
royalsocietypublishing.org/journal/rsif
Research
Cite this article: Lausser L, Szekely R,
Klimmek A, Schmid F, Kestler HA. 2020

Constraining classifiers in molecular analysis:

invariance and robustness. J. R. Soc. Interface

17: 20190612.
http://dx.doi.org/10.1098/rsif.2019.0612
Received: 3 January 2020

Accepted: 9 January 2020
Subject Category:
Life Sciences–Mathematics interface

Subject Areas:
bioinformatics, biomathematics

Keywords:
computational learning theory, invariances,

classification, molecular profiles
Author for correspondence:
Hans A. Kestler

e-mail: hans.kestler@uni-ulm.de
†Equal contribution.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.4824036.

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Constraining classifiers in molecular
analysis: invariance and robustness

Ludwig Lausser1,†, Robin Szekely1,†, Attila Klimmek1, Florian Schmid1

and Hans A. Kestler1,2

1Institute of Medical Systems Biology, Ulm University, Ulm, Germany
2Leibniz Institute on Aging, Jena, Germany

HAK, 0000-0002-4759-5254

Analysing molecular profiles requires the selection of classification models
that can cope with the high dimensionality and variability of these data.
Also, improper reference point choice and scaling pose additional challenges.
Often model selection is somewhat guided by ad hoc simulations rather than
by sophisticated considerations on the properties of a categorization model.
Here, we derive and report four linked linear concept classes/models with dis-
tinct invariance properties for high-dimensional molecular classification. We
can further show that these concept classes also form a half-order of complexity
classes in terms of Vapnik–Chervonenkis dimensions, which also implies
increased generalization abilities. We implemented support vector machines
with these properties. Surprisingly, we were able to attain comparable or
even superior generalization abilities to the standard linear one on the 27 inves-
tigated RNA-Seq and microarray datasets. Our results indicate that a priori
chosen invariant models can replace ad hoc robustness analysis by interpretable
and theoretically guaranteed properties in molecular categorization.

1. Introduction
Accurate and interpretable diagnostic models are a major ingredient in modern
healthcare and a key component in personalized medicine [1,2]. They facilitate
the identification of optimal therapies and individual treatments. These models
are derived in long-lasting and cost-intensive data-driven processes, which are
based on the analysis of high-dimensional marker profiles. In general, these
search spaces exceed by far the possibility of manual inspection. Computer-aided
systems are required for these screening procedures.

The canonical machine learning approach for deriving diagnostic classification
models is the supervised learning scheme [3–5]. Here, a predictive model, a
classifier, abstracts diagnostic classes from a set of labelled training examples.

Due to the data-driven nature of this learning process, the quality of a classifier
is naturally dependent on the quality and amount of available samples. It can affect
the generalizability and interpretability of a model. Both characteristics are of
importance for the clinical setting. An incorrect prediction can lead to an incorrect
treatment decision. A non-interpretable model is not verifiable and does not pro-
vide new insights in the molecular background of a disease. Small data collections
might be supplemented by existing domain knowledge on the corresponding
classification task or the recording process. It can provide information about
hidden relationships or dependencies, which are too complex to be extracted
from the data itself [6,7]. This information can structure the training process of a
classification model, increasing both its accuracy and interpretability [8,9].

In the following, we focus on incorporating invariances into classification
models [10]. Other approaches focus on regression applications [11,12]. That is
the classification model and its predictions should not be affected by a specific
data transformation. Typically, the terms invariance and tolerance are distinguished
[13]. An invariant classifier completely neglects the influence of a data transform-
ation; a tolerant one only reduces its influences. Invariances can be gained by
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Figure 1. Invariant subclasses of linear classifiers. Linear classifiers Clin can be organized in a hierarchy of four structural subgroups that imply different invariances.
Each invariance counteracts the effects of a specific type of data transformation and preserves the predictions of the corresponding classification models. Some of
these invariances can also be transferred to univariate predictors. This half-order is also reflected by a decrease in the Vapnik–Chervonenkis dimension from top to
bottom, implying increased generalization ability. (Online version in colour.)
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Figure 2. Structural properties of invariant linear classifiers: the first row gives examples of general linear classifiers Clin; the second row gives examples of the
invariant concept classes Coff , Ccon and Coff>con (¼Cmon if X ¼ R2 ). Each column provides a dataset that is affected by a specific type of data transformation.
From the left to the right, the datasets are affected by global scaling, global transition and the combination thereof. Data points that receive a different class label
due to the data transformation are marked by a grey halo. (Online version in colour.)
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model restrictions [14] or by initial data transformations
[15,16]. They can also be enforced during the training process
of a classifier [17–20]. For example, invariances can be learned
by incorporating additional artificial samples in the training
process of a classification model [21,22].

Here, we impose invariance as a property of the underlying
concept class of a classifier [23,24]. We generate four subclasses
of linear classifiers that directly induce invariances to different
data transformations (figure 1). Their structural characteristics
are shown in figure 2 and listed in table 1. The theoretical prop-
erties of the concept classes and their implications on model
complexity are elaborated in §2. The performance of invariant
classifiers is evaluated in experiments with artificial datasets
and gene expression profiles (§3). The corresponding results
are shown in §4 and discussed in §5.
2. Material and methods
We use following notation throughout the article. A classifier will
be seen as a function

c :X �! Y, (2:1)

mapping from the feature space X to the label space Y. The class
label of a single sample x [ X is denoted by y [ Y. Most of the
discussion will be focused on binary classification problems (e.g.
Y ¼ {1, 0}). We assume the feature space to be embedded in an n-
dimensional Euclidian space X # Rn. A sample is represented as
a vector x = (x(1),…, x(n))T.

The optimal structure of a classifier c is typically unknown a
priori. It has to be learned in an initial training phase consisting
of two major steps. First, a concept class C has to be chosen.



Table 1. Overview in the discussed subclasses of linear classifiers. The concept classes are reported by their name, their structural properties, their invariances
and their requirements on available measurements.

name structural properties invariant to
required
features ||w ||0

(standard) linear classifier:

Clin ¼
�
1[hw,xi�t] jw [ Rn, t [ R

� — [1; n]

single threshold classifier:

Cstc ¼
�
1[wx (i)�t] j w ¼ +1, i [ {1, . . . , n}, t [ R

� — 1

offset-free linear classifier:

Coff ¼
�
1[hw,xi�0] jw [ Rn� fa : x 7! a � x, with a [ Rþ [1; n]

offset-free single threshold classifier:

Cstc>off ¼
�
1[wx (i)�0] j w ¼ +1, i [ {1, . . . , n}

� fa : x 7! a � x, with a [ Rþ 1

linear contrast classifiers:

Ccon ¼
�
1[hw,xi�t] j hw, 1i ¼ 0, w [ Rn, t [ R

� fb : x 7! xþ b, with b ¼ b � 1, b [ R [2; n]

offset-free linear contrast classifier:

Coff>con ¼
�
1[hw,xi�0] j hw, 1i ¼ 0, w [ Rn� fa,b : x 7! axþ b,

with b = b · 1, a [ Rþ, b [ R

[2; n]

pairwise comparisions:

Cmon ¼
�
1[x(i)�x(j)�0] j i = j, i, j [ {1, . . . , n}

�
fg(x) :

x(1)

..

