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Streptococcus pneumonia, (Spn, the pneumococcus), is the leading cause of community-acquired pneumonia (CAP) and is
responsible for 15–40% deaths in the elderly worldwide. A primed inflammatory status is a significant risk factor for the increased
severity of infectious diseases among the elderly (≥65 years of age). Studies have shown that expression of host receptors that the
pneumococci bind to invade the tissues are increased thereby increasing the susceptibility to pneumococcal challenge in aged mice.
Cellular senescence, an age-related phenomenon that leads to cell cycle arrest may also contribute to increased inflammation in
aged mice. Evidence of cellular senescence in aged lungs of humans and mice adds credits to the concept of inflammaging and
enhanced bacterial ligands expression during aging. Furthermore, cell senescence has been shown to occur in age-associated lung
pathologies such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) that may predispose
the elderly to pathogenic assaults, including S. pneumoniae. This review highlights the aspects of: chronic inflammation in the aged
population; contribution of cellular senescence to age-associated inflammation and their impact on host receptor expression; and,
increased susceptibility of fibrosis and emphysematous lesions-bearing lungs to microbial infections.

1. Introduction

Aging is a multifactorial process that encompasses pro-
gressive decline in multiple organ failure, induced by
chronic low-grade inflammation and stress-mediated imbal-
ances. Inflammatory cells such as macrophages, neutrophils,
and leukocytes infiltrate various tissues including lungs.
Increased systemic levels of proinflammatory mediators such
as tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-
6) increase the risk of microbial assaults in the elderly ≥65
years of age [1, 2]. Community-acquired pneumonia (CAP)
is the leading cause of deaths in individuals who are ≥65
years of age [2, 3]. Streptococcus pneumoniae is a major cause
of CAP among this age group. The annual mortality rate due
to CAP among the elderly ranges from 15% to 20%, and the
mortality rate might increase as the population of aged indi-
viduals would double with respect to the total population, in
the next 30 years [4, 5]. Besides cell-wall polysaccharides that
mediate attachment to the host cell-surface glycoproteins,
pneumococcal virulent proteins function as adhesins during

colonization and invasion at multiple host sites such as the
nasopharynx, middle ear, the lower respiratory tract, the
bloodstream, and, finally, the blood-brain barrier. These
adhesins function differentially at different anatomical sites
based on the levels of expression and recruitment of
host pneumococcal binding proteins (PBPs; Figure 1). We
have previously shown that chronic inflammation in aged
mice increases expression of PBPs, resulting in increased
susceptibility to pneumococcal infection [6]. Age-associated
chronic inflammatory diseases such as atherosclerosis [7],
diabetes mellitus [8], and arthritis [9] are accounted for the
increased pool of proinflammatory mediators. Individuals
hospitalized for these comorbidities are at increased risk
for development of CAP [1, 2]. Interestingly these chronic
inflammatory diseases are reported to have senescent cells in
the vicinity of the areas of inflammation [10–12]. While not
all autoimmune diseases prevail with age, but diseases such as
bullous pemphigoid increases sharply with age and has been
associated with cell senescence [13–15].
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Figure 1: Expression and recruitment of pneumococcal binding proteins (PBPs) on different anatomical sites of the host in the order of
pneumococcal binding. Host pneumococcal binding proteins pIgR and PAFr are expressed ubiquitously on epithelial and endothelial cells
such as nasopharyngeal mucosal epithelial cells. Pneumococcal adhesin PsrP interacts with K10, besides CbpA and ChoP-mediated binding
to pIgR, PAFr, and LR and causes pneumonia. Invasion is facilitated by PAFr, and dissemination occurs resulting in septicemia. Finally, the
pneumococcus crosses the blood brain barrier by binging to the PBP, LR on the meningococcal cells, leading to pneumococcal meningitis.
Red arrows indicate the sequential binding and invasion of the pneumococcus from the site of colonization to meningococcal invasion. Note
the increased expression of PBPs on the lung-cell surface during aging (bottom panel) as compared to the young age.

