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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is characterized
by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD
imposes neuronal death by the intricate interplay of different neurochemical factors, which continue
to inspire the medicinal chemist as molecular targets for the development of new agents for the
treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario.
Within the wide variety of reported molecules, this review summarizes and offers a global overview
of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more
relevant chemical features and structure-activity relationship studies will be discussed with a view
to providing the perspective for the design of viable drugs for the treatment of AD. In particular,
cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these
classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against
AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be
described, as a chance for these molecules to exhibit significant potential on the road to therapeutics
for AD.

Keywords: naphthoquinone/anthraquinone derivatives; Alzheimer’s disease (AD); Aβ aggregation
inhibition; AChE and BChE inhibition; Tau inhibition; multitarget directed ligands

1. Introduction

Alzheimer’s disease is deemed by World Health Organization as one of the most
common neurodegenerative diseases and more than 80% of total dementia cases in elderly
people. In 2019 World Alzheimer Report estimated over 50 million people living with
dementia globally, a figure set to increase to 152 million by 2050 [1]. The clinical manifesta-
tions of AD are characterized by misfunctioning and gradual neuronal death, resulting in a
progressive memory deterioration and cognitive decline, related to the loss of cholinergic
and glutamatergic function. The two distinctive hallmarks of AD are the presence of
extracellular accumulated Aβ plaques [2] and hyperphosphorylated tau protein in the
form of intracellular neurofibrillary tangles (NFT) [3]. AD pathogenesis is not yet fully
understood, even if during the years different hypotheses have been formulated; currently
it is usually described as a multifactorial disease caused by several factors which include:
loss of cholinergic transmission, excessive protein misfolding and Aβ aggregation [4,5],
oxidative stress and free radical formation [6], metal dyshomeostasis [7], excitotoxicity, and
neuroinflammatory processes [6]. Moreover, the range of targets in AD is increasing, and
for most part, enzymes have been recognized as crucial partners to AD onset and progres-
sion [8]. Hence, a number of molecules has entered clinical phase study with their targets,
such as β-secretase (BACE1), phosphodiesterase, phospholipase A2, mitogen-activated
protein kinase (MAPK) and sirtuin 1 (SIRT1), as an example (clinicaltrials.gov).
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Bulk of evidence sheds light on the interconnected role played by these factors in
AD pathogenesis and, consequently, on the difficulties of setting up more effective drugs
over current therapies. The marketed drugs for the treatment of AD, namely the acetyl-
cholinesterase (AChE) inhibitors donepezil, rivastigmine, and galantamine and the NMDA
receptor antagonist memantine, are regarded as merely symptomatic, respectively modu-
lating the cholinergic or glutamatergic function [9]. However, the synergistic effect between
donepezil and memantine in combination regimen is showing ameliorated outcomes for
cognition, global assessment, daily activities, and neuropsychiatric symptoms, but lower
acceptability than monotherapy [10].

In this scenario, the medicinal chemistry efforts have been paid with a view to disclos-
ing novel chemotypes which could include in their structures the required pharmacophoric
features to target one or more of these factors implicated in AD. Many examples of NQ and
AQ compounds from natural sources or synthetic have emerged in virtue of their promising
properties against AD. In the present review we will focus our survey on cholinesterases,
Aβ and tau proteins as main targets of NQ and AQ compounds, whose networked roles in
AD etiology are detailed as follows (Figure 1).
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following paragraphs (Sections 1.1–1.3).