.

x (n)

0
B@

1
CA 7!

g(x(1))

..

.

g(x(n))

0
B@

1
CA, with

8x(i), x(j) [ R : g(x(i)) , g(x(j)) () x(i) , x (j)

2
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It describes the structural properties and data-independent
characteristics of a classifier.

In a second step, a classifier c [ C has to be adapted to the
classification task. A training algorithm l has to be chosen that
fits the classifier according to a set of labelled training examples
Str ¼ {(xi, yi)}mi¼1,

l(Str, C) 7! cStr [ C: (2:2)

We omit the subscript Str if the training set is known from
the context.

The most important characteristic of a trained classifier is its
generalization performance in predicting the class label of new
unseen samples. It is typically estimated on an independent set
of test samples Ste ¼ {(x0i, y

0
i)}

m0
i¼1. A possible quality measure

would be the classifiers empirical accuracy

Aemp(c, Ste) ¼ 1
jStej

X
(x,y)[Ste

1[c(x)¼y]: (2:3)

Here, 1[p] denotes the indicator function, which is equal to 1 if
p is true and equal to 0 otherwise.

2.1. Invariant concept classes
Besides the overall generalization performance of a classifier, the
invariances of its underlying concept class can be used for model
selection. The predictions of the derived invariant classifiers will
be unaffected by a family of data transformations [10]. For our
analysis, we will use the following definition [14]:
Definition 2.1. A classifier c :X ! Y is called invariant against a
parameterized class of data transformations fu :X ! X if

8 u [ Q, 8 x [ X : c(fu(x)) ¼ c(x): (2:4)

A concept class C is called invariant against fθ if each c [ C is
invariant against fθ.

Definition 2.1 calls a classifier invariant if its predictions are
invariant against the influence of a parameterized class of
data transformations. That is the classifier must be invariant
against the influence of a data transformation for an unknown
value of θ∈Θ. This implies that an invariant classifier is able
to handle sample wise transformations. For a given test set
Ste ¼ {(xi, yi)}m

0
i¼1, an invariant classifier can neglect the effects

of m0 distinct data transformations

8i [ {1, . . . , m0} : c(fui (xi)) ¼ c(xi): (2:5)

A common parameter �u that holds for all samples in Ste does not
have to be estimated. A classifier invariant against fθ is addition-
ally invariant against sequences of data transformations

8ui, u j [ Q : c(fui (fu j (x))) ¼ c(fu j (x)) ¼ c(x): (2:6)

A concept class C that is invariant against fθ summarizes all
classifiers that share this invariance property. If this invariance
can be traced back to a common structural characteristic of the
classifiers the concept class can directly be used for training a
classification model that is guaranteed to be invariant against fθ.

Here, we present structural subclasses of linear classifiers that
directly lead to different invariances (table 1). Note that classi-
fiers which constantly predict one particular class label (e.g.
8x : c(x) ¼ 1 or 8x : c(x) ¼ 0) are invariant against all possible
data transformations fu :X �! X but otherwise do not make
any sense. Constant classifiers will, therefore, be excluded from
the following analysis.
2.2. Linear classifiers
Linear classifiers separate the feature space via linear hyper-
planes into two classes Y ¼ {0, 1}. They are given by two
parameters. The norm vector w=kwk2, w [ Rn determines the
direction of the hyperplane. The threshold t [ R can be seen as
the distance from the hyperplane to the origin.

Definition 2.2. The concept class of linear classifiers Clin is
given by

Clin ¼ {1[hw,xi�t] jw [ Rn, t [ R}: (2:7)
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The concept class Clin is one of the oldest ones for classifi-
cation [25]. Its theoretical properties were, for example,
analysed by Minsky & Papert [26] who demonstrated that Boo-
lean functions exist that cannot be learned by linear classifiers
(XOR problem). The flexibility of linear classifiers was first ana-
lysed by Cover [27]. It was proven that the probability of
finding a linear classifier that perfectly separates a randomly
labelled dataset increases with the dataset’s dimensionality.

Linear classificationmodels are the underlying concept class for
many popular training algorithms. For example, the perceptron
[28], the linear discriminant analysis [25] and the support vector
machine [29] were initially designed for linear classifiers. Although
these training algorithms assume Clin to be homogeneous, there
exist different ways for separating the concept class into distinct
subclasses. For example, linear classifiers can be distinguished by
the number of features that are involved in their decision processes
kwk0 ¼

P n
i¼11[w(i)=0]. Features that receive a weight of zero do not

influence the decision process and can be omitted. The exclusion
ofnoisyormeaningless features [30], the search forhighlypredictive
markers [31] or the reduction of the model complexity [32] are
possible reasons for a feature reduction to ||w||0≤ k < n.

Linear classifiers that rely on exactly one feature (||w||0 = 1)
are summarized in the concept class of single threshold
classifiers Cstc [33].

Definition 2.3. The concept class of single threshold classifiers
Cstc , Clin is defined as

Cstc ¼ {1[wx(i)�t] jw ¼ +1, i [ {1, . . . , n}, t [ R}: (2:8)

These classifiers are typically used as base learners for classi-
fier ensembles [33–35]. In this context, they are also called
decision stumps or single rays. Single threshold classifiers are
the only linear classifiers suitable for analysing single features
independently.

Classifiers with ||w||0 = 0 are typically omitted. For technical
reasons, we will treat a linear classifier with ||w||0 = 0 as a con-
stant classifier (e.g. 8x : c(x) ¼ 1 or 8x : c(x) ¼ 0) in our analysis.

2.3. Invariant subclasses of linear classifiers
The following section provides an overview on the analysed
invariant subclasses of linear classifiers. For each concept class,
a theoretical proof on their invariance properties is given. An
illustration of these concept classes can be found in figure 2.
Their properties are summarized in table 1.