Cell senescence is an irreversible shutdown of cell
division with a concomitant decrease in the rate of apoptosis
[16, 17]. As a negative consequence, senescent cells promote
malignant transformation by means of the senescence-
associated secretory phenotype (SASP). SASP comprises a
pool of proinflammatory cytokines, chemokines, proteases,
and growth factors [18]. We have recently demonstrated
a second negative consequence of SASP as a modulator
of NFκB-activated pneumococcal binding protein, platelet
activating factor receptor (PAFr), due to the increased levels
of IL-6 and IL-8 production in bleomycin-induced senescent
type-II pneumocyte cultures [19]. This review presents a
comprehensive account of oppressive aging factors such as
chronic inflammation, cell senescence and SASP in the aged
lungs, and their role in age-associated lung pathologies such
as idiopathic pulmonary fibrosis (IPF) and chronic obstruc-
tive pulmonary disease (COPD), that are known to increase
vulnerability of the aged patients to pneumococcal disease.

2. Inflammation Is Associated
with Community-Acquired Pneumonia
and Invasive Pneumococcal Disease

Yende et al. [2] has reported that individuals aged ≥65 years
with increased serum levels of IL-6 and TNF-α, are highly
susceptible to CAP and IPD, whereas recurrent infection
and mortality also depends on these inflammatory markers

along with acute-phase protein and C-reactive protein (CRP)
[20]. On contrary, circulating IL-6 and IL-10 is assessed
as prognostic markers of severity of the disease in the
elderly, and these inflammatory indices categorize patients
into systemic inflammatory response syndrome (SIRS) and
non-SIRS groups [21]. Constitutive NF-κB-mediated trans-
activation of genes induces expression of proinflammatory
cytokines and chemokines in the aged lungs [6, 22, 23]. It has
also been shown that aged BALB/cBy mice (19–22 months)
exhibited defective toll-like receptors (TLRs) response when
these mice were challenged with S. pneumoniae [6]. Levels
of TNF-α and IL-6 in the lung tissues of aged mice were
higher as compared to their younger counterparts (4-
5 months) and were positively correlated with histologic
evidence of chronic inflammation [6, 19]. The inflammatory
phenotype of aged mice and susceptibility to pneumococcal
infection corroborated with the young cohort instilled with a
subchronic dose of TNF-α and subsequently challenged with
the identical dose of S. pneumoniae [6].

3. Inflammation Increases
Pneumococcus-Binding Proteins (PBPs) on
Host Cells of the Elderly

We have demonstrated that chronic inflammation in aged
mouse lungs stimulates NF-κB-regulated gene expression
including the pneumococcus-binding proteins, polymeric
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immunoglobulin receptor (pIgR), and platelet-activating
factor receptor (PAFr). While pIgR binds to the pneumo-
coccal adhesin Choline-binding protein A (CbpA), PAFr
binds to phosphorylcholine (ChoP) moiety of the pneu-
mococcal membrane phospholipid [6, 24]. These proteins
are found on the upper respiratory tract cells, lung epithe-
lial cells, and endothelial cells of the blood and brain,
thereby emphasizing the consequences of pneumococcal
pathogenesis in relation to these two very common host
receptors. Importantly, pIgR and PAFr are not only opted
by the pneumococcus, but they are also receptive to
other pathogens such as Haemophilus influenzae, Neisseria
meningitidis, and Pseudomonas auriginosa [25–27]. Another
receptor known to bind to CbpA is laminin receptor.
Laminin receptor (LR) is predominantly present on epithelial
and endothelial cells. LR also binds to meningococcal,
outer membrane porin (porA) and pilus secretion protein
PilQ, and to the H. influenzae porin OmpP2 [28]. LR
levels were significantly increased in the aged human lung
biopsy samples (65–84 years), as compared with their
younger counterparts (40–53 years). However, PAFr showed
a gradual increase in the protein levels from mature (54–
65 years) to aged group human tissue biopsies (65–84
years) versus the young biopsy samples. Aged mice (19–
22 months) also displayed significant increase in the levels
of PBPs versus their younger counterparts (4-5 months)
[19].

