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Abstract: COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
and has infected over 200 million people, causing over 4 million deaths. COVID-19 infection has
been shown to lead to hypoxia, immunosuppression, host iron depletion, hyperglycemia secondary
to diabetes mellitus, as well as prolonged hospitalizations. These clinical manifestations provide
favorable conditions for opportunistic fungal pathogens to infect hosts with COVID-19. Interventions
such as treatment with corticosteroids and mechanical ventilation may further predispose COVID-19
patients to acquiring fungal coinfections. Our literature review found that fungal coinfections in
COVID-19 infected patients were most commonly caused by Aspergillus, Candida species, Cryptococcus
neoformans, and fungi of the Mucorales order. The distribution of these infections, particularly
Mucormycosis, was found to be markedly skewed towards low- and middle-income countries. The
purpose of this review is to identify possible explanations for the increase in fungal coinfections seen
in COVID-19 infected patients so that physicians and healthcare providers can be conscious of factors
that may predispose these patients to fungal coinfections in order to provide more favorable patient
outcomes. After identifying risk factors for coinfections, measures should be taken to minimize the
dosage and duration of drugs such as corticosteroids, immunosuppressants, and antibiotics.

Keywords: COVID-19; fungal infection; Aspergillosis; Candidiasis; Cryptococcosis; co-infection
risk factors

1. Introduction

The winter of 2019 marked the initial spread of the COVID-19 outbreak, caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. Coronavirus is
categorized as an RNA virus within the subfamily coronaviridae [2]. The novel zoonotic
outbreak has been traced to Wuhan, China, starting in December of 2019. According to the
Centers for Disease Control and Prevention (CDC), the COVID-19 pandemic has resulted
in over 35 million cases, and over 611 thousand deaths in the United States (US) alone, as
of August 2021 [3]. Individual and environmental factors play a role in an individual’s
susceptibility to COVID-19 [4]. The CDC has reported an increased risk of sickness and
death among racial and ethnic minorities, disabled individuals, and older adults, as 95% of
deaths are among individuals over the age of 45 [5].

The spread of COVID-19 occurs both via cross-species and human-to-human interac-
tion [2]. Transmission of COVID-19 occurs via respiratory droplets and aerosols containing
the virus, along with direct contact transmission [6,7]. These forms of transmission include
but are not limited to close contact with individuals sneezing or coughing, contact with host
mucosal membranes of eye, nose, mouth, and medical procedures such as bronchoscopy
that generate aerosols [8]. With an incubation period of 5–14 days, COVID-19 is seen to
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be spread by both infected asymptomatic and symptomatic individuals [9]. Symptoms
of COVID-19 include fever, cough, dyspnea, fatigue, shortness of breath, muscle aches,
among other manifestations [10,11].

Viral binding to the host target cell results in interleukin-6 (IL-6) production and the
activation of the nuclear factor kappa B (NF-κB) pathway, resulting in a proinflammatory
state characterized by an increase in macrophage and cytokine concentrations. The present-
ing cytokine storm and immune dysregulation of COVID-19 may develop acute respiratory
distress syndrome, organ failure, coagulation, and more [9]. This cytokine storm response
can lead to T-cell exhaustion, seen often in chronic infectious states. Patients with COVID-
19 have been found to have decreased levels of CD4+ T-lymphocytes (< 200 cells/µL),
which increases susceptibility for fungal infection development [12,13]. Given that CD4+ T-
lymphocytes play a role in the effective immune response to presenting pathogens, they
indicate a patient’s immunologic status and functioning [14,15].

Research suggests that viral respiratory diseases, such as COVID-19 may predispose
an individual to other fungal, bacterial, and viral coinfections and superinfections [16,17].
Superinfection, occurring subsequently, and coinfection, occurring concomitantly, cause
greater difficulty and complication in diagnosis due to an overlap of symptoms and
consequently complicate the treatment of COVID-19 [Table 1]. Such multi-infectious states
often rtesult in a worse outcome than either infection alone [18,19]. Fungal infections, for
instance, often have similar symptoms to COVID-19, such as cough, shortness of breath,
and fever, making it difficult to distinguish between the two diseased states [20,21]. A
summary of such symptoms has been provided in Table 1. Common fungal infections seen
associated with COVID-19 infection include Aspergillosis, Candidiasis, Cryptococcosis,
and Mucormycosis [21]. These infections are caused by fungi Aspergillus genera, Candida
Auris, Cryptococcus neoformans, and fungi of Mucorales order, respectively. Fungi cause
a variety of diseases in both immunocompetent and immunocompromised individuals.
Fungal infections can develop as primary or secondary to other diseases, with modes of
infection and risk varying with the pathogenic fungi that ultimately result in activation
of the immune system [22]. A multi-infected state may function to increase systemic
inflammation and consequently prolong recovery, leading to increased use of treatment
methods, need for intensive care, and risk of death [23].

Table 1. Comparison of fungal infection and COVID-19 infection via analysis of overlapping and differing symptom
presentations. [24–28].