2.3.1. Offset-free linear classifiers
The first invariant subclass of Clin is the concept class of offset-
free linear classifiers Coff, which is characterized by fixing the
threshold to t = 0.

Definition 2.4 (Coff). The concept class of offset-free linear
classifiers Coff , Clin is defined as

Coff ¼ {1[hw,xi�0] jw [ Rn}: (2:9)

Fixing the threshold t = 0 forces the hyperplanes of offset-free
linear classifiers through the origin, which leads to invariances
different from those of general linear classifiers.

Theorem 2.5. A non-constant linear classifier c [ Clin is invariant
against global scaling

fa : x 7! a � x, (2:10)

with a [ Rþ if and only if c [ Coff .
Proof of Theorem 2.5. In order to prove the invariance of a linear
classifier to a certain type of data transformation fθ, we have to
prove that

8x8u : hw, fu(x)i � t () hw, xi � t: (2:11)

For global scaling, we get

hw, a � xi � t () a � hw, xi � t (2:12)

()hw, xi � t
a
: (2:13)

For a general linear classifier c [ Clin with t≠ 0, there exists at
least one a [ Rþ for which t/a≠ t (e.g. a = |t|). For the case of
t = 0, a linear classifier is offset-free c [ Coff . ▪

Omitting an offset (t = 0) makes a linear classifier invariant
against the global scaling of test samples, while a standard
linear classifier c [ Clin might be misguided here.

Offset-free linear classifiers can be constructed independently
of the number of involved features ||w||0≥ 1. In particular, single
threshold classifiers can fulfil the structural property of Coff.

Definition 2.6 (Cstc>off). The concept class of offset-free single
threshold classifiers Cstc>off , Clin is defined as Cstc > Coff,

Cstc>off ¼ {1[wx(i)�0] jw ¼ +1, i [ {1, . . . , n}}: (2:14)

Although single threshold classifiers c [ Cstc>off allow a
scale-invariant classification according to single features, their
applicability is limited due to the fixed threshold of t = 0. An
alternative might be the usage of offset-free linear classifiers
with ||w||0 = 2, which are, for example, used for constructing
fold-change classifiers [36].

2.3.2. Linear contrast classifiers
The second invariant subclass is the concept class of linear
contrast classifiers Ccon [14].

Definition 2.7 (Ccon). The concept class of linear contrast classi-
fiers Ccon , Clin is defined as

Ccon ¼ 1[hw,xi�t] j
Xn
i¼1

w(i) ¼ 0, w [ Rn, t [ R

( )
: (2:15)

The norm vector of a linear contrast classifier is additionally
constrained by

Pn
i¼1 w

(i) ¼ 0. In the context of variation analysis,
such linear mappingsw are called contrasts [37,38]. The structural
properties of a linear contrast classifier induce the invariance
of Ccon.

Theorem 2.8. A non-constant linear classifier c [ Clin is invariant
against global transition

fb : x 7! xþ b (2:16)

with b [ R, b ¼ b � 1 if and only if c [ Ccon.

Proof of Theorem 2.8. A global transition affects the decision of a
linear classifier in the following way:

hw, xþ bi � t ()hw, xi þ hw, bi � t (2:17)

()hw, xi þ
Xn
i¼1

w(i)b � t (2:18)

()hw, xi þ b
Xn
i¼1

w(i) � t (2:19)

()hw, xi � t� b
Xn
i¼1

w(i): (2:20)
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For a linear contrast classifier c [ Ccon (
Pn

i¼1 w
(i) ¼ 0), the second

term on the right-hand side is equal to zero. The scalar product is
equivalent to 〈w, x〉 and the classification of the transformed
sample is equivalent to the classification of the original sample.

For a general linear classifier c [ Clin (
Pn

i¼1 w
(i) = 0),

there exists a b [ R (e.g. b = 1) for which d ¼ b
Pn

i¼1 w
(i) = 0.

This corresponds to a replacement of the original threshold t
by t − d≠ t. ▪

The predictions of the linear contrast classifier c [ Ccon are
not affected by the individual transitions of the single samples
while predictions of a general linear classifier c [ Clin can be
switched in both directions.

It is worth noting that there are no single threshold classifiers
that can fulfil the additional constraint of Ccon. As a consequence,
at least ||w||0≥ 2 features are needed for constructing a linear
classifier that is invariant against global scaling. In the two-
dimensional case ||w||0 = 2, the concept class is restricted to
classifiers of type c(x) ¼ 1[w(i)x(i)þw(j)x(j)�t], w(i) =−w( j ), i≠ j, i,
j∈ {1,…, n}, t [ R.
17:20190612
2.3.3. Offset-free contrast classifiers
The third invariant concept class consists of those linear classi-
fiers that fulfil the constraints of both Coff and Ccon. It can be
seen as the intersection of both concept classes.

Definition 2.9 (Coff>con). The concept class of offset-free contrast
classifiers Coff>con , Clin is defined as Ccon > Coff ,

Coff>con ¼ 1[hw,xi�0] j
Xn
i¼1

w(i) ¼ 0, w [ Rn

( )
: (2:21)

As a classifier c [ Coff>con fulfils the structural properties of
Ccon and Coff, it is invariant to both global scaling and global tran-
sition. In addition, it is invariant against combined effects.

Theorem 2.10. A non-constant linear classifier c [ Clin is invariant
against linear transformation that combine a global scaling and a
global transition

fa,b : x 7! axþ b (2:22)

with a [ Rþ, b [ R, b ¼ b � 1 if and only if c [ Coff>con.

Proof of Theorem 2.10. In case of linear transformations as
described in equation (2.22), the decision of a linear classifier is
influenced in the following way:

hw, axþ bi � t () hw, axi þ hw, bi � t (2:23)

() ahw, xi þ
Xn
i¼1

w(i)b � t (2:24)

()hw, xi þ b
a

Xn
i¼1

w(i) � t
a

(2:25)

()hw, xi � t
a
� b

a

Xn
i¼1

w(i): (2:26)

For a = 1, the proof is now equivalent to the proof of theorem 2.8
for the invariance of Ccon. For all other a [ Rþ n {1}, the classifier
is invariant if

t ¼ � b
a� 1|fflfflfflffl{zfflfflfflffl}
:¼d

Xn
i¼1

w(i), (2:27)

where d [ R can be either positive or negative for different data
transformations. The only unique threshold can be generated by
forcing
Pn

i¼1 w
(i) ¼ 0, which results in t = 0. The general linear

classifier is, therefore, only invariant against fa,b, if c [ Coff>con. ▪

As Coff>con , Ccon, the concept class again requires a minimal
number of ||w||0≥ 2 features for constructing a non-constant
classifier. For the two-dimensional case ||w||0 = 2, the concept
class is restricted to classifiers of type c(x) ¼ 1[w(i)x(i)þw(j)x(j)�0],
w(i) =−w( j ), i ≠ j, i, j∈ {1,…, n}.