1.1. Role of Aβ in AD

β-amyloid is a protein consisting in 40–42 amino acids, formed by proteolytic cleavage
of a 695 amino acids long type I transmembrane protein, known as amyloid precursor
protein (APP) [11]. This proteolytic cleavage can take two different pathways. In phys-
iological conditions, it occurs via the major non amyloidogenic pathway involving an
α-secretase that cleaves APP to form soluble α-APP, which is removed from the brain, and
a membrane-tethered intracellular C-terminal fragment, called CTFα or C83 [12]. A second
enzyme, γ-secretase, located within the transmembrane zone, then cleaves the membrane
peptide into two small peptides, p3 and APP intracellular domains (AICDs), which are
not “amyloidogenic” [12,13] The process of APP cleavage has been shown to be impaired
in genetically determined forms of AD [14,15]. The amyloidogenic pathway begins with
the cleavage of the extracellular part of APP by β-secretase, which forms soluble APPβ
fragment (sAPPβ) and a C-terminal fragment CTFβ or C99 [12]. This process is followed
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by the formation of pathological β-amyloid (Aβ40 and Aβ42) by γ-secretase [13], which
accumulates in the brain forming cellular fibrillar deposits known as amyloid plaques [16].
The amino acids sequence of Aβ peptide was discovered in 1984, from extracellular de-
posits and amyloid plaques [17]. The Aβ40 peptide contains 17 hydrophobic, 11 polar
and 12 charged residues [18]. Aβ42 peptide includes two additional hydrophobic residues
at the C-terminal residue, which makes the Aβ42 peptide more toxic and aggregation
prone [19]. Biophysical studies suggest that the Aβ peptide sustains a series of transitions,
from a structure rich in α–helix to one in which β-strands prevail. The two forms of Aβ
have distinct biological activity and behavior at the earliest stage of assembly. Studies of
the kinetics of Aβ fibril formation have shown that Aβ42 forms fibrils much faster than
Aβ40 [20,21]. Aβ42 is more fibrillogenic and more neurotoxic than Aβ40. The initial phase
of oligomerization of Aβ42 monomers involves the formation of pentamer/hexamer units,
so-called paranuclei [22]. Paranuclei are initial and minimal structures that can oligomerize
to larger forms, namely large oligomers, protofibrils, fibrils. Monomers, paranuclei and
large oligomers are predominately unstructured with only short β-sheet/β-turn and helical
elements. During protofibril formation essential conformational changes occur when the
unstructured, α-helix, and β-strand elements transform into β-sheet/β-turn structures.
Paranuclei could not be observed for Aβ40 at similar concentrations of the peptide [23].
Until recently, the fibrillar Aβ40 and Aβ42 were considered the only toxic forms of this
peptide, but it is now clear that Aβ oligomers and protofibrils are more neurotoxic than
mature Aβ fibrils or amyloid plaques. Targeting the Aβ peptide cascade has been at the
heart of therapeutic development in AD research since its formulation in 1992 [24], even if
drugs based on this hypothesis have not reached commercialization yet. Essentially, there
are three different ways to approach Aβ as a therapeutic strategy. The first is based on
the limitation of Aβ production (Figure 1[A]) through the inhibition of β- and γ-secretase
or the activation of α-secretase [25–27]. The second lies in inhibiting Aβ oligomerization
and fibrillization and/or destabilizing preformed Aβ fibrils (Figure 1[B]) [25]. The last
focuses on the regulation of Aβ levels through targeting Aβ clearance (Figure 1[C]), which
is mediated by two distinct mechanisms, its hydrolysis by cerebral proteases, both intra and
extracellular, and independently by transport from the brain and subsequent proteolytic
removal in the periphery [28]. Evidences have demonstrated the role of tau as crucial
partner of Aβ in AD pathogenesis [29]. Moreover, the intracellular binding of soluble Aβ
to non-phosphorylated tau was detected, and possibly described as a precursor event to
later self-aggregation of both molecules (Figure 1[D]) [30]. Aβ, activated microglia and
astrocyte have been also shown to affect tau pathology through the upregulation of kinases
and pro-inflammatory cytokines that modulate tau phosphorylation (Figure 1[E,S]) [31,32].