Fungus Infection CDC-Main Fungal Symptoms Overlapping
with COVID-19

CDC-Main Fungal Symptoms
Differing from COVID-19

Aspergillus
genera Aspergillosis

Shortness of breath (SOB), cough, fever, fatigue,
runny nose, headache (HA), chest pain,

congestion, loss of smell
Wheezing, hemoptysis

Candida
auris Candidiasis Fever, chills, loss of taste, sore throat Odynophagia, oral thrush, vaginal

candidiasis
Cryptococcus
neoformans Cryptococcosis Cough, SOB, fever, HA, nausea, vomiting,

confusion, chest pain Light sensitivity

Mucorales
order Mucormycosis HA, nasal congestion, fever, cough, chest pain,

SOB, nausea, vomiting

Unilateral facial swelling, black lesions
on nasal bridge or inside the mouth,

gastrointestinal (GI) bleeding

This review seeks to analyze literature regarding occurrences and mechanisms of
fungal coinfection with COVID-19. We will characterize four common fungal infections
and explore specific factors which predispose COVID patients to these infections. Under-
standing the contributing factors to increased multi-infectious states may guide clinical
measures to reduce the risk of coinfection.
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2. Methods

We searched online biomedical databases such as PubMed, The Lancet, and Google
Scholar for journal articles. The first search included “COVID-19” and “fungal infections”.
From the search, possible explanations for the increased incidence of fungal coinfections
were explored. We focused our search on risk factors that had sufficient evidence and
excluded risk factors with minimal evidence. Search criteria regarding publication timing
were limited to the onset of the global pandemic (2019) to current studies. Supplemental
data and information published prior to 2019 were considered as needed to expound upon
fungal coinfection mechanisms. Figure 1 illustrates the flow diagram for study selection.
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3. Countries with Cases of Fungal Infections

Opportunistic fungal coinfections in patients infected with COVID-19 have been doc-
umented across continents. At first, China reported fungal coinfections in patients who
were ventilated for COVID-19. Europe and America also reported COVID-19 associated
mucormycosis (CAM). From April 2020 to September 2020, Iran reported 15 CAM cases,
most of them rhino-orbital mucormycosis. Reports of CAM cases have been documented in
Iran, Pakistan, Nepal, Bangladesh, Iraq, as well as other countries [29]. In recent literature,
India reported significantly higher cases of mucormycosis/black fungus coinfections in
critically ill patients and patients recovering from COVID-19. The prevalence of mucormy-
cosis is roughly 80 times higher in India than in other developing countries [30]. One of the
reasons for the significantly higher prevalence of CAM is the burden of diabetes mellitus
in low- and middle-income countries. Examples of low- and middle-income countries are
referenced in Figure 2. A 2019 paper showed that four out of five people with diabetes live
in low- and middle-income countries [31]. Complications of uncontrolled diabetes mellitus
can explain the increased prevalence of fungal coinfections in low- and middle-income
countries, as hyperglycemia acts as an immunosuppressant.
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Figure 2. Income grouping of countries facing human resources for health crisis (HRH) according to
World Health Organization (WHO) [32–35].

4. Root Cause of Coinfection

Researchers and physicians alike believe that fungi can infect and germinate indi-
viduals with COVID-19 due to the ideal environment they present, which include: low
oxygen states secondary to the patients’ hypoxemia, high glucose presence secondary
to diabetes (well-known risk factor) and/or steroid-induced hyperglycemia, decreased
phagocytic action of white blood cells secondary to the immunosuppression from the virus
and/or steroid treatment, acidic environment from possible diabetic ketoacidosis (DKA) or
metabolic acidosis, and high iron levels secondary to increased ferritin levels [36]. Coupled
with the ideal environment caused by the COVID-19 virus, a prolonged hospitalization
period and possible need for mechanical ventilation act as risk factors that facilitate the
germination of fungi in COVID-19 patients. A retrospective cohort study done in Wuhan,
China, analyzing 52 critically ill patients, identified that patients who had long hospital
stays (>2 weeks), especially those who were admitted to the intensive care unit (ICU) and
required mechanical ventilation, had a greater likelihood to develop a fungal coinfection.
The study found that 3/52 patients, or 5.8%, had a fungal coinfection, including A. flavus,
A. fumigatus, and C. albicans [37]. Many similar studies, which will be further discussed
throughout the paper, describe the widespread prevalence and high mortality of fungal
coinfections. This paper will now further dive into the specific ways in which COVID-19
infection may allow for fungal coinfection to occur. Figure 3 serves as a guide to the root
causes of the coinfections explored in this paper.