2.3.4. The concept class of pairwise comparisons
We change the line of argumentation for introducing the fourth
invariant concept class, which we call Cmon. We first specify
Cmon by its invariances and show afterwards that this subclass
of linear classifiers can be defined by its structural properties.

Definition 2.11 (Cmon). The concept class Cmon , Clin is defined as
the subset of non-constant linear classifiers that is invariant against
feature-wise strictly monotone increasing functions fg, where

fg(x) :
x(1)

..

.

x(n)

0
B@

1
CA 7!

g(x(1))

..

.

g(x(n))

0
B@

1
CA, (2:28)

and g :R ! R fulfills

8x(i), x(j) [ R : g(x(i)) , g(x(j)) () x(i) , x(j): (2:29)

The concept class Cmon consists of linear classifiers that are
invariant against all feature-wise strictly monotone increasing
effects. This set of data transformations especially includes
feature-wise nonlinear effects as, for example, strictly monotone
polynomial or exponential transformations. The concept class
Cmon is, therefore, at least as restrictive as Coff>con and shares its
invariance property with rank-based classifiers [15]. Theorem
2.12 states that Cmon is a real subset of Coff>con.

Theorem 2.12. The concept class Cmon is given by

Cmon ¼
�
1[w(i)x(i)þw(j)x(j)�0] jw(i) ¼�w(j), i= j, i, j[ {1, . . . , n}

�
:

(2:30)

Proof of Theorem 2.12. The proof of Theorem 2.12 is split into three
parts. First, we show that no non-constant linear classifier
c [ Cmon with ||w||0 = 1 exists. In a second step, we prove that
the structural properties of a classifier c [ Cmon with ||w||0 = 2
match exactly the description given in equation (2.30). Finally,
we prove that there is no non-constant classifier c [ Cmon with
||w||0≥ 3.

Case ||w||0 = 1: a linear classifier c [ Cmon has to be invar-
iant to all feature-wise strictly monotone increasing functions
fg. In particular, it has to be invariant to global scaling and
global transition Cmon # Coff>con. As there is no non-constant
linear classifier c [ Coff>con with ||w||0 = 1, there cannot be a
non-constant linear classifier c [ Cmon with ||w||0 = 1.

Case ||w||0 = 2: the structural properties of Coff>con $ Cmon

for ||w||0 = 2 lead to the description of Cmon given in equation
(2.30). The decision criterion can be rewritten as c(x) ¼ 1[x(i)�x(j) ].
As g is strictly monotone increasing

c(fg(x)) ¼
1 if g(x(i)) . g(x(j))()x(i) . x(j)

1 if g(x(i)) ¼ g(x(j))()x(i) ¼ x(j)

0 if g(x(i)) , g(x(j))()x(i) , x(j)
,

8><
>: (2:31)

which corresponds to c( fg(x)) = c(x).
Case ||w||0≥ 3: for simplicity, we will omit feature dimen-

sions that do not have any influence on the decision rule (w(i) =
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0). Wewill prove that for each linear classifier c [ Coff . Cmon with
||w||0 = n≥ 3 a sample x [ Rn and a strictly monotone function g
exist for which c(x)≠ c( fg(x)). Without loss of generality, we will
show that

9x9g :
Xn
i¼1

w(i)x(i) � 0 and
Xn
i¼1

w(i)g(x(i)) , 0: (2:32)

As ||w||0 = n≥ 3, there are at least twoweightswhich share the
same sign. Bypermuting the ordering of the features,we can ensure
that sign(w(1)) = sign(w(n)). We construct a sample x [ Rn with

x(1) , x(2) ¼ � � � ¼ x(n�1) ¼ 0 , x(n): (2:33)

We furthermore construct a strictly monotone function g with
g(0) = 0. This implies g(x(1)) < 0 and g(x(n)) > 0. The decision criterion
in equation (2.32) can now be reduced to

�w(1)

w(n) x
(1)|fflfflfflfflfflffl{zfflfflfflfflfflffl}

.0

� x(n) and �w(1)

w(n) g(x
(1))|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

.0

. g(x(n)): (2:34)

As x(n) and g(x(n)) can be randomly chosen from Rþ, we can find a
pair of numbers that fulfil these equations. Similar proofs can be
given for samples of class 0. ▪

In contrast to the other invariant concept classes Cmon is
directly coupled to a fixed number of features ||w||0 = 2. It is
restricted to the unweighted pairwise comparison of twomeasure-
ments x(i) and x( j ). As a consequence, the training for a classifier
c [ Cmon is directly coupled to a feature selection process for
higher dimensional settings (n > 2). For a two-dimensional sub-
space, exactly two classification models exist (w(i) =−w( j ),
w(i) + 0). They both share the same decision boundary.
2.3.5. Vapnik–Chervonenkis dimension
Motivated by the need for invariance, we can further show that
the identified subclasses also form a half-order of complexity
classes which in turn can lead to an increased generalization abil-
ity. In general, the complexity of the invariant concept classes
decreases with imposing additional invariances (figure 1).
This, in turn, leads to a decrease in their susceptibility to
overfitting [39].

The invariant concept classes can be seen as real subclasses of
Clin. Here, we provide their Vapnik–Chervonenkis dimension
(VCdim) as a combinatorial complexity measure [29] and show
that they are lower than the VCdim of Clin. The VCdim is closely
related to the probably approximately correct (PAC) learning
framework [40], where it can be used to provide upper bounds
on the generalization performance of a classifier. In the case of
two classifiers with equal empirical performance, the classifier
with the lower VCdim should be preferred [41].

A VCdim(C) ¼ m gives the maximal number of arbitrarily
chosen but fixed data points m that can be given all 2m possible
labellings when classified by members c [ C.

Our proofs are mainly based on the following theorem [29],
where X ¼ Rn:

Theorem 2.13. Let X be a finite-dimensional real vector space and let
U be a finite-dimensional vector space of functions from X to R.

Let further

V ¼ {v :X ! {� 1, 1} : v(x) ¼ sign (u(x)), u [ U, x [ X}:

Then VCdim(V) ¼ dim(U):

Proof. We follow the original proof here [29]: we first prove
dim(U) � VCdim(V) by showing that for all d � dim(U), there
are points x1,…, xd such that for arbitrary labellings yi∈ {− 1,
1}, i = 1,…, d of these points, there is a function u∈U with
u(xi) = yi.