The neurotoxicity of the prefibrillar aggregates appears to result from their ability
to trigger a whole cascade of harmful mechanisms, including the neuroinflammatory
process, oxidative stress, and excitotoxicity, which leads ultimately to loss of synapses,
intraneuronal connections, and neuron death [23] (Figure 1[F–H]). In this context, some
authors hypothesize the cores of amyloid in the AD brain as a mechanism of defense, which
in the end leads to catastrophic consequences [33].

1.2. Role of Cholinesterase Enzymes (ChEs) in AD

The first physiological evidence for the involvement of the cholinergic system in AD
pathology was a reduction in pre-synaptic acetylcholine (ACh), and a reduced expression of
the choline acetyltransferase (ChAT) enzyme responsible for ACh synthesis. According to
the cholinergic theory, the development of AD symptoms is related to structural alterations
in cholinergic synapses, loss of ACh receptors, death of ACh-generating neurons and
the deterioration of cholinergic transmission (Figure 1[I–M]). Taken together, all these
issues lead to the accumulation of the enzyme responsible for ACh hydrolysis, AChE and
butyrylcholinesterase (BChE) (Figure 1[N]) [34,35]. Cholinergic neurotransmission is based
on proteins involved in ACh synthesis, storage, transport, and degradation. Acetylcholine
is synthesized from choline and active acetate partly in the cytoplasm of cholinergic neurons
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but mostly at the terminal buttons [36]. Choline originates from lipid degradation and it is
captured from outside the neuron by axonal termination via a specific transport mechanism.
Acetyl-coenzyme A (acetyl-CoA) is formed in the mitochondria starting from pyruvate.
The esterification between choline and acetyl-CoA is catalyzed by ChAT, an enzyme present
in high concentration in the cytoplasm of cholinergic nerve endings. The activity of ChAT
is regulated by neuronal depolarization, influx of calcium ions and phosphorylation of
the enzyme [36–38]. The release of acetylcholine occurs by exocytosis of synaptic vesicles.
The vesicles fuse with the pre-synaptic membrane and eliminate the neurotransmitter in
the synaptic cleft where it can activate two different types of receptor: muscarinic and
nicotinic. The release activity is due to the influx of calcium ions, which occurs as a
result of the opening of the slow channels in the pre-synaptic membrane, controlled by
depolarization [38,39]. Acetylcholine crosses the synaptic cleft and enters with its cationic
end in the anionic site of the active receptor surface and it is fixed with its ester group by
the esterophilic site of the enzyme. Acetylcholine that breaks down from the cholinergic
receptor complex is rapidly hydrolyzed and inactivated by AChE, an enzyme present
in the synaptic cleft, either free or bound to the basal lamina. There are two types of
cholinesterase, AChE and BChE. Both enzymes are α,β-hydrolases folded with an α-helix
bound with β-sheet containing a catalytic domain [40]. Although AChE and BChE are
structurally similar, both their significance and location are substantially different; AChE is
predominantly observed in the neuronal synapses and blood, whereas BChE, at the level
of the human brain, is located close to glial cells and neurons or in tangles and neuritic
plaques in AD patients [41,42]. While through AD progression, AChE activity is gradually
reduced, BChE activity slightly increases, thus both enzymes have drawn the attention of
researchers as molecular targets for the design of dual AChE and BChE inhibitors in the
interest of a better disease outcome [43].