4.1. Oxygen/Hypoxia Induced

Patients infected with COVID-19 commonly present with hypoxemia [38,39]. Possible
clinical manifestations of hypoxemia include, but are not limited to, cyanosis, dyspnea,
tachypnea, and tachycardia, secondary to lack of oxygen content in blood or lack of tis-
sue oxygenation [40]. In contrast, some patients with COVID-19 induced hypoxia may
show minimal to no symptoms of being in a hypoxic state, referred to as silent hypoxia.
One study analyzes the possibility that inflammation and capillary damage resulting
from COVID-19 infection interfere with blood and tissue oxygenation, resulting in the
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clinical development of hypoxia [38]. Fungal pathogens involved in the development
of Aspergillosis, Candidiasis, Cryptococcosis, Mucormycosis, and various other fungal
pathogens, have developed varying adaptations to allow their survival in hypoxic host en-
vironments, further enabling the possibility of COVID-19 and fungal coinfection. Oxygen
necessity and consumption by both host and pathogen further contribute to developing
a hypoxic environment [41]. Although COVID-19 is seen to result in the secondary de-
velopment of hypoxia, research indicates the possibility that hypoxia-inducible factor-1α
(HIF-1α), involved in mammalian response to hypoxia may be protective against COVID-
19 pathogenesis due to its involvement in the downregulation of ACE-2 expression [42–44].
ACE-2 receptor has been identified as the point of entry for COVID-19. Therefore, any
disruption in high-affinity binding between COVID-19 and ACE-2 receptors may reduce
pathogenicity [45,46].
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4.2. Diabetes

Diabetes Mellitus (DM) is one of the most well-established comorbidities of COVID-19,
present in nearly 10% of hospitalized patients in international studies and one-third of
patients hospitalized in New York City [47]. It has been well-linked to increased disease
severity among COVID-19 patients, with uncontrolled hyperglycemia increasing the rate
of hospitalization among individuals affected with COVID-19, as well as the mortality
rate of those hospitalized [47,48]. Among diabetics admitted for COVID-19, those with
uncontrolled blood glucose levels throughout the hospitalization saw significantly higher
increases in mortality than those whose hyperglycemia was effectively controlled [49].

Several factors can explain the increased mortality among COVID-19 patients with un-
controlled diabetes. Firstly, hyperglycemia is a well-known immunosuppressant, inhibiting
the host immune response via several mechanisms, including glycosylation of complement
proteins leading to impaired function, impaired binding of oligosaccharides by C-type
leptin (a process necessary for several immune functions), impaired opsonophagocytosis,
and decreased production of Tumor necrosis factor alpha (TNF-a), Interleukin 10 (IL-10),
and Interferon gamma (IFN-
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Given the increased mortality rate and risk for hospital-acquired superinfection,
screening for undiagnosed diabetes is vital in caring for patients hospitalized with COVID-
19. Furthermore, tight inpatient glucose control should be maintained as much as possible
to limit hyperglycemia-mediated immunosuppression and secondary infection (Figure 4).

4.3. Steroids

Corticosteroids are used to treat various inflammatory conditions and autoimmune
diseases. During the SARS outbreak from 2002–2004, steroids were used to minimize
the deterioration of patients’ clinical condition by reducing the immune response [56]. A
2020 study found that ciclesonide, an inhaled corticosteroid, was specifically effective in
suppressing the viral load of COVID-19, as they shorten intensive care unit (ICU) stay,
stabilize hemodynamics, and shorten ventilation use in patients with COVID-19 [57].
A study conducted across ICUs in Brazil showed that intravenous dexamethasone in
combination with standard care resulted in a statistically significant number of days free of
ventilation in COVID-19 infected patients [58].

However, the use of steroids in hospitalized COVID-19 patients poses significant risk
due to both their immunosuppressive effects and the associated risk of hyperglycemia.
Both of these properties lead to an increased risk for secondary infections [53]. A 2020
review found a 3.33-fold increase in the development of invasive fungal infections in
patients who received corticosteroid therapy compared to patients who did not receive
steroids [59]. Prolonged use of steroids, in particular, may be associated with an increased
risk of infections [56].

The benefits of steroid therapy in COVID-19 patients have been debated. Researchers
evaluated the use of corticosteroid therapy in 409 patients with COVID-19 and found that
the 28-day mortality increased and viral clearance decreased [60]. In contrast, the RECOV-
ERY trial, which sampled 6245 patients, showed dexamethasone to decrease mortality in
patients hospitalized with COVID-19 by 17% and by 36% in the subsets of patients who
required invasive mechanical ventilation [61]. It has been proposed that the negative effects
of steroid therapy are due to the lack of management of steroid-induced hyperglycemia,
which negates the positive immunomodulatory effects of corticosteroid therapy [62]. Clin-
icians should be mindful of the potential adverse effects when evaluating their patients’
candidacy for steroid therapy. If clinicians do opt for steroid therapy, tight blood glucose
control should be emphasized to minimize steroid-induced hyperglycemia. They must
also be mindful of the increased risk for secondary infections and remain vigilant for any
signs of secondary infection in patients who receive steroid therapy (Figure 4).
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through impairment phagocytosis [66,67]. 