Pick d linearly independent functions u1, . . . , ud [ U: Then,
as these functions are linearly independent, there are points
x1,…, xd∈X such that the vectors

u1(x1)

..

.

ud(x1)

0
B@

1
CA, . . . ,

u1(xd)

..

.

ud(xd)

0
B@

1
CA [ Rd

are linearly independent in Rd: Therefore, their span is the whole
Rd and there are coefficients ai [ R with

yi ¼
Xd
j¼1

ajuj(xi), i ¼ 1, . . . , d:

Setting u(x) ¼ Pd
j¼1 ajuj(x) [ U proves the claim.

We now prove VCdim(V) � dim(U): Set k ¼ dim(U)þ 1 and
assume the contrary, namely VCdim(V) � k.

Thus, for any set of labels yi ∈ {− 1, 1}, there is a function
v [ V, v(x) ¼ sign(u(x)), u [ U and points xi∈X such that

sign(u(xi)) ¼ yi, i ¼ 1, . . . , k: (2:35)

For these points x1, . . . , xk, define the vector space

~U ¼
u(x1)

..

.

u(xk)

0
B@

1
CA [ Rk :u [ U

8><
>:

9>=
>;

* +
, Rk, (2:36)

where 〈 · 〉 denotes the linear span. By assumption,
dim( ~U) � dim(U) , k: Hence, there is a non-zero vector
a [ ~U

?
in the orthogonal complement of ~U, i.e.

0 ¼
Xk
i¼1

a(i)u(xi), for all u [ U: (2:37)

Then, by equation (2.35), there is a function u with
sign u(xi) ¼ sign (a(i)), i ¼ 1, . . . , k: Thus,

0 ¼
Xk
i¼1

a(i)sign (a(i)): (2:38)

As a≠ 0, we have a contradiction. ▪

Using theorem 2.13, we are now able to provide the VCdim
of the invariant concept classes of linear classifiers:

Theorem 2.14. Let n be the dimensionality of the input space X # Rn.
The VC dimensions of the major concept classes given above (table 1)
are

(a) VCdim (Clin) ¼ nþ 1:
(b) VCdim (Coff) ¼ n:
(c) VCdim (Ccon) ¼ n:
(d) VCdim (Coff>con) ¼ n� 1:
(e) VCdim (Cmon) � max {mj2m � n(n� 1)}.

Proof of Theorem 2.14. In the proof, we make use of theorem 2.13,
using a different vector space of functions U in every case.

(a) This result for general linear classifiers is well known in the
literature [39].

(b) For the concept class Coff , we chose the space of linear map-
pings u :Rn ! R for U. It is well known that this space has
dimension n [42]. Then theorem 2.13 implies the assertion.

(c) Consider the vector space X ¼ h(1, . . . , 1)i? which is the
orthogonal complement of the space spanned by



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:2

7
(1, . . . , 1) [ Rn. Note that dim(X) ¼ n� 1 and there holds

Xn
i¼1

w(i) ¼ 0, w [ X: (2:39)

In theorem 2.13, we take for U the space of affine mappings
from X to R [42], which has dimension (n− 1) + 1 = n.

(d) We argue exactly as in step (c), except that we take for U
the space of linear mappings from X to R [42], which has
dimension n− 1.

(e) For a fixed set of m samples X ¼ {xk}
m
k¼1 and fixed pair of fea-

ture dimensions i≠ j, with 8k : x(i)k = x(j)k the classifiers in Cmon

can result in at most two labellings

ðaÞ yk ¼ 1[x(i)k �x(j)k ]
ðbÞ �yk ¼ 1[x(j)k �x(i)k ] ¼ 1[x(i)k ,x(j)k ] ¼ :1[x(i)k �x(j)k ],

which can be seen as a random labelling and its negation. In this
way, Cmon can generate at most n(n− 1) distinct labellings in Rn.
The set X can, therefore, receive all 2m distinct labellings if 2m≤
n(n− 1). The maximal set size max{m|2m≤ n(n− 1)} is therefore
an upper limit to VCdim(Cmon). ▪
0190612
2.4. Support vector machines
In the following, we consider (linear) support vector machines
(SVMs) [29] as training algorithms for the invariant concept
classes. SVMs are standard training algorithms for linear classi-
fiers. In its original form, it is designed for maximizing the
margin between the training samples and the hyperplane of a
linear classifier. Several modifications of the original training
algorithm exist [43]. For our experiments, we have chosen two
L1 soft-margin SVMs.
2.4.1. R2-support vector machines
The original SVM algorithmmaximizes the margin by a regulariz-
ation of the Euclidean norm ||w||2. It will be denoted as R2-SVM
in the following. The training algorithm can be summarized by the
following constrained optimization criterion:

w,t,j
min

1
2
kwk22 þ C

Xn
i¼1

ji (2:40)

s.t. 8i : yi(wTxi � t) � 1� ji (2:41)

8i : ji � 0: (2:42)

In this context, we assume class labels Y ¼ {þ1, �1}. The
parameter ξi denotes the slack variables that enable the use of
SVMs in the non-separable case by measuring deviation from
the ideal condition. C is the cost parameter which induces a
trade-off between margin maximization and minimization of
the classification error.
2.4.2. R1-support vector machines
A feature selecting version of the SVM replaces the regularization
of the Euclidian normby the regularization of theManhattan norm
||w||1. We will use the term R1-SVM throughout the manuscript.
The corresponding objective replaces equation (2.40) by

w,t,j
min kwk1 þ C

Xn
i¼1

ji: (2:43)

The Manhattan norm is more sensitive to small weights near zero.
The corresponding features will be removed from the linear
decision boundary (w(i) = 0).
2.4.3. Training invariant support vector machines
The SVM training algorithm for linear classifiers can be restricted
to invariant subclasses by additional constraints. These con-
straints reflect the structural properties of the subclasses.

s.t. t ¼ 0 if c [ Coff (2:44)

s.t.
Xn
i¼1

w(i) ¼ 0 if c [ Ccon (2:45)

s.t. kwk0 ¼ 2 if c [ Cmon (2:46)

The trained SVMs will be denoted as SVMoff, SVMcon, SVMoff>con

and SVMmon. Note that a constraint has to be added for an invar-
iant subclass and subclasses thereof. For example, if the SVM
training algorithm should be applied to a classifier c [ Coff>con

both constraints for Coff and Ccon have to be added.
3. Experiments
We have conducted experiments on artificial and real datasets
in order to characterize how the choice of an invariant concept
class influences the training of a linear SVM. All experiments
were performed with help of the TunePareto software [44].