A recently discovered pneumococcal adhesin-encoding
pathogenicity island psrPsecY2A2 was correlated with
incidence of invasive pneumococcal diseases. The adhesin
named pneumococcal serine-rich repeat protein (PsrP) binds
to the host microfilament protein and keratin 10 on the
lung epithelial cells [29]. K10 is a differentiation marker on
keratinocytes, which causes cell-cycle arrest via sequestration
of AKT phosphorylation and thence activation of pRb/p107
(homologue of pRb) pathway [30, 31]. Additionally, in
chronic, antibiotic-resistant Lyme arthritis, K10, expressed
on the endothelial cell layer of synovial blood capillar-
ies, has been shown to act as an autoantigen, and that
the autoantibodies generated against K10 lead to chronic
arthritis [32]. Therefore, it may be reasoned that K10 not
only serves as a ligand for these pathogenic determinants,
but also contributes to arresting the cell cycle in alveolar
epithelial cells and towards setting up an autoimmuno-
genic response during vascular tissue damage, resulting in
increased inflammation. More importantly, evidence of K10
being expressed on the endothelial cells of blood capillaries
indicates a possible involvement of K10 in pneumococcal
dissemination into the blood stream, besides LR and PAFr.
Given that aged human and mouse lungs express elevated
levels of K10, increased attachment of the bacteria to the
bronchial and alveolar epithelial cells would be enhanced via
K10-PsrP interactions [19, 29]. Preferential binding of the
pneumococcus to lung cells of aged mice (19–22 months)
remarks K10 as one potential oppressive age-related factor
to enhance bacterial pathogenesis and increase susceptibility
to pneumococcal pneumonia.

4. Cellular Senescence Contributes to
Chronic Inflammation and Increased PBPs
during Aging

Cellular senescence is a dual-edged phenomenon, wherein
the cells stop replicating while being metabolically active
and do not undergo apoptosis. Senescent cells are inflated
with lysosomes with a positive staining for lysosomal β-
galactosidase (senescence-associated [SA] β-gal) activity. The
assay was originally performed on old human skin biopsy
samples and showed presence of senescent cells on skin
fibroblasts and keratinocytes, and till date it is one of the
most powerful and authentic assays to confirm senescent
phenotypes in vivo as well as in vitro [33]. Chronic oxidative
stress, DNA damage and telomere shortening result in
activation of two major tumor suppressor pathways, the
p53/p21 and the p16/pRb, pathways that effectively halt gene
transcription and promote cell-cycle arrest [34]. Mitogen-
activated protein kinase (MAPK) signaling, especially p38-
MAPK, is activated independent of DNA damage response in
senescent cells, and it is particularly associated with chronic
stress-induced inflammation during aging [35]. Activation of
these multiple signaling pathways increases NF-κB-regulated
transcription of genes including production of senescence-
associated secretory phenotype (SASP). According to Coppé
et al. [18] SASP is a pool of inflammatory cytokines,
chemokines, proteases, matrix metalloproteinases, growth
factors, and antiapoptotic factors that help survival of
senescent cells and increase tissue consolidation. IL-1α serves
as the prime regulator of proinflammatory cytokines IL-
6 and IL-8 produced during SASP generation [36]. Our
studies using A549 type II pneumocyte cultures have shown
a second negative consequence of SASP as a promoter of
bacterial ligand expression on the normal lung epithelial cells
through increased levels of expression of PAFr [19]. We are
yet to determine if K10 levels are increased only in native
senescent cells and/or transcription factors CEBPβ/AP-2 that
bind to k10 promoter were not activated effectively in fresh
cultures upon the stimulation in SASP for 2 hours [37]. The
senescence-inducing proteins network and role of PBPs are
illustrated in Figure 2.

5. Comorbidities in Aging and Opportunistic
Microbial Infection

Comorbidities that run along progressive aging are potential
oppressive factors that increase susceptibility of the elderly
to pneumococcal infections. For example, elderly with the
problems of dental caries and periodontitis become suscep-
tible to oral pathogens that lead to aspiration pneumonia
and trigger atherosclerosis [38]. Microbial infections with
Mycoplasma pneumoniae, and Chlamydophila pneumoniae
and Cytomegalovirus (CMV) and Epstein-Barr virus (EBV)
are encountered in atherosclerotic lesions resulting in exac-
erbated cardiovascular pathologies [39, 40]. Release of toxic
components from S. pneumoniae such as pneumolysin,
an important pneumococcal toxin, cell-wall polysaccha-
rides, phosphoryl choline (ChoP), and the capsule of the
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Figure 2: Integral network of cellular senescence and host-pneumococcal interaction in the aged lungs. Lung-cell senescence occurs during
the inevitable process of aging. Note the onset of senescence by DNA damage and stress signals is distinctly operated by the two major
signaling events, the p53/p21 and the p16/pRb pathways. Both these pathways induce SASP production and enhanced PBPs expression and
recruitment. Pneumococcal binding occurs at a comparatively faster pace than under normal conditions, as shown by the binding of the
elongated chains of pneumococci. Involvement of K10 as a putative feedback control in mediating cell-cycle arrest is shown as demonstrated
by Paramio et al. [30, 31].

pneumococcus itself, causes severe damage to cardiomy-
ocytes and endothelial cells resulting in plaque formation
on the heart valves [41, 42]. Prophylactic treatment with
statins has been shown to be beneficial and/or protective
against CAP in these patients [43, 44]. Statins are used not
only for inflammatory diseases, but also for vascular diseases,
due to their immunomodulatory, antioxidative, and anti-
coagulation effects [45].