Given the potential role of free iron in severe COVID-19, it has recently been 
theorized that iron chelation could be an effective therapy for hospitalized COVID-19 
patients, as iron chelators are safe and effective in reducing free iron levels and possess 
direct antiviral properties that decrease viral binding and entry via host cell receptors [65]. 
If iron chelation were to be explored as a potential therapy, it would be wise to consider 
the effects of various iron chelators on the risk for COVID-19-associated Mucormycosis 
infections. While chelators such as deferiprone and deferasirox have been shown to 
protect mice with DKA from R. oryzae infection, others, such as deferoxamine, are used 
by R. oryzae as xinosideriphores, and thus, would further predispose patients to 
Mucormycosis [69,70,71]. It is thus more reasonable, at least from a fungal infection 
perspective, to consider deferiprone or deferasirox as potential therapies for COVID-19 
rather than deferoxamine. 

4.5. Mechanical Ventilation 

Figure 4. Factors contributing to the pathogenesis of Mucormycosis coinfections in patients with
severe COVID-19 [54,63–68].

4.4. Ferritin and Free Iron Levels

Ferritin is a well-known acute-phase reactant, with increased Ferritin levels being
shown to strongly correlate with disease severity in COVID-19 patients. Ferritin is a key
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mediator of immune dysregulation in these patients and has direct immune-suppressive
and proinflammatory effects that contribute to the COVID-19 cytokine storm [63]. Ferritin
levels are also known to be elevated in diabetic patients, which may partially explain the
increased propensity for severe inflammatory reactions and death seen in hyperglycemic
COVID-19 patients [64]. It has also been hypothesized that iron dysregulation seen in
COVID patients leads to an excess of free iron, which leads to further toxicity from reactive
oxygen species generation, increased inflammation, and thrombosis [65].

As mentioned in the section on diabetes, it is believed that hyperglycemia and DKA
lead to increased Mucormycosis susceptibility in large part through the increase of unbound
serum iron [54]. Thus, high iron states secondary to severe COVID infection may increase
Mucormycosis susceptibility even in the absence of hyperglycemia or DKA (Figure 4).
Increased levels of free iron could lead to susceptibility to other fungal pathogens as well.
The majority of pathogenic fungi require iron as an essential growth factor, and elevated
free iron levels have been shown to dampen the immune response through impairment
phagocytosis [66,67].

Given the potential role of free iron in severe COVID-19, it has recently been theorized
that iron chelation could be an effective therapy for hospitalized COVID-19 patients, as
iron chelators are safe and effective in reducing free iron levels and possess direct antiviral
properties that decrease viral binding and entry via host cell receptors [65]. If iron chelation
were to be explored as a potential therapy, it would be wise to consider the effects of
various iron chelators on the risk for COVID-19-associated Mucormycosis infections. While
chelators such as deferiprone and deferasirox have been shown to protect mice with
DKA from R. oryzae infection, others, such as deferoxamine, are used by R. oryzae as
xinosideriphores, and thus, would further predispose patients to Mucormycosis [69–71]. It
is thus more reasonable, at least from a fungal infection perspective, to consider deferiprone
or deferasirox as potential therapies for COVID-19 rather than deferoxamine.

4.5. Mechanical Ventilation

Patients receiving mechanical ventilation are at increased risk for bacterial and fungal
infections due to the increased rate of microaspiration of contaminated oropharyngeal
secretions and gastric contents [72]. This increased introduction of pathogenic microbes
likely works synergistically with the above-described risk factors to increase critically ill
COVID-19 patients’ susceptibility to fungal infections.

One study analyzing 197 critically ill COVID-19 patients in the ICU and placed on
ventilators found 68% of such patients to have positive respiratory fungal cultures, all
of which were due to superinfections as each patient had a previously negative fungal
culture. Candida species represented the most frequently isolated fungi (75.4%), followed
by molds including Aspergillus (16.4%) and Mucor (8.2%) species [73]. Though many
had positive fungal respiratory cultures, it is unclear what percentage of patients, if any,
actually developed invasive fungal infections in this study. Another study looking at 145
COVID-19 patients admitted to the ICU and placed on ventilators found that 4.8% of these
patients developed invasive pulmonary fungal infections, the vast majority of which were
Aspergillus infections [74].

Of note, these studies cannot give us a relative risk of intubation or prolonged ventila-
tion for the development of fungal respiratory colonization or invasive fungal infections
because no non-ventilated patients were studied as controls. Nevertheless, it is likely that
the increased introduction of pathogenic microbes through intubation works synergisti-
cally with the previously described risk factors to increase critically ill COVID patients’
susceptibility to fungal infections.