3.1. Experiments on artificial datasets
The performance of the invariant concept classes was exam-
ined in a sequence of controlled experiments on artificial
datasets. A summary on all parameters is given in table 2.
For these experiments, two normal distributions N (cy, I),
y [ Y were chosen as class wise distributions. Here, the class
wise centroids are given by cy [ Rn. The covariance of the
classes is given by the identity matrix I [ Rn�n. The centroid
of the positive class c1 ¼ (c(1)1 , . . . , c(n)1 )T is randomly selected
according to a feature wise uniform distribution with
c(i)1 � U(0, 10), i ¼ 1, . . . , n. With that, it is ensured that the
components of the centroid of the positive class are always
positive. The centroid of the negative class is chosen in depen-
dency of c1. Is is given by c0 = c1 + dw/||w||2, where
w � N (0, 1). In this way, the Euclidean distance between
both centroids is ensured to be ||c1− c0||2 = d.

A single experiment is parameterized by the dimensional-
ity of the feature vectors n∈ {2, 10, 100} and the distance
between the class centroids d. A set of 2 × 50 (two classes
with 50 samples each) training samples was used for adapt-
ing the SVM classifiers and a set of 2 × 50 test samples was
used for evaluating their accuracy. For each dimensionality
n and distance d, the experiment was repeated for 10 different
pairs of class centroids r∈ {1,…, 10}.

3.1.1. Experiments without noise
In this experiment, the training and test sets were analysed in
their original form. The distance between the class centroids
was varied d∈ {1, 1.1,…, 5}. The performance of an invariant
SVM is compared to its standard version. That means, an
invariant R2-SVM is compared to the standard version of
the R2-SVM and an invariant version of the R1-SVM is
compared to the standard version of the R1-SVM.

3.1.2. Experiments with noise
The artificial datasets were also used for experiments with
different types of noise (table 2). For this purpose, the samples
of a dataset were partially replaced by noisy copies. The influ-
ence of a noise type was regulated by a common noise



Table 2. Summary of the analysed experiments on artificial datasets.

experiments without noise

tested classifiers:

concept classes: C [ {Clin, Coff , Ccon, Coff>con, Cmon}
training algorithms: R2-SVM, R1-SVM

dataset parameters (varied): dataset parameters (constant):

dimensionality: n∈ {2, 10, 100} samples: m = 2 × 50

distance of centroids: d∈ {1, 1.1,…, 5}

repetitions: r∈ {1,…, 10} summary:

number of experiments: 1 23 000

experiments with noise

tested classifiers:

concept classes: C [ {Clin, Coff , Ccon, Coff>con, Cmon}
training algorithms: R2-SVM, R1-SVM

dataset parameters (varied): random parameters (per sample):

experiment: ex∈ {cl., sam.}

noise types: id∈ {1,…, 5} a � U(10�5, p)

noise parameter: p∈ {0,…, 5} a � U(10�5, p)

dimensionality: n∈ {2, 10, 100} b � U(�p, p)

repetitions: r∈ {1,…, 10} c � U(10�5, p)

dataset parameters (constant): summary:

samples: m = 2 × 50 number of experiments: 18 000

distance of centroids: d = 4

noise types (id)

1. none: f : x 7! x

2. scaling: fa : x 7! a � x
3. transition: fb : x 7! xþ b, with b ¼ b � 1, b [ R

4. scaling and transition: fa,b : x 7! a � xþ b, with b ¼ b � 1, b [ R

5. exponential: fc : x 7! e0:2c�x
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parameter p. Experiments for six different noise levels were
conducted ranging from p = 0 (no noise) to p = 5 (maximal
noise). The distance between the class centroids was fixed to
d = 4. Experiments were conducted for two different settings:

Sample wise noise: In this experiment, the individual
samples of a test set Ste were affected by individual noise
effects θi∈Θ resulting in

S0
te ¼ {(fui (x

0
i), y

0
i)}

m0
i¼1: (3:1)

Class wise noise:Here, the samples of a pair of training and
test sets Str, Ste were affected by class wise noise effects.
These effects were chosen individually for training and test
samples θy, ψy∈Θ resulting in

S0
tr ¼ {(fuyi (xi), yi)}

m
i¼1, and S0

te ¼ {(fcy0
i
(x0i), y

0
i)}

m0
i¼1: (3:2)
3.2. Experiments on transcriptome datasets
We have conducted experiments on 27 gene expression data-
sets, consisting of 22 microarray and five RNA-Seq datasets.
A summaryof the datasets is given in table 3.Weused standard
and established preprocessingmethodologies for the transcrip-
tomedata [67]: RMA is used for gene expressionmeasurements
based on microarrays (luminescence measurements) and
includes an internal log-transformation [68], for the count
data from RNA-Seq experiments, we used RSEM which does
not include an internal log-transformation [69,70].

As reference k-nearest neighbours classifiers [71] (kNN)with
k∈ {1, 3, 5}, random forests [72] (RF) with nt∈ {100, 200, 300}
trees and stacked auto-encoders [73] (SAE) with three layers
of u, du=4e, du=16e units and u∈ {100, 500, 1000} were chosen.

All classifiers were evaluated in 10 × 10 cross-validations
[3]. For this experiment, a dataset S ¼ {(xi, yi)}mi¼1 is split
into 10 folds of approximately equal size. Nine of them are
combined to a training set Str while the remaining one is
used as a test set Ste for evaluation. The procedure is repeated
for 10 permutations of S.
4. Results
4.1. Results on artificial datasets
The results for the noise-free experiments on artificial data-
sets are shown in figure 3. The accuracy differences
between SVMlin and the invariant SVMs are given. A positive
value denotes a higher accuracy of the SVMlin. In general, R2-



Table 3. Summary of the used transcriptome microarray and RNA-Seq datasets. The classes, class wise sample sizes and number of features are shown.

