

concentration-response curves of 1 and 13 to better compare their relative activities (see S4 Fig

in S1 File). The EC50 of 13 (37.8 μM; 95% C.I. = 34.35–41.5 μM) was ~2.2-times more potent

than 1 (82.5 μM; 95% C.I. = 70.7–96.25 μM). Despite the superior larvicidal activity of 13, it

was nominally toxic to adult females. We hypothesized that the chemical modifications result-

ing in the dihydroquinone preserved the toxicity of the molecule, but may have reduced its

ability to penetrate the cuticle of adult females. Thus, we directly injected 13 into the hemo-

lymph of adult females (1.5 nmol/mosquito) to bypass the cuticular barrier. However, even

when injected, 13 was weakly toxic to adult females within 24 h (9.8 ± 7.6% efficacy) compared

to CDIAL (90.0 ± 5.0% efficacy) (P< 0.0001; unpaired t-test; N = 7 replicates of 10 mosquitoes

each). Thus, 13 may exploit a larval specific mechanism to induce toxicity or it is more readily

detoxified/excreted in adult females vs. larvae. In summary, the relative activities of the analogs

observed against larval and adult mosquitoes (Fig 7) indicate the important role of the 1,4-dia-

ldehyde functional group in insecticidal activity.

Antifeedant activity in adult female mosquitoes [26]

A capillary feeding (CAFE) choice bioassay was used to screen the antifeedant activity of the

CDIAL derivatives against adult female Ae. aegypti (LVP strain) [21,27,28]. Briefly, mosquitoes

were presented with two capillaries of 10% sucrose as a food source for 18–20 h; the ‘control’

capillary was treated with 1% DMSO (the carrier solvent for 1 and its derivatives in this assay)

while the ‘treatment’ capillary was treated with 1 or a derivative thereof at a concentration of 1

mM. With the exception of 8 and 11, mosquitoes consumed significantly less sucrose from the

capillaries treated with the derivatives vs. the control capillaries (paired t-tests; P < 0.05),

indicative of antifeedant activity. However, the antifeedant efficacy (i.e., antifeedant index) of

each derivative was inferior compared to CDIAL (Fig 8).

We have previously shown that the antifeedant activity, but not insecticidal activity, of

CDIAL was associated with its modulation of TRPA1 channels [21]. Thus, we suspect that all

of the derivatives were inferior agonists of TRPA1 compared to CDIAL. The reduced TRPA1

agonistic activity may be attributable to the reactivity of the unsaturated system of the mole-

cules. Specifically, the unsaturated aldehyde in 1 favors 1,2-addition, while 5, 6, and 7 likely

favor 1,4-addition. Thus, 1 would be more amenable to direct attack of an amino group on

TRPA1 than the other conjugated derivatives. The mosquito antifeedant activities of 5, 6, and

7 showed a similar trend to previously reported antifeedant activity of polygodial analogues

[42,43]. As mentioned above, the possible conversion of 7 to 18 during the assay may also lead

to the reduced activity. The absence of activity in 11 illustrates the necessity of the C-12 conju-

gated carbonyl group.

Although the derivatives were inferior to CDIAL in the context of antifeedant activity, bio-

activity was not completely lost except for 8 and 11 and they still provide some insights into

the SAR. For example, among the derivatives, 10 and 12, were relatively effective antifeedants.

The moderate activity of compound 10 may indicate that the C-12 aldehyde can be converted

into a methyl ketone without complete loss of antifeedant efficacy. For the lactol 12 it is possi-

ble that a ring opening tautomerization affords the C-11 aldehyde and a C-12 conjugated

carbonyl.

Unsaturated aldehyde-containing agonists, such as acrolein, are known to react with nucle-

ophilic residues of TRPA1 channels, including cysteine, histidine, and lysine. Several cysteine
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residues in TRPA1 channels have been identified as potential sites that can form covalent

adducts with these agonists [37,38]. However, further mutagenesis experiments also showed

that unsaturated dialdehyde-containing sesquiterpenes might not bind to the same sites as

those targeted by the small agonists [66]. To shed light on how CDIAL interacts with the mos-

quito TRPA1 channel and thereby modulating its antifeedant effects, we have developed a

structural model of mosquito TRPA1 based on the single-particle cryo-electron microscopy

(EM) structure of human TRPA1 (hTRPA1) [32], and then computationally docked CDIAL to

the AgTRPA1 structural model. We used the TRPA1 channel of Anopheles gambiae
(AgTRPA1) as a representative mosquito TRPA1, because it has been previously cloned and

shown to be directly activated by CDIAL [21,73]. Moreover, the amino acid identity between

AgTRPA1 and the predicted Ae. aegypti TRPA1 (AAEL009419) is very high (>83%). In partic-

ular, the putative CDIAL binding region we have identified (see below) is over 90% identical

between the two species.

Our results suggest that CDIAL binds preferentially to a ‘pocket’ near Cys684 (Fig 9), a resi-

due in TRPA1 channels that has been implicated to interact with electrophilic agonists [38].