4.6. T-Cell Lymphopenia

Patients with COVID-19 have been shown to have significantly reduced CD4+, CD8+,

and total T-cell counts. The reduction is particularly marked in severe COVID-19 cases,
and a strong negative correlation is seen between T-cell counts and IL-6, IL-10, and TNF-α
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concentrations. The remaining T-cells in COVID-19 patients are also found to be function-
ally exhausted [12]. T-cells are known to play a vital role in the adaptive immune response
against fungal infections, with both CD4+ and CD8+ cells known to be particularly vital in
the host defense against Candida species. Furthermore, imbalances between the Th1 and
Th2 subtypes of CD4+ cells seem to predispose individuals to Aspergillus infections [75].
These findings suggest that T-Cell lymphopenia is yet another likely predisposing factor in
developing secondary fungal infections in COVID-19 patients.

5. Fungal Coinfections
5.1. Aspergillosis

Aspergillosis infections typically occur in immunocompromised individuals. Risk
factors for invasive aspergillosis include corticosteroid therapy, viral infections, and lym-
phopenia, amongst others [76]. Invasive pulmonary aspergillosis (IPA) has previously
been observed in patients with influenza and has been shown to cause more severe disease
and increased mortality when compared to patients who had influenza without invasive
pulmonary aspergillosis [77]. There are immunopathological similarities between influenza
and COVID-19, such as cytokine storm syndrome, tissue damage, lymphopenia, and im-
paired coagulation [78]. As the COVID-19 pandemic continues to spread, many patients
are at risk of coinfection with aspergillosis, which may be difficult to diagnose and worsen
patient outcomes. In one study, clinicians evaluated the incidence of IPA in 108 patients
with severe COVID-19 and found that 27.7% of these patients also developed COVID-19
associated pulmonary aspergillosis (CAPA) (Table 2).

They also found that patients diagnosed with probable CAPA had a significantly
higher 30-day mortality rate than patients with COVID-19 who did not meet the criteria
for Aspergillosis [79].

COVID-19 may result in damage to the respiratory epithelium, allowing aspergillosis
to invade tissue [80]. Treatment with steroids may be a risk factor for patients with CAPA
as one study found that three out of a total of five patients with CAPA were treated with
steroids, and all three of them died, while the other two who did not receive steroid
treatment remained alive [81]. An evaluation of COVID-19 intensive care patients found a
strong association between the use of high dose systemic corticosteroids and aspergillus
coinfection [82]. A study observing patients with COVID-19 who were admitted to an
intensive care unit found an association with receiving Azithromycin for 3 or more days
and being diagnosed with probable IPA. Researchers proposed that as Azithromycin has
immunomodulatory properties, its use may be a risk factor for developing IPA in patients
with COVID-19 [83].

Moreover, IL-6 is a proinflammatory cytokine with significantly elevated levels in
severe COVID-19 patients and has also been found to play a role in protection against
Aspergillus [84]. Tocilizumab is approved for use in patients with COVID-19 as it is a
potent IL-6 inhibitor. While Tocilizumab may be used to treat COVID-19, it may pro-
mote a secondary coinfection, such as aspergillosis, as it functions to reduce serum IL-6
levels [85]. While these therapies have been shown to contribute to coinfections, there
have been investigations into other therapies. A 2021 paper evaluated the use of thy-
mosin alpha 1 (Tα1), all-trans-retinoic acid (ATRA), and lactoferrin against opportunistic
fungal infection [86]. Tα1 demonstrated a protective effect against Aspergillus fumigatus
in an experimental murine model of bone marrow transplantation. Tα1 increased the
Th1 immune response against Aspergillus fumigatus [86]. ATRA inhibits in vitro growth
of Aspergillus fumigatus via enhancing macrophage phagocytosis. ATRA also showed a
synergistic effect with antifungal drugs such as amphotericin B and Posaconazole [86].
Lactoferrin demonstrated antifungal activity against Aspergillus fumigatus via a possible
mechanism of iron sequestration and inducing direct cell membrane damage [86]. The use
of steroids, Azithromycin, and Tocilizumab in patients with severe COVID-19 should be
monitored closely as such therapies can lead to an Aspergillus coinfection. More research is
needed to investigate the clinical use of natural immunomodulators further.
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5.2. Candidiasis

Candidiasis is a fungal infection caused by the yeast Candida. Candida commonly lives
on the skin and mucosal surfaces, including the oropharynx, intestinal lining, and urinary
tract. Candida are typically commensal fungal species; however, if certain conditions
are met, they can become invasive and cause candidiasis [87]. Hospitals across several
countries have observed COVID-19 associated candidiasis (CAC). One study found that
Candida sp. was the most prevalent COVID-19 associated fungal coinfection making up
18.8% of such cases [19]. A review found that the prevalence of CAC ranged from 0.7%
to 23.5% across several countries [88]. A CAC outbreak in ICUs at a hospital in Mexico
resulted in a mortality of 83.3% among patients with candidemia [89]. Understanding
the factors associated with driving CAC can protect COVID-19 patients from candida
coinfections, in addition to allowing clinicians to promptly diagnose and treat CAC.