In fact, current AD therapies aiming at the increase of ACh levels in the brain are able
to target only AChE. Even though this pharmacotherapeutic approach leads to a partial
stabilization of cognitive function and improvement of the quality of life, these compounds
have beneficial effects only for a short period of time (usually 1–3 years) since they are
not able to influence the disease evolution [44]. The active site gorge of both ChEs is deep
~20 Å length, wherein the catalytic site is located at the bottom of the gorge (∼4 Å above the
base of gorge). Within the gorge, two distinct sites exist, the catalytic anionic site (CAS) and
the peripheral anionic site (PAS) [45]. The active site includes a catalytic triad of aminoacidic
residues Ser200, His440 and Glu327 that catalyzes the hydrolysis of the ester bond of the
neurotransmitter and also an anionic site or α-anionic site which is characterized by a Trp84
residue, among other aromatic ones, that interacts with the quaternary ammonium of ACh,
ensuring its correct orientation [46]. The catalytic mechanism is similar to that of other
hydrolases where the hydroxyl group of the serine becomes highly nucleophilic by a charge-
retransmission mechanism involving the carboxylate anion of glutamate, the imidazole
anion of histidine, and the hydroxyl anion of the serine. During the enzymatic attack on
acetylcholine, which is an ester with trigonal geometry, a tetrahedral intermediate is formed
between the enzyme and the substrate [47]. The PAS site is located at the entrance of the
gorge and is known to allosterically modulate the enzyme activity. Donepezil, a clinically
approved drug for the treatment of AD, presents a structure which spans the entire active
site, interacting with both CAS and PAS residues at the same time [39,48,49].

Interestingly, AChE peripheral anionic site has been reported to play an important role
in AD pathogenesis since it contains a motif that promotes Aβ fibril formation (Figure 1[O]):
the interaction of the Aβ peptide with the PAS contributes to the formation of amyloid
plaques by accelerating the aggregation process. The PAS sequence responsible for trig-
gering Aβ aggregation has been identified as a hydrophobic AChE sequence (aa 281–315)
including Trp279 such as highly conserved key residue [50].
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1.3. Role of Tau Protein in AD

Tau is a microtubule associated protein expressed primarily in neurons, which ag-
gregates into neurofibrillary tangles (NFTs), one of the two pathological hallmarks of the
disease along with the amyloid plaque deposits [51]. Tau is encoded by a single gene
(microtubule associated protein Tau, MAPT) on chromosome 17, resulting in six isoforms
in the central nervous system (CNS) and six additional isoforms in the peripheral nervous
system (PNS) after alternative splicing. Tau protein presents four primary domains: the
N-terminal domain, the proline-rich domain, the microtubule-binding domain (MBD), and
the C-terminal region. Alternative splicing primarily affects the N-terminal and MBD,
yielding 4-repeat (4R) and 3-repeat (3R) tau. These two isoforms are present in ratio 1:1 in
adult human brains, and 4R tau demonstrates a stronger activity than 3R tau in inducing
microtubule assembly. The disruption of the physiological ratio is at the base of several
tauopathies, AD included. Several tau mutations have been observed and numbered by
their locations in 2N4R human tau and are associated with the emergence of tauopathies.
These mutations could impact tau post-translational modifications, protein folding and
aggregation [52].

Intracellular tau aggregate formation is mediated by the MBD, in a region between
Ser214 and Glu372 which binds microtubules tethering tubulin dimers together. MBD
region contains a tau repeat domain (tau RD), which spans residues 243 to 365 [53]. The
third repeat contains the hexapeptide motif 306VQIVYK311 which is the most important for
fibril assembly since, along with a second hexapeptide motif 275VQIINK280, it promotes
the formation of β-sheet structures and consequent tau aggregation. The occurrence of tau
mutations (Figure 1[P]) that destabilize local structure around these motifs could trigger
spontaneous aggregation (Figure 1[Q]), leading to tauopathies (i.e., missense mutations of
Pro301 changed to Leu or Ser cause tauopathy and are associated with neurodegeneration
in model systems) [52,53].