id tissue

class labels samples features

(y0, y1) (m0, m1) (n)

d1: bone marrow [45] acute myeloid leukaemia (AML), mutated AML 21, 57 22 215

d2: breast [46] non-inflammatory, inflammatory 69, 26 22 215

d3: bladder [47] Ta, T1<T2+ 20, 20 7129

d4: tongue [48] normal mucosa, oral tongue squamous cell carcinoma 26, 31 12 558

d5: soft tissue [49] dedifferentiated liposarcoma, well-differentiated liposarcoma 40, 52 22 215

d6: lymph node [50] intermediate, monoclonal B-cell lymphocytosis 48, 44 22 215

d7: brain [51] healthy, schizophrenia 15, 13 12 558

d8: kidney [52] non-tumour kidney tissue, renal cell carcinoma (RCC) 23, 69 22 215

d9: brain [53] inbred alcohol-preferring, inbred alcohol-non-preferring 29, 30 8740

d10: head and neck [54] normal mucosa, head and neck squamous cell carcinoma 22, 22 12 558

d11: lung [55] normal tissue, adenocarcinoma 49, 58 22 215

d12: lung [56] adenocarcinoma, squamous cell carcinoma 14, 18 12 558

d13: blood [57] healthy, severe asthma 18, 17 32 321

d14: blood [58] diffuse large B-cell lymphoma, follicular lymphoma 19, 58 7129

d15: prostate [59] non-tumour prostate tissue, prostate tumour 50, 52 12 558

d16: intestinal mucosa [60] non-cystic fibrosis, cystic fibrosis 13, 16 22 215

d17: fibroblasts [61] healthy, macular degeneration 18, 18 12 558

d18: prostate [62] non-recurrent cancer, recurrent cancer 40,39 22 215

d19: colon [63] microsatellite instable tumour, microsatellite stable tumour 13, 38 7071

d20: stomach [64] non-cardia tumour tissue, cardia tumour tissue 72, 62 22 215

d21: stomach [64] normal gastric glands, tumour tissue 134, 134 22 215

d22: skin [65] melanoma, metastasis 25, 24 22 215

TCGA RNA-Seq [66]

d23: kidney chrom. RCC (ChRCC), clear cell RCC (CCRCC) 91, 606 20 655

d24: kidney ChRCC, papillary RCC (PRCC) 91, 323 20 632

d25: kidney CCRCC, PRCC 606, 323 20 684

d26: bile duct, pancreas cholangiocarcinoma, pancreatic cancer 45, 183 20 439

d27: liver, pancreas HCC, pancreatic cancer 424, 183 20 657
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SVMs and R1-SVMs react comparably on the test scenarios. It
can be observed that the accuracy differences decrease with
higher numbers of dimensions. Higher differences occur for
larger distances of the class centroids. Over all R2-SVMs
and R1-SVMs, both bias and variance decrease for increasing
dimensionality. For n = 2, SVMoff, SVMcon, SVMcon>off

achieve mean differences of 9.9% (IQR: [17.0%, 1.0%]),
10.1% (IQR: [17.0%, 1.0%]), 29.4%, (IQR: [42.0%, 18.0%]).
For n = 100, they decrease to 0.2% (IQR: [1.0%, −1.0%]),
0.2% (IQR: [1.0%, −1.0%]), 0.2%, (IQR: [2.0%, −1.0%]).

The behaviour of the SVMmon can be seen as an exception to
these observations. Restricted to exactly two input dimensions,
the SVMmon cannot take advantage of the high-dimensional
setting. Here, the bias and variance do not decline for higher
dimensionality. For n = 2, a mean difference of 29.4% (IQR:
[42.0%,18.0%]) can be observed. For n = 100, it achieves 14.9%
(IQR: [21.0%,8.0%]).

The results of the noise experiments on artificial data are
shown in figure 4. Figure 4a provides the results for the
sample wise noise. In general, these experiments confirm the
theoretical invariances against data transformations. It can be
seen that for global scaling, SVMoff, SVMoff>con and SVMmon

achieved equal accuracies for all noise levels. The performance
of the SVMlin variants of R2-SVM and R1-SVM drop rapidly.
For the lowest noise level p = 1, mean accuracy losses of
34.6% (IQR: [40.5%, 33.8%]) are observed for the low-dimen-
sional setting (n = 2) and 30.2% (IQR: [36.5%, 28.5%]) for the
high-dimensional setting (n = 100). For global transition, the
same invariant behaviour can be observed for the classifiers
SVMcon, SVMoff>con and SVMmon. Here, the lowest noise
level p = 1 results in mean losses in accuracy of 2.4% (IQR:
[4.0%, 0.0%]) for the SVMlin variants in the low-dimensional
setting (n = 2) and 4.6% (IQR: [6.0%, 0.8%]) for the high-dimen-
sional setting (n = 100). The combination of global scaling and
global transition resulted in equal accuracies for SVMoff>con

and SVMmon for every dimension and noise level. The
SVMlin variants showed mean accuracy differences of 34.7%
(IQR: [42.3%, 31.0%]) in the low-dimensional setting (n = 2)
and 29.6% (IQR: [35.8%, 30.0%]) in the high-dimensional set-
ting (n = 100). After performing an exponential
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Figure 3. Evaluation of experiments on artificial datasets: the accuracy differences between SVMlin and the invariant SVMs in noise-free experiments are shown. The
rows show the different invariant classifiers. The columns provide the dimensionality of the underlying datasets n = {2, 10, 100}. The experiments are organized
ascending according to the distances of the class centroids d (x-axis). The y-axis provides the accuracy difference. A positive value denotes a higher accuracy of the
SVMlin. For each value of d, 10 experiments with different class centroids are shown.
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transformation on the test data, only SVMmon led to equal accu-
racies for every dimension. The performance of the SVMlin

variants decreased by 44.8% (IQR: [48.0%, 45.8%]) in the low-
dimensional setting (n = 2) and 38.6% (IQR: [43.3%, 38.0%])
in the high-dimensional setting (n = 100).

Figure 4b shows the results for the classwise noise. For global
scaling, the SVMoff variants outperformed the SVMlin variants in
meanby19.8% (IQR: [40.3%, 0.0%]) accuracyover all noise levels
and all repetitions in the low-dimensional setting (n = 2). For the
high-dimensional setting, a mean improvement of 35.3% (IQR:
[48.3%, 3.0%]) accuracy was observed. For the global transition,
the SVMcon gained in mean 8.1% (IQR: [27.3%, �12:5%]) accu-
racy for n= 2 and 33.5% (IQR: [47.3%, 0.0%]) for n= 100. In
case of global scaling and transition, the SVMoff>con variants
achieved in mean �2:8% (IQR: [11.0%, �24:8%]) less accuracy
in the low-dimensional settings and 40.7% (IQR: [77.3%,
15.8%]) more accuracy in the high-dimensional setting. For the
exponential transformation, the SVMmon variants showed a per-
formance decreased in mean by �14:5% (IQR: [0.0%, �40:3%])
for n = 2. It was in mean increased by 11.1% (IQR: [23.8%,
�1:3%]) for n= 100.
4.2. Results on transcriptome datasets
The accuracies achieved on the microarray and RNA-Seq
datasets are shown in figure 5 and tabularized in the elec-
tronic supplementary material.