Researchers from Iran found that COVID-19 patients with oropharyngeal candidiasis
(OPC) had at least one of the following risk factors: lymphocytopenia, ICU admission,
mechanical ventilation, corticosteroid use, broad-spectrum antibiotic use, or an immuno-
compromised condition (Table 2). Of these risk factors, broad-spectrum antibiotic use
was the most common as it was present in 92.5% of OPC patients [90]. As antibiotic use
may disrupt the balance between oral bacterial and yeast populations, it can create an
environment that permits candida overgrowth and infection [91]. Clinicians in Turkey
observed that COVID-19 patients who were receiving broad-spectrum antibiotics were
at an increased risk for developing candidemia [92]. In COVID-19 treatment guidelines,
the World Health Organization recommends against the use of broad-spectrum antibiotics
unless there is a clinical suspicion of bacterial infection [93]. A study done in Italy found
that three critically ill patients with COVID-19 developed candidemia after treatment with
Tocilizumab, an IL-6 inhibitor [94]. A trial assessing the susceptibility of candidiasis in IL-6
deficient mice found that IL-6 deficient mice had increased mortality and higher candida
fungal loads when compared to control mice [95].

A case-level analysis found that 25.5% of patients with candidemia were also positive
for COVID-19 and that ICU admission, mechanical ventilation, catheter placement, steroid
and immunosuppressant use were 1.3 times more common in these patients when com-
pared to patients who had candidemia but were COVID-19 negative [96]. Arastehfar et al.
also found that 74.5% of patients with COVID-19 associated candidemia infections had un-
dergone central venous catheterization [88]. Catheter placement has been implicated in the
introduction and proliferation of microorganisms such as Candida, which pose therapeutic
problems as they can form biofilms [97]. Candida colonization is common in mechani-
cally ventilated patients, as long-term ventilation is associated with a significant increase
in respiratory and urinary tract candida populations [98,99]. As previously mentioned,
Gaziano et al. demonstrated the potential of various natural immunomodulators (Tα1,
ATRA, and Lactoferrin) against opportunistic fungal coinfections [86]. In vivo and in vitro
experimental studies showed the remarkable antifungal activity of Tα1 against systemic
Candida albicans infection. Tα1 potentiates polymorphonuclear cell-induced intracellular
killing of the fungus [86]. In vitro, ATRA can be used as a fungistatic drug by inhibiting
the growth of Candida albicans. Lactoferrin, through its ability to sequester iron, showed
strong antifungal activity [86]. Clinicians must be aware of risk factors for nosocomial
candidiasis coinfections in patients with COVID-19, particularly when such patients are
treated with broad-spectrum antibiotics, corticosteroids, Tocilizumab, especially in a back-
ground of catheter placement or mechanical ventilation. More research is needed to further
investigate the clinical use of natural immunomodulators.

5.3. Cryptococcosis

Cryptococcosis is a fungal infection caused by cryptococcus species and can be fatal in
immunocompromised individuals. It is one of the more prevalent infections in patients
with HIV and AIDS [100]. Previous data found that 81% of patients with cryptococcosis
developed sepsis and that the 30-day fatality rate of such cases was 37% [101]. To date, there
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have only been a handful of case reports on COVID-19 associated cryptococcosis infections
(Table 2). While it appears to be a rare occurrence, investigating potential risk factors and
causes for COVID-19 associated cryptococcosis is important. The infection can quickly
become fatal if not identified and treated appropriately, especially in immunocompromised
individuals with HIV/AIDS.

In one case report, a patient with a history of kidney transplant and liver cirrhosis who
was COVID-19 positive later developed a cryptococcus coinfection and did not survive.
The researchers suggest that CD4+ T-cell depletion caused by COVID-19 may have been
a key driver for cryptococcosis in this case; however, they could not draw a definitive
conclusion as cryptococcal infections have also been associated with both solid organ
transplant and liver cirrhosis patients independent of COVID-19 [102]. Another case report
found that a COVID-19 positive patient treated with Tocilizumab and corticosteroids went
on to develop cryptococcemia and died within 10 days [103]. Previous research has shown
an association between high levels of IL-6 and resistance to cryptococcal infection [104].
The most recent case report presented a patient with COVID-19 who was treated with
dexamethasone and developed severe cryptococcal meningitis [105]. The authors suggest
that the impact of steroids on T-cell function should be further investigated, as T-cell
depletion has been shown to be a driving factor for cryptococcal meningitis.

5.4. Mucormycosis

Mucormycosis is an infection caused by fungi in the order of Mucorales, most fre-
quently by the Rhizopus spp., Lichtheimia spp. and Mucor spp., which account for nearly 75%
of all cases [106]. The most common route of infection is through inhalation of spores that
lead to pulmonary infection, typically in immunocompromised individuals. Cutaneous
and soft-tissue manifestations may also be common, and in diabetic populations, rhino-
orbital mucormycosis is commonly presented. In a meta-analysis, diabetes mellitus was the
most common comorbidity contributing to the development of rhino-orbital mucormycosis
in 340 of 851 (40%) patients with an odds ratio of 2.49 (95% CI 1.77–3.54) compared to the
next possible factor of having hematological malignancies with an odds ratio of 0.76 (0.44–
1.26) [106,107]. Risk factors for mucormycosis include diabetic ketoacidosis, corticosteroid
treatment, organ/bone marrow transplantation, neutropenia, trauma/burns, and elevated
levels of free iron [30,108].