Tau phosphorylation and cleavage (Figure 1[R]) are two other subjects that need to be
considered, since they represent the early steps that trigger and precede its aggregation.
Tau contains 85 potential serine, threonine, and tyrosine phosphorylation sites, mainly
found in the proline-rich domain of tau near the MBD. Tau hyperphosphorylation occurs
in tauopathies: in normal brains, about 10 phosphorylated residues could be detected
on soluble tau, while approximately 45 residues, representing more than 50% of all phos-
phorylable residues, have been found in AD brains. A large number of different kinases
and phosphatases (Figure 1[S]) are involved in tau phosphorylation regulation, including
glycogen synthase kinase-3 (GSK-3), cyclin-dependent kinase 5 (cdk5), and 50 adeno-
sine monophosphate-activated protein kinase (AMPK), casein kinase-1(CK1), microtubule
affinity-regulating kinases (MARKs), cyclic AMP-dependent protein kinase A (PKA), dual
specificity tyrosine-phosphorylation-regulated kinase-1A (DYRK-1A), tyrosine kinases
(Fyn, Abl and Syk) and phosphatases such as protein phosphatase-1, -2A, and -5 (PP1,
PP2A, and PP5) [54].

Tau can be cleaved by many proteases: caspase-3 cleaves tau at Asp421 while calpain-1
and caspase-6 are responsible for the N-terminal cleavage. The resulting tau fragments
have been detected in AD brains; in fact, caspase-cleaved tau fragments are known to be
prone to aggregation, while cleavage of tau by calpain appears to partially inhibit the ag-
gregation processes. Thus, phosphorylation and caspase-mediated cleavage of tau should
be considered also as important events in triggering the NFTs formation in AD [53,54].

2. Quinone-Based Scaffolds for the Development of Novel Agents against AD

Quinones are interesting chemical structures whose main features include a non-
aromatic ring and two carbonyl functions at the 1,4 or the 1,2 positions to one another.
The three most common quinone-based derivatives are benzoquinones, NQs and AQs
(Figure 2). In this review we will focus on 1,4-naphthoquinones (1,4-NQs) and 9,10-
anthraquinones (9,10-AQs) that have been disclosed so far, during the search for valuable
chemotypes with potential to treat AD.
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3. Naphthoquinones

NQs are colored chemical compounds that exist in nature as secondary metabolites of
plants that are used in many traditional medicines in Asian countries. NQs have gained
considerable interest from researchers due to their antibacterial, antifungal, antitumor, and
insecticidal properties [55–58].

The diverse set of pharmacological activities displayed by these compounds makes
the NQ scaffold very attractive as a building block for drug development. The most stable
isomeric form, 1,4-NQ, has been widely applied in organic reactions, such as Michael-type
additions [59,60], aldol-type reactions, Diels-Alder reactions [61,62], cycloadditions [63],
Friedel–Crafts reactions [64] and epoxidation [65,66] thanks to its two reactive functional
groups, such as a C–C double bond and two ketone carbonyls.

Recent studies have also shed light on the neuroprotective effects and Aβ aggregation
inhibition performed by 1,4-NQs [67–70], thus suggesting the NQ scaffold as valuable
chemotype for the design of AD therapeutics.

NQ can be considered a privileged structure since its derivatives have demonstrated
the ability to interact with several and different biological/pharmacological targets, thus
exhibiting a wide range of activities. However, the effect of 1,4-NQs on neurodegenerative
diseases has been subject to few studies. Only recently, natural and synthetic NQ deriva-
tives have started to be explored as potential agents for the treatment of AD (Figure 3).
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3.1. NQs from Natural Sources