Rheumatoid arthritis (RA) is a chronic inflammatory
autoimmune disease with increased risk of opportunistic
infections in the elderly. Apart from tuberculosis and
leishmaniasis, Spn-infected pyogenic muscular abscesses are
commonly seen in arthritic patients [46]. A case study
from adults with pneumococcal septic arthritis from 1973
to 2003 [47] showed that native joints as well as prosthetic
joints were infected with S. pneumoniae, which is not
surprising because damaged blood vessels might leak the
pathogen at various anatomical sites to perpetuate and
establish infection. Moreover, treatment with methotrexate
(an immunosuppressive agent) in arthritic disease dampens
innate immune response and may contribute to increased
risk of pneumococcal infection [48].

Chronic inflammation increases the risk of opportunis-
tic infections in diabetes patients. Postinfectious glomeru-
lonephritis is a major concern in elderly patients with dia-
betes [49]. It was reported that diabetes patients undergoing
renal transplantation showed increased incidence of pleural

effusion and pneumonia [50]. Nonetheless, diabetes mellitus
may not be an independent predisposing factor to pneumo-
nia because generalized oxidative stress and inflammation
in diabetic patients also compromise the immune system
[51, 52].

Occurrence of cellular senescence has been reported in
cardiovascular disease, osteoarthritis, and diabetes mellitus
using experimental animal and human tissue biopsies [10–
12, 53–56]. Vascular endothelial cell senescence has been
demonstrated in atherosclerotic lesions in the rabbit carotid
artery [57]. The authors clearly demonstrated vascular
endothelial denudation with SA-β gal positivity. They further
demonstrated mechanisms involved in vascular endothelial
cell senescence, such as chronic oxidative stress, telomere
shortening, nitric oxide production, and an association
between glutathione detoxification system and telomere
integrity [57, 58]. Hyperglycemia also increases vascular
aging with endothelial cell senescence regulated by apoptosis
signal-regulating kinase 1 (ASK-1), supporting the notion
that apoptosis inhibition is one of the common ways to
accelerate cell senescence [59]. Similarly, chondrocytes were
shown to undergo senescence in arthritic lesions of the
diseased articular cartilage obtained from aged patients
undergoing arthroplasty [60]. Thus, senescent phenotypes
contribute to the underlying tissue pathologies and may be
implicated in chronic inflammation increased with these age-
associated diseases.
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6. Idiopathic Pulmonary Fibrosis, Cellular
Senescence, and Pneumococcal Pneumonia

Idiopathic pulmonary fibrosis (IPF) is a chronic disorder
of lungs that affects the elderly. Typically the duration of
survival is between 4 and 5 years from the onset of the
disease. Worldwide, there are 10.7 cases per 100,000 male
populations, and 7.4 cases per 100,000 female populations
[61]. IPF patients show poor prognosis due to acute res-
piratory decline, exacerbated with microbial infections and
increasing age, and repeated hospitalization also increases the
risk of CAP [62]. Hypothetically, acute exacerbation of IPF
has also been associated with reactivation of chronic CMV
and EBV infections [63–65]. Interestingly, phenomenon of
cellular senescence has been proposed in IPF manifestation
[66]. It involves injury to the type II pneumocytes and vas-
cular endothelial cells, and coagulation. At molecular level,
greater understanding of the disease has been facilitated,
as described by Thannickal and Loyd [67], that epithelial
regeneration is curtailed with age and, further relates to
telomere shortening, one of the aspects of cell senescence,
by Alder et al. [68]. Lymphocytic inflammation of the lungs
and foci of proliferating fibroblasts with atypical interstitial
pneumonia are used in the diagnosis of pathophysiology of
the disease. Biomarkers such as proinflammatory cytokines,
chemokines, and MMPs used in the analysis represent
senescence indexes.