Mucormycosis, popularly known as black fungal infection, is an emerging disease,
with the occurrence in the general population cited as 0.005 to 1.7 per million [104]. How-
ever, in India, the prevalence of mucormycosis is close to 0.14 cases per 1000 population,
nearly 80 times its prevalence in developed countries [109]. The surge COVID-19 cases in
India had been associated with increased reports of invasive mucormycosis post-COVID-19
and are continuously being reported to be rising [110]. While many treatment options
have been evaluated for COVID-19, glucocorticoids have been shown to improve survival
but, on the other hand, can lead to secondary fungal infections (Table 2). The combination
of SARS-CoV-2, steroid overuse, and uncontrolled diabetes mellitus has contributed to a
significant increase in the incidence of invasive mucormycosis [68]. Another contributing
virulence factor that plays an important role in the pathogenesis of mucormycosis is its
ability to uptake free unbound iron from the host. Hyper-ferritinemic states such as di-
abetic ketoacidosis, iron-chelator treatment in dialysis, or severe COVID-19 can further
predispose an individual to mucormycosis [54,63,64,111].
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Table 2. Summary table of fungal coinfection findings by country (n= total number of patients). [19,79–83,85,88,89,92,94,96,102,103,105,106,110].

Author Country Type of Fungal
Infection

Severity
(ICU, Floor, or Mixed) Study Type Total Patients (n) Fungal

Co-Infection (%) Death (%)

Bartoletti et al. Italy Aspergillosis ICU Prospective 108 27.7 44

Koehler et al. Germany Aspergillosis ICU Retrospective 19 26.3 60

White et al. United Kingdom Aspergillosis ICU Prospective 135 14.1 57.9

Dellière et al. France Aspergillosis ICU Retrospective 366 5.7 71.4

Lai & Yu

Multiple

1. France
2. Germany
3. Netherlands
4. Belgium
5. Italy
6. Austria

Aspergillosis Mixed Review

Total: 34

1. 11
2. 7
3. 7
4. 7
5. 1
6. 1

100 64.7

Musuuza et al. Multiple Candidiasis Mixed Systematic Review
and Meta-analysis N/A 18.8 N/A

Arastehfar et al.

Multiple

1. Spain
2. India
3. Iran
4. Italy
5. United Kingdom
6. China

Candidiasis Mixed Review

1. 989
2. 596
3. 1059
4. 43
5. 135
6. 17

1. 0.3
2. 2.5
3. 5
4. 8
5. 12.6
6. 23.5

1. 66.7
2. 60
3. N/A
4. N/A
5. 47.1
6. N/A

Villanueva-Loza no et al. Mexico Candidiasis ICU Retrospective 12 50 83.3

Coşkun et al. Turkey Candidiasis ICU Retrospective 627 2.6 80

Antinori et al. Italy Candidiasis Mixed Prospective 43 6.9 N/A

Seagle et al. United States Candidiasis Mixed Case-level analysis 64 100 60

Passarelli et al. United States Cryptococcosis ICU Case report 1 100 100
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Table 2. Cont.

Author Country Type of Fungal
Infection

Severity
(ICU, Floor, or Mixed) Study Type Total Patients (n) Fungal

Co-Infection (%) Death (%)

Khatib et al. Qatar Cryptococcosis ICU Case report 1 100 100

Ghanem & Sivasubramanian United States Cryptococcosis Mixed Case Report 1 100 0

Pal et al.

Multiple

1. India
2. United States
3. Egypt
4. Iran
5. Brazil
6. Chile
7. United Kingdom
8. France
9. Italy
10. Austria
11. Mexico

Mucormycosis Mixed Systematic review
and meta-analysis

Total: 99

1. 71
2. 10
3. 6
4. 3
5. 2
6. 2
7. 1
8. 1
9. 1
10. 1
11. 1

100 34

Jeong et al.

Multiple

1. South America
2. Europe
3. Asia
4. Africa
5. Australia/New

Zealand

Mucormycosis Mixed Systematic review
and Meta-analysis

1. 125
2. 172
3. 111
4. 18
5. 21

Total: 447

14 41
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Treatment for mucormycosis involves surgical debridement whenever possible, in
addition to systemic antifungal therapy with liposomal Amphotericin B as the choice of
drug [107]. However, despite surgery and antifungal treatment, the overall mortality rate
for mucormycosis remains over 50% and approaches 100% in patients with disseminated
disease and neutropenia [112]. Thus, COVID-19 treated patients who are diabetic and
were administered corticosteroids for controlling the severity of infection may be more
susceptible to mucormycosis infections with poor prognosis, further complicating the
pandemic scenario by leading to more fatalities.