Since antiquity, the treatment and cure of human diseases with plant-derived extracts,
powders, oils, roots, etc. have been widely recognized in medical practice. Natural products
have been the source of valuable drugs for different pharmacological settings and have
served as fragments for drug design strategy [71–76]. NQs represent a varied family of
naturally occurring secondary metabolites [77–80], whose interest has intensified in recent
years also for the treatment of AD.
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The first example is plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone (1), Figure 4),
which is one of the simplest plant secondary metabolites of three major phylogenic families
viz. Plumbaginaceae, Droseraceae and Ebenceae [81,82]. It exhibits potent biological activities,
including antioxidant (by means of different assays) as well as prooxidant properties [83],
as observed for other naturally occurring compounds [84,85] and also anti-inflammatory
ones [86,87]. These properties suggested the activation of adaptive cellular stress response
pathways as plausible neuroprotective effects [88]. This molecule has been tested by
Nakhate et al. for its ameliorative effect on learning and memory in AD-like conditions in
mice [3]. They treated mice with a daily intraperitoneal (i.p.) dose of plumbagin (0.5 and
1 mg/kg) starting from 1h prior to the first intracerebroventricularly treatment with strep-
tozotocin (STZ; 3 mg/kg), a molecule able to recapitulate an AD-like condition. Plumbagin
demonstrated the ability to prevent the loss of learning and memory in mice subjected to
Morris water maze (MWM). They suggested that the anti-Alzheimer’s effect of plumbagin
could be associated with activation of Nrf2/ARE signaling with consequential suppres-
sion of astrogliosis and inhibition of BACE1. They confirmed their hypothesis with the
administration of a Nrf2/ARE inhibitor, trigonelline (10 and 15 mg/kg), which proved
to enhance the effect of STZ. On the other hand, pre-treating mice with a sub-effective
dose of trigonelline (5 mg/kg) attenuated the effect of plumbagin. Finally, docking studies
allowed the demonstration of the excellent binding mode of plumbagin to B and D chains
of BACE1 enzyme.
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On this basis, plumbagin may deserve more in-depth studies in order to confirm its
potential against AD [3].

Another interesting natural molecule is juglone (5-hydroxy-1,4-naphthoquinone (2),
Figure 4), a phenolic compound produced by numerous species of walnut tree, found in
the fresh ripe fruit husk, roots, leaves, and bark [89,90]. Ahmad et al. [91] reported that
juglone demonstrated to have various pharmacological activities, including antimicro-
bial [92], anti-cancer [93–95], anti-fungal [92], antioxidant [96] as well as apoptotic [97]
and anti-angiogenesis properties [98]. Juglone contains an intramolecular hydrogen bond
between hydroxyl and keto groups and is active in donating the hydrogen-atom [99], thus
it may have either pro- or anti-oxidant characteristics depending on the concentrations [96].
Accordingly, some studies have reported the generation of ROS by juglone, while others
describe its antioxidant properties [100]. Furthermore, deprotonated juglone has demon-
strated the ability to chelate Fe2+ [101] leading to the formation of stable complexes, thereby
preventing this metal from participating in free radical generation [102–105], since ferrous
iron promotes lipid oxidation through Fenton reaction [106]. Accumulating evidence sug-
gest that antioxidant properties of juglone are useful in combating oxidative stress-linked
diseases, being able to prevent oxidative and heat stress-induced dephosphorylation of
Tau in human cortical neurons [107]. A recent study in a transgenic mouse model of AD
demonstrated that the walnut supplement can reduce oxidative damage [108].
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Juglone is also an inhibitor of Pin1, a parvulin member of peptidyl-prolyl cis/trans
isomerases (PPIases) [109], that can regulate protein phosphorylation and cell signaling,
catalyzing the cis/trans isomerization of peptide bonds preceding prolyl residues [110].
Pin1 inactivation occurs through a Michael addition of the thiol groups of Cys41 and Cys69
of the enzyme to two juglone molecules, forming covalent bonds [109]. Recently Pin1
activity has been connected to AD through the modulation of phosphorylation of Tau
protein [107,111], hence Pin1 and juglone have gained considerable attention. Juglone has
also been studied by Bescos et al. [70] for its ability to inhibit both BACE1 (IC50 = 6.51 µM)
and the aggregation of β-amyloid (IC50 = 11.10 µM) and for its ability to disaggregate
preformed amyloid fibrils (IC50 = 15.49 µM). Altogether, this information makes juglone a
promising chemotype for the development of novel drugs for the treatment of AD.