To understand molecular basis of the disease and study
role of cell senescence in lung fibrosis using experimen-
tal animals, we administered young Balb/cJ mice (4-5
months) with Bleomycin, a fibrosis-inducing agent [69–71].
Bleomycin-induced lung cell senescence in young mice (4-
5 months) showed increased susceptibility of the mice to
pneumococcal challenge similar to that of healthy aged mice
(19–22 months), along with a significant increase in the
levels of p16 and LR levels, with an increasing trend for
PAFr. We also demonstrated through an in vitro model of
senescence induction using bleomycin that senescent cells
showed increased levels of PBPs in the order of LR > K10 >
PAFr, whereas, as discussed earlier, SASP induced the PBPs
in the order of PAFr > LR > K10. Inflammatory cytokines
profile was increased in both in vivo and in vitro studies.
Thus, the novel concept of cellular senescence that occurs
with progressing age might play a significant role in lung
pathologies such as IPF and susceptibility to pneumococcal
infection as depicted in the model (Figure 3).

In a recent study by Minagawa et al. [72], β-gal-positive
senescent epithelial cells and increased levels of p21 were
demonstrated in lung biopsies of IPF patients, and also
established, in vitro, that TGFβ plays a pivotal role in
inducing lung epithelial cell senescence, and that the DNA
repair specific sirtuin (SIRT), SIRT6 inhibited TGFβ-induced
senescence. TGFβ is a pleiotropic growth factor involved
in airway remodeling and fibrosis and has been shown to
be an integral component of the pathologic network of
lung diseases such as asthma and IPF [73, 74]. Supporting
Minagawa et al. study, we have recently demonstrated that
a membrane-scaffolding protein, caveolin-1, is involved in
epithelial cell senescence in mice with bleomycin-induced

pulmonary fibrosis [75]. Caveolin-1 has also been implicated
in airway remodeling, as an upstream regulatory factor for
TGFβ signaling by sequestering TGFβ receptor function [76].

It would be worth mentioning that autoimmunity
against periplakins has been associated with IPF pathobi-
ology [77, 78]. Bullous pemphigoid (BP), the autoimmune
disease caused by periplakins, was directly associated with
interstitial pneumonia for the first time, with the presence
of IgG and C3 on the basement membranes of lung and
skin specimens from a 73-old patient [78]. Interestingly,
in children with acute otitis media (AOM), and bullous
myringitis (BM), S. pn cultures were isolated demonstrating
that the pneumococci could be the potential cause of BM, as
a severe form of AOM [79]. Given the fact that periplakins
interact with keratin filaments, and cell senescence has been
implicated in the BP [12–14], it could be speculated that
the manifestations of BP on the lung surface may also
facilitate pneumococcal binding and invasion of the alveolar
mucosal layer and enhance susceptibility to infections in
aged patients. Thus, molecular understanding of IPF has
been growing in recent years, indicating a possibility of early
diagnosis and prevention of the disease.

7. Chronic Obstructive Pulmonary
Disease, Cellular Senescence, and
Pneumococcal Pneumonia

In the elderly, COPD is an important predisposing factor
in the incidence of CAP and is currently assessed as a
predictor of CAP. Over 90% of the COPD patients worldwide
develop CAP, in the age ≥ 65 years, and case fatality rate
goes up to 16%–40%. The main risk factor for COPD
is smoking [80] although complications such as asthma,
environmental stress, and genetic alterations postexposure
to the stress factors are debatable in predisposing to COPD
[81, 82]. Chronic low-grade inflammation with progressive
aging, along with inflammation resulted by COPD, leads to
cardiovascular complications worsening the clinical outcome
and increased mortality in these patients [83–85]. Mortality
rate in CAP patients with COPD is higher by 30–90 days
versus the non-COPD patients hospitalized during the same
period [86]. Both acute and chronic bacterial infection
occurs in patients ≥65 years of age, and the most common
infection-causing pathogen is S. pn (≤40%), followed by H.
influenzae and Chlamydophila pneumoniae [86, 87]. Sputum
samples from COPD patients showed positive cultures for S.
pneumoniae, H. influenzae, and Moraxella catarrhalis [88].
Histology readouts include emphysematous lesions in the
lungs with loss of airway epithelial mesh and destruction of
the walls of the alveoli as some of the manifestations during
pathologic examination of the lung biopsies [89, 90]. Inter-
estingly, lung tissue biopsies obtained from COPD patients
and animals exposed to smoking showed NF-κB-induced
inflammation and also had senescent type II pneumocytes
[91, 92]. Along the same line, we have demonstrated in the
mouse model that a more generalized oxidative stress in
mice induced by hydrogen peroxide-supplemented drinking
water promotes cell senescence with epithelial cell injury,
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Figure 3: Hypothetic model of cell senescence induction in lung cells due to aging, genotoxic stress, and oxidative stress that causes
phenotypic and functional alterations. (a) Normal lung parenchyma is affected by oppressive aging factors, such as DNA damage and
oxidative stress, resulting in senescent phenotypes (b) With increased inflammatory mediators production and receptors that facilitate
bacterial/bacterial components binding. These mediators affect the neighboring normal cells and alter their phenotypes as presenescent
(c). These pre-senescent cells might transform into malignant cell types and induce tumor formation or might eventually become senescent,
as proposed by Shivshankar et al. [19].