6. Conclusions

COVID-19 is associated with a high number of secondary infections of both fungal
and bacterial origin. The combination of diabetes and increased use of corticosteroids to
combat infection with COVID-19 appears to increase the risk of development and aggra-
vates existing opportunistic fungal infections. Mechanical ventilation, catheter placement,
and immunosuppressant therapies appear to play a role in manifesting various fungal
coinfections in COVID-19 patients. Thus, physicians and healthcare professionals should
be aware of risk factors and the possibility of secondary infections associated with them in
treating COVID-19 patients. Careful measures should be taken in minimizing the dosage
and duration for therapeutic agents such as corticosteroids, immunosuppressants, and
broad-spectrum antibiotics. Findings from this review identify possible explanations for
the increase in fungal coinfections seen in COVID-19 infected patients and help determine
the connection between various manifestations of fungal infections, causative agents, and
risk factors.
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uncontrolled blood glucose levels throughout the hospitalization saw significantly higher 
increases in mortality than those whose hyperglycemia was effectively controlled [49]. 

Several factors can explain the increased mortality among COVID-19 patients with 
uncontrolled diabetes. Firstly, hyperglycemia is a well-known immunosuppressant, in-
hibiting the host immune response via several mechanisms, including glycosylation of 
complement proteins leading to impaired function, impaired binding of oligosaccharides 
by C-type leptin (a process necessary for several immune functions), impaired opsonoph-
agocytosis, and decreased production of Tumor necrosis factor alpha (TNF-a), Interleukin 
10 (IL-10), and Interferon gamma (IFN-  ℽ   ) [47,50–52]. It has also been proposed that 
hyperglycemia impairs T helper 1 (Th1) cell-mediated immunity, leading to accentuated 
inflammatory response and decreased antiviral response in COVID-19 patients [47]. 

Hyperglycemia has also been shown to nearly double the risk of superinfection and 
coinfection in COVID-19 patients [53]. While diabetes increases the risk for various infec-
tions, Mucormycosis and Candidiasis show a particularly strong association with the dis-
ease. In one review analyzing 101 COVID-19 associated Mucuormycocis infections, 80% 
of infected patients had pre-existing DM [36]. This relationship is believed to be due to 
hyperglycemia-induced DKA leading to increased levels of free iron in the host, which is 
particularly advantageous to the Mucormycosis-causing fungi [54]. In the case of Candida 
infections, hyperglycemia leads to the activation of a glucose-inducible protein which fa-
cilitates fungal adhesion to host tissue and subverts phagocytosis [55]. 

Given the increased mortality rate and risk for hospital-acquired superinfection, 
screening for undiagnosed diabetes is vital in caring for patients hospitalized with 
COVID-19. Furthermore, tight inpatient glucose control should be maintained as much as 
possible to limit hyperglycemia-mediated immunosuppression and secondary infection 
(Figure 4). 

4.3. Steroids 
Corticosteroids are used to treat various inflammatory conditions and autoimmune 

diseases. During the SARS outbreak from 2002–2004, steroids were used to minimize the 
deterioration of patients’ clinical condition by reducing the immune response [56]. A 2020 
study found that ciclesonide, an inhaled corticosteroid, was specifically effective in sup-
pressing the viral load of COVID-19, as they shorten intensive care unit (ICU) stay, stabi-
lize hemodynamics, and shorten ventilation use in patients with COVID-19 [57]. A study 
conducted across ICUs in Brazil showed that intravenous dexamethasone in combination 
with standard care resulted in a statistically significant number of days free of ventilation 
in COVID-19 infected patients [58]. 

However, the use of steroids in hospitalized COVID-19 patients poses significant risk 
due to both their immunosuppressive effects and the associated risk of hyperglycemia. 
Both of these properties lead to an increased risk for secondary infections [53]. A 2020 
review found a 3.33-fold increase in the development of invasive fungal infections in pa-
tients who received corticosteroid therapy compared to patients who did not receive ster-
oids [59]. Prolonged use of steroids, in particular, may be associated with an increased 
risk of infections [56]. 

The benefits of steroid therapy in COVID-19 patients have been debated. Researchers 
evaluated the use of corticosteroid therapy in 409 patients with COVID-19 and found that 
the 28-day mortality increased and viral clearance decreased [60]. In contrast, the RECOV-
ERY trial, which sampled 6245 patients, showed dexamethasone to decrease mortality in 
patients hospitalized with COVID-19 by 17% and by 36% in the subsets of patients who 
required invasive mechanical ventilation [61]. It has been proposed that the negative ef-
fects of steroid therapy are due to the lack of management of steroid-induced hyperglyce-
mia, which negates the positive immunomodulatory effects of corticosteroid therapy [62]. 
Clinicians should be mindful of the potential adverse effects when evaluating their pa-
tients’ candidacy for steroid therapy. If clinicians do opt for steroid therapy, tight blood 
glucose control should be emphasized to minimize steroid-induced hyperglycemia. They 
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