The last example of natural NQ against AD is DDN (2,3-dichloro-5,8-dihydroxy-1,4-
naphthoquinone (3), Figure 4), that has been tested by Khelifi et al. [112] for its antioxidant
potential in two different assays. ABTS assay is based on the exchange of hydrogen atoms
between the antioxidant and the stable radical [113], while iron reducing power test is
based on the donation of a single electron transfer. The results showed that DDN has
an excellent antioxidant activity with low IC50 (9.8 ± 0.2 µM) and EC50 (4.3 ± 1.6 µM)
values for both tests, respectively, exceeding the potency values of ascorbic acid used as
positive control. DDN has also been evaluated for its dual inhibitory effect on both Aβ42
aggregation and AChE. The results of ThT assay, for the inhibition of Aβ42, showed the
formation of ThT positive species corresponding to the interaction of DDN with β-sheet
structures of Aβ42 formed after 24 h. However, in the presence of 25, 50, and 100 µM of
DDN, an almost complete reduction of ThT fluorescence was observed. The in vitro AChE
inhibitory potency of DDN (IC50 = 14.5 ± 1.0 µM) was comparable to that of galantamine
exibiting an IC50 equal to 9.3 ± 1.2 µM. Bermejo-Bescós et al. tested 5,8-dihydroxy-1,4-
naphthoquinone in the same experimental conditions, without observing the inhibition of
AChE [70]. This result has been related to the absence of 2,3-dichloro substitution in DDN.
Thanks to molecular modeling studies, Khelifi et al. observed that DDN could share the
same binding interaction (to Tyr337) of galantamine, used as reference compound [112].

Since quinones display low solubility in water and a limited stability, which impair
their bioavailability, the authors also studied the drug releasing by encapsulation of DDN
into alginate microspheres, in order to prevent enzymatic degradation and improve the
blood-brain barrier (BBB) permeability. The compound release patterns suggested the
release of 1040 µg/cm2 of the 25% diffused amount. Taking into account the first passage
hepatic degradation after oral administration, they asserted that this quantity of DDN
seems to be sufficient to ensure its therapeutic effectiveness.

Other natural compounds demonstrated to have important biological activity of
potential utility against AD, such as shikonin, which displayed anti monoamine oxidase
(MAO) activity [114,115]. MAO enzymes have been identified as key contributors to AD
pathogenesis, inducing the expression of β-secretase and γ-secretase with a subsequent
increase in Aβ oligomerization and fibrillation [116]. Accordingly, MAO inhibitors are
presently studied for their neuroprotective properties as new promising drugs for cognitive
impairment in AD and other dementias. However, for shikonin and other natural products
further studies are required with a view to connecting their beneficial effects to AD.

3.2. Synthetic NQ Derivatives

As mentioned before, natural compounds may serve to select novel core structure
and molecular fragments to enrich the molecular diversity of a compound library toward
an enhanced efficacy. On this wave, Bermejo-Bescós et al. in 2010 screened 26 NQ deriva-
tives, juglone being included, for their antiamyloidogenic properties [70]. Several 1,4-NQs
provided activities in the inhibition of BACE1 and Aβ aggregation, and disaggregation
of Aβ fibrils (Figure 5). In particular, five compounds (2-hydroxy-1,4-naphthoquinone
(4), 5,8-dihydroxy-1,4-naphthoquinone (5), plumbagin (1), 2-phenyl-1,4-naphthoquinone
(6) and 5-hydroxy-2-(4-hydroxyphenyl)-1,4-naphthoquinone (7)) displayed an inhibitory



Pharmaceuticals 2021, 14, 33 9 of 33

selective profile on BACE1, while 2-bromo-NQs behaved selectively as inhibitors of Aβ
aggregation. 1,4-Naphthoquinone (11), 6-hydroxy-1,4-naphthoquinone (12) and 5-nitro-
1,4-naphthoquinone (13) were dual inhibitors of Aβ aggregation and disaggregation. Fi-
nally, juglone (2) and 3-(4-hydroxyphenyl)-5-methoxy-1,4-naphthoquinone (14), showed a
promiscuous pharmacological profile against all the three targets.
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Although these compounds have elicited toxicity at high doses, and some have been
evaluated for their ability to arrest the cell growth or to kill cancer cells [96], at subtoxic
doses they have proved to activate adaptive stress response pathways in neurons, pro-
tecting neurons against severe stress, thus being worthy of successive investigations as
promising neuroprotective agents [88,117].