alveolar wall destruction, emphysematous lesions, and sus-
ceptibility to pneumococcal challenge [19]. Furthermore, we
demonstrated that even with severe pathologic destructions
of the tissue parenchyma, there was an obvious induction of
p16 and pRb expression along with the PBPs LR and PAFr.
Pneumococcal burden in the lungs was significantly higher
than the control mice and was positively correlated with
the senescent phenotype [19], thereby supporting the notion
that cellular senescence might be an important contributor of
oxidative-stress induced tissue damage during smoking and
occupational exposures.

8. Immunosenescence in the Elderly and
Defense against Pathogenic Assaults

Immunosenescence is characterized by a decreased pro-
duction of naı̈ve T and B cells, and increased memory
or effecter T and B cells that are differentiated. Studies
on the cytomegalovirus (CMV) infection and differentiated
memory T-cells function demonstrate the inability of the
memory T cells to recognize novel antigens and relates
to immunosenescence with age [93]. A defective natural
killer cell function and reduced dendritic cell count add to
the defective immunity. A very recent review by Kuijpers
and Lutter [94] describes how chronic inflammation in
a rare congenital disorder, chronic granulomatous disease
(CGD) increases the risk of recurrent infections, due to poor
phagocytic killing. Thus the whole spectrum of immunose-
nescence leads to a compromised immune system resulting
in increased risk of incidence of infectious diseases such as
S. pn as well as noninfectious diseases such as dementia,
diabetes, and atherosclerosis [95]. While macrophaging is
related to inflammaging, studies with toll-like receptor ago-
nist and endotoxins have demonstrated an age-dependent
defect in macrophage function in eliciting innate immune
response. Consistently, we have also observed that alve-
olar macrophages isolated from a significantly decreased

production of IL-6 in both mature (10–12 months) and
aged (19–22 months) mice postinfection with live S. pn.
Furthermore, results were confirmed in vitro with isolated
alveolar macrophages stimulated with pneumococcal cell
wall fraction and other known TLR agonists (unpublished
data). It could be speculated that because IL-6 is required for
production of acute phase proteins and to clear the infection
by enhancing phagocytic killing, which probably does not
occur due to delayed innate immune response and aged mice
succumb to infection earlier than the healthy young mice [6].
Given the fact that pneumococcal adhesins PspA and CbpA
interfere with the complement system and affect immune
adherence and phagocytosis by macrophages [96, 97], it
could be reasoned that, in addition to defective alveolar
macrophage function, inhibition of complementation and
phagocytosis may further affect clearance of the bacteria.

9. Conclusions

It is important to understand that the cell-mediated and
humoral immune responses function together in a young
healthy and immunocompetent system and are considerably
impaired with age. In addition to chronic microbial burden
in the form of sessile bacterial plaques, other host factors
also tend to generate chronic antigenic stress that makes
large amounts of memory T cells. Constant generation and
expansion of memory T cells, with a decrease in naı̈ve T cells,
results in persistent inflammatory status over time and aging
[95]. Therefore, per our understanding, if inflammaging is
the culprit of the current scenario of elderly individuals being
vulnerable to pneumococcal infections with underlying co-
morbidities, cellular senescence might be added on to the
list of inflammation contributors and as an exceptional
oppressive aging factor in the diseased conditions.