The R2-SVMlin outperformed the kNN (k∈ {1, 3, 5}) on
{25, 25, 26} datasets. It was inferior in {2, 2, 1} cases. The
R1-SVMlin was better than the kNN in {19, 21, 20} cases.
In {7, 6, 7} settings the kNN was superior. In comparison to
the RFs with nt∈ {100, 200, 300, 1000} trees the R2-SVMlin

achieved better accuracies on {19, 20, 19, 18} datasets. Its accu-
racy was inferior on {7, 6, 6, 7} cases. The R1-SVMlin

outperformed the RFs on {12, 12, 12, 11} datasets. The RFs
had higher accuracies on {15, 15, 15, 16} datasets. Th R2-
SVMlin showed better performance than SAE with u∈ {100,
500, 1000} in {25, 25, 25} cases. They were outperformed on
{2, 2, 2} datasets. For the R1-SVM, better performances were
observed in {26, 26, 26} cases. Lower performance was
gained on {1, 1, 1} datasets.

Overall, the respective invariant SVMs achieved better or
equal results compared to the linear one in 41 of 54 cases. At
the level of individual invariant linear SVMs, it can be
observed that for 20 out of 27 datasets, an invariant R2-
SVM was able to achieve the same or a higher mean accuracy
than R2-SVMlin (R1-SVMs: 21 datasets). R2-SVMoff outper-
formed R2-SVMlin in four cases (R1-SVMs: 14 cases),
achieved the same accuracy in 14 cases (R1-SVMs: two cases)
and achieved a lower accuracy in nine cases (R1-SVMs: 11
cases). R2-SVMcon was able to achieve higher accuracies than
R2-SVMlin for 0 datasets (R1-SVMs: 18 datasets), equal accu-
racies on 17 datasets (R1-SVMs: 0 datasets) and lower
accuracies for 10 datasets (R1-SVMs: nine datasets). R2-
SVMoff>con was capable of achieving a higher accuracy than
R2-SVMlin in six cases (R1-SVMs: 14 cases), an equal accuracy
in 12 out of 27 cases (R1-SVMs: 0 cases) and a lower accuracy in
nine cases (R1-SVMs: 13 cases). The internally feature selecting
R2-SVMmon was never able to achieve a higher accuracy than
R2-SVMlin, but the R1-SVMmon outperformed its linear variant
in four cases. For two (R1-SVM: 0) out of 27 datasets, R2-
SVMmon achieved the same accuracy as R2-SVMlin and for 25
datasets (R1-SVM: 23 datasets) it led to a lower accuracy.

Besides the two-dimensional SVMmon classifiers the R1-
SVMs yields at the reduction of features that influence the
final decision boundary. An overview on the mean percen-
tage of used features is shown in the electronic
supplementary material. In all experiments, no classifier
selects more than 1% of the available features. The uncon-
strained SVMlin constructed decision boundaries based on
0.06% to 0.51% of all features. The absolute mean size of
these signatures lies in between 7.36 and 104.65 features.
The invariant SVMs select comparable percentages of fea-
tures. They lie in the ranges of 0.07% and 0.50% (SVMoff ),
0.07% and 0.86% (SVMcon) and 0.07% and 0.51%
(SVMoff>con). This translates to a mean signature size of 9.93
and 102.76 (SVMoff ), 9.57 and 105.08 (SVMcon) and 11.04
and 103.37 (SVMoff>con).
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5. Discussion
In this work, we derived four invariant types of linear classi-
fiers. The structural properties of these models allow
guaranteeing invariances in the presence of small collections
of molecular profiles, where malicious variation might not
even be detected.

From bench to bioinformatics, the extraction of molecular
profiles requires multiple preprocessing steps which have
to fulfil strict protocols and often need the collaboration
of different experts or institutes. Deviations or differences of
these protocols can lead to noise and bias, which might
lead to imprecise estimates and wrong conclusions [38].
Invariances applied can be preventive in this context. A par-
ticular type of information, which is assumed to be affected,
will be neglected in subsequent modelling processes. This
work is related somehow to work by the group of Rainer
Spang on zero-sum regression [11,12]; in fact, our classifier
Ccon corresponds to this concept class. Here, we extend and
generalize this approach and also embed it into the PAC
learning framework.
However, ignoring a specific type of information might
result in diminished classification accuracies. Our exper-
iments with invariant support vector machines indicate that
incorporating invariances against global scaling and tran-
sition leads to approximately equal performance in high-
dimensional biomarker settings. In this case, the differences
in the complexity of the concept classes decrease. Decreased
accuracies were only observed in experiments with low
dimensionality. By contrast, restriction to exactly two input
variables, which is required for the strictest invariant
subclass, can affect a classifier’s performance.

Also, sparsity and invariance principles can be combined
harmonically. The general findings described above can be
observed for the feature selecting, invariant manhattan norm
support vector machine. These results show that invariances
can be incorporated into feature selection processes and might
be used for constructing invariant marker signatures. In this
case, the invariance on the full feature space is transferred to
the reduced representation. The signatures of the invariantman-
hattan norm support vector machines have approximately the
same length as their non-invariant counterpart. In our
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experiments, invariances against global scaling or transition
result in signatures comprising in mean 0.07% to 0.51% of all
available biomarkers, i.e. we obtain invariant signatures of
mean length of 15.77 to 105.08 markers.

Our theoretical analysis, i.e. estimating the VC dimension
of the four invariant concept classes, also reveals construction
principles for other invariant concepts or more complex invar-
iant classification models. The analysed hierarchy of concept
classes does reflect not only an accumulation of invariances
but also a reduction of the VC dimension. These analyses indi-
cate that a restriction to invariant classification models also
reduces the complexity of the corresponding concept classes
and the risk of overfitting. Suitable models might be chosen
according to the PAC learning framework.

Invariances can lead to constraints on the dimensionality of
the input space of a linear classifier. While invariance against
global scaling require multivariate profiles, the invariance
against order-preserving functions is only guaranteed for the
use of two covariates. Univariate linear classifiers do not
match both criteria. These invariances do not, therefore, hold
for architectures that are based on single-threshold classifiers.
Among these architectures are standard implementations of
hierarchical systems such as classification or regression trees
or ensemble classifiers such as boosting ensembles. However,
these systems can gain the desired invariances by completely
replacing all univariate linear classifiers by higher dimensional
invariant ones. Identifying suitable combinations of fusion
architectures and invariant concept classes can be seen as a
natural extension of this work.
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