Notably, six lysine residues are located within a radius of 10 Å from Cys684, including Lys656,

Lys678, Lys681, Lys728, Lys738 and Lys744. Many of these lysine residues are surrounded by

negatively charged residues (Glu or Asp), thereby making them more nucleophilic and likely

Fig 8. Antifeedant activity of CDIAL and semi-synthetic derivatives as determined via choice CAFE assays in adult female Ae. aegypti
(LVP strain). Mosquitoes were allowed to feed equally on two capillaries of 10% sucrose with 0.01% trypan blue; the control capillary

included 1% DMSO, and the treatment capillary included 1% DMSO and 1mM test compound. The difference in volume consumed

between the capillaries was used to calculate the antifeedant activity [21]. Values are means ± SEM based on at least 8 replicates of 5 adult

females each. The specific numbers of replicates for each are indicated in parentheses below the compound number. Shading indicates

statistical categorization of derivative’s efficacy relative to CDIAL as in Fig 7.

https://doi.org/10.1371/journal.pntd.0008073.g008
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to interact with an electrophile like CDIAL. The dominant predicted CDIAL binding site is

located between Cys684 and Lys728 (Fig 9). Analogous to Lys661 in human TRPA1, Lys728 is

the closest lysine to Cys684. In these docked poses (Fig 9), the C-12 aldehyde of CDIAL is

found close (4.2–5.0 Å) to the amino group of Lys728 that can initiate a nucleophilic attack on

C-12 to form an initial CDIAL-AgTRPA1 conjugate, highlighting the importance of the

Fig 9. The computationally docked structure of CDIAL (1) in AgTRPA1. The tetrameric AgTRPA1 structure is shown on the right in a cartoon representation.

Two zoomed views of the CDIAL binding site are shown on the left. The ligand is shown in a yellow licorice representation and the protein in a cyan cartoon

representation. Nearby Cys and Lys residues are labeled.

https://doi.org/10.1371/journal.pntd.0008073.g009
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reactive C-12 aldehyde group. This is consistent with the observation that acetal protection of

the C-12 aldehyde in compound 11 abolished its antifeedant activity (Fig 8). Further, given the

proximity (~5.0 Å) of the thiol group of Cys684, the polarized C-12 or C-7 of CDIAL may sub-

sequently be attacked by this thiol. Overall, the docking results show a few possible ways in

which CDIAL can interact with AgTRPA1, suggesting that the reactions of the α,ß-unsaturated

1,4-dialdehyde with nearby amine and thiol side chains (consistent with the formation of thia-

zolidine when CDIAL was treated with L-cysteine methyl ester in pyridine proposed in Fig 6)

may be responsible for activating the AgTRPA1 channel. Overall, these preliminary computa-

tional results provide a molecular rationale for the importance of the dialdehyde moiety and

the α,ß-unsaturated carbonyl for CDIAL’s antifeedant activity. Nonetheless, due to the high

flexibility of the loops shaping the CDIAL binding pocket, our computational studies do not

exclude the possibility that other Lys residues such as Lys681 and Lys744 may also be involved

in reacting with 1 after some local conformational rearrangements.

Conclusion

The current study has analyzed ten semisynthetic analogs (5–13, and 16) of the α,ß-unsatu-

rated 1,4-dialdehyde cinnamodial (1) to identify the structural contributions of 1 toward its

larvicidal, adulticidal and antifeedant activity against Ae. aegypti. Two analogs, 10 and 13

exhibited more efficacious toxicity against mosquito larvae than 1. Moreover, 10 was of similar

toxic efficacy against adult females as 1. These results indicate that the reactive C-12 aldehyde

can be substituted with relatively stable moieties, such as an unsaturated methyl ketone 10 or

hydroquinone 13, without sacrificing insecticidal activity. All of the other CDIAL analogs

showed that the bicyclic drimane skeleton alone was not sufficient to induce larval or adult

toxicity.

Notably, all of the analogs possessed weaker antifeedant activity than 1 regardless of their

insecticidal activity. These results support the notion that CDIAL’s insecticidal and antifeedant

mechanisms of action are independent [21]. While our previous results associated CDIAL’s

antifeedant activity with its modulation of TRPA1 [21], this work suggests that CDIAL may

interact with TRPA1 by an initial nucleophilic attack at C-12 by a lysine residue to form a

CDIAL-TRPA1 conjugate. The activated conjugate may then undergo further attack at the C-

12 or C-7 of CDIAL by a neighboring thiol or nucleophilic residue [57].

Despite the thorough elucidation of the antifeedant structure-activity relationship against

lepidopterans [45,51,56,74,75] and the toxicant activity against insect pests [72,74,76–78] by

several groups, this is the first investigation into the observed structure-activity relationship

(SAR) of 1 against mosquitoes (Figs 7–9). Overall, we have identified several CDIAL deriva-

tives that confirm the importance of the dialdehyde moiety for mosquitocidal activity and the

α,ß-unsaturated carbonyl for antifeedant activity. The improved larvicidal activity observed in

10 and 13 suggest that the development of more stable and effective insecticidal CDIAL deriv-

atives is possible. Future studies will focus on developing a comprehensive screening library of

CDIAL derivatives and implementation of quantitative SAR to fully elucidate the insecticidal

and antifeedant SARs of CDIAL, optimize its bioactivities, and identify its active pharmaco-

phores. The latter may enable the synthesis of relatively simple synthetic molecules with simi-

lar or improved insecticidal activity compared to CDIAL, as has been recently accomplished

for the spinosyns [79,80].

Supporting information

S1 File. Semi-synthetic cinnamodial analogues supporting information file. Supporting

structures, larvicidal concentration-response curve, synthesis, characterization data (including
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