Interestingly, pneumococcal adhesins could be proven to
be potential candidates in inducing protective immunity and
therefore considered in vaccine development. The antibiotic
resistant strains of S. pn cause most of the serious illnesses
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Figure 4: Future perspectives and new lines of research. Representation of perspectives and new lines of research. (a) Demonstration of
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in both children and the elderly, and that presence of these
adhesins, such as psrP in many of these strains particularly,
prompts the idea of developing newer/better therapeutics
[98]. Recently, protective immunity against one of the most
common virulence factor PspA was achieved by parenteral
administration of a DNA vaccine [99]. Furthermore, both
PspA and CbpA are demonstrated to block phagocytic
macrophages adhesion to infected cells by masking the
C3 complement system [100]. Considering the presence
and virulence potential of PsrP in disease-causing strains,
PsrP might be a potential candidate to be included in
the conjugate vaccine of the 3rd generation to cover a
wide range of carriage-specific or disease-causing Spn. The
importance of PsrP being a potential vaccine candidate
has yet another stand as keratin 10 levels are elevated in
aged lungs of humans (55–84 years) and Balb/cBy mice
(19–22 months). The only vaccine approved by the Food
and Drug Administration (FDA) for protection of adults
against pneumococcal diseases is Pneumovax 23 (Merck &
Co. Inc). However, Pneumovax 23 does not robustly pro-
tect the elderly against pneumococcal pneumonia. Despite
prompt vaccinations, elderly patients show vulnerability to
infections due in part to an inefficient antibody production
and adaptive immune response. Thus, the current scenario
warrant a newer 3rd generation conjugate vaccine with
virulence proteins as antigenic determinants. Interestingly,
vaccination of children ≤ 2 years of age with protein-based
polysaccharide vaccine, PCV-7, has resulted in a decline
in the incidence of invasive pneumococcal disease among
the older adults, due in part to decreased indirect effects
of pneumococcal transmission, called herd immunity [101,
102]. The success of children vaccination brought an 18%

decrease as compared to the surveillance data from 1995 to
1998 and 1998 to 2001 cohort study [103, 104]. However,
additional concerns such as lack of a robust immune
system, susceptibility due to hospitalization for comorbid
conditions, and influenza infections might endanger patients
with secondary infection with S. pneumonia. Although IPF
patients are advised to receive vaccination against S. pn
infection to prevent acute exacerbation of IPF, incidence of
acute exacerbation of the disease has been reported with
H1N1 flu vaccination procedures in these patients [105].
Hence a prompt check has to be enforced in these patients to
closely observe the outcomes of vaccination procedures and
the severity of the disease pathologies. Anti-inflammatory
drugs, along with synthetic telomerase inhibitors, would
presumably be a promising choice to protect the elderly
with IPF advancement and acute exacerbation by concurrent
microbial infections.

Finally, antiaging mechanisms such as the heat-shock
proteins, ubiquitination of damaged proteins, ER stress-
mediated degradation of proteins, and apoptosis result in
clearance of damaged cells and tissue regeneration. These
cellular mechanisms can be promoted by activities such as
improved dietary schedules with regular exercise, nonsmok-
ing task and a better social life style, which directly impact
free radical scavenging, DNA damage repair, balanced energy
production and metabolism, and regulated gene expression.

10. Future Perspectives

Collectively, our previous studies have demonstrated that
cellular senescence increases bacterial ligands expression in
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lung cells and positively correlates with increased pneu-
mococcal binding in aged mice. As discussed above, cell
wall component phosphorylcholine (ChoP) released from
lysed bacterium, invades vascular endothelial cells, and also
damages cardiomyocytes in a PAFr-dependent manner. It
is important to understand if paracrine effect of SASP
triggers PAFr expression in vascular endothelial cells and
cardiomyocytes in cardiac tissue during aging. We therefore
hypothesize that endothelial cell senescence may contribute
to increased pathology of the cardiac tissue and chronic
inflammation resulting in severe cardiovascular events dur-
ing bacterial infections in the elderly. Finally, TGFβ is
proposed to play a role in inducing alveolar epithelial cell
senescence and fibrosis. We will further investigate if TGFβ
is: 1) produced by senescent cells; 2) secreted as a constituent
of SASP; and, 3) involved in dysregulated inflammation
and triggering endothelial cell senescence in the vasculature
during aging (Figure 4).
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