Neo Shin et al. screened 41 1,4-NQ derivatives as inhibitors of Aβ aggregation
(ThT assays) and 14 compounds were selected for further studies to check their ability
to dissociate preformed Aβ aggregates [118]. However, conflicting results prompted
the authors to further investigate the antiamyloidogenic properties of these derivatives.
Docking and biophysical studies revealed that four compounds (15–18, Figure 6) are able
to directly bind to amyloid-β aggregates and enhance their fluorescence properties in
the presence with Aβ aggregates. These compounds specifically showed to stain both
diffuse and dense-core amyloid-β plaques in brain sections of APP/PS1 double transgenic
AD mouse models. 2-(Benzylamino)-5-hydroxynaphthoquinone (16) emerged as the best
performing candidate, in virtue of its ability to enhance fluorescence by 50-fold when
its emission is collected from 680 to 750 nm. Altogether, this study has aroused interest
for 1,4-NQ-based molecules to serve as amyloid imaging agents for diagnosing early
AD patients.
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In 2011, Bolognesi et al. designed several derivatives of the bivalent ligand memoquin
in order to simplify its structure and reduce its MW, while still preserving its multitarget
profile [119]. Among them, four NQs (19–22 of Figure 7) were evaluated against multiple
AD targets such as AChE, self-induced Aβ aggregation, and BACE1 (Figure 7).

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 10 of 34 
 

 

collected from 680 to 750 nm. Altogether, this study has aroused interest for 1,4-NQ-based 

molecules to serve as amyloid imaging agents for diagnosing early AD patients. 

 

Figure 6. Synthetic NQ investigated by N. Neo Shin et al. as amyloid imaging agents. 

In 2011, Bolognesi et al. designed several derivatives of the bivalent ligand memo-

quin in order to simplify its structure and reduce its MW, while still preserving its multi-

target profile [119]. Among them, four NQs (19–22 of Figure 7) were evaluated against 

multiple AD targets such as AChE, self-induced Aβ aggregation, and BACE1 (Figure 7). 

 

Figure 7. NQs studied by M.L. Bolognesi et al. 

As a result of AChE inhibition study, only compound 19 proved to be effective with 

IC50 = 9.73 nM. The lower activity of 20 and 22 confirmed both the ethyl group and the 2-

methoxybenzyl moiety as important substitutions of the terminal tertiary amine group, as 

previously observed in other memoquin derivatives [120,121]. Conversely, the 1,4-piper-

idine spacer of 21 was too rigid, thus hampering its adequate fitting into the AchE gorge. 

Docking simulations showed that 20 was able to interact with the hAChE catalytic site, 

and meantime to protrude towards the solvent-exposed gorge entrance, establishing three 

key interactions at hAChE active site: (i) protonated nitrogen of the ligand formed a cat-

ion−π interaction with the indole ring of Trp86 and the phenol ring of Tyr337; (ii) the ox-

ygen in position 1 of the quinone moiety made a H-bond with the backbone of Phe295; 

(iii) the NQ moiety was engaged in favorable π−π stackings with the indole ring of Trp286 

of the PAS. The last finding was relevant in the context of previous reports which con-

nected the inhibition of AChE-induced Aβ aggregation to the ability of a binder to interact 

with the PAS of the enzyme. Hence, a direct correlation between AChE inhibition and 

Figure 7. NQs studied by M.L. Bolognesi et al.

As a result of AChE inhibition study, only compound 19 proved to be effective with
IC50 = 9.73 nM. The lower activity of 20 and 22 confirmed both the ethyl group and the
2-methoxybenzyl moiety as important substitutions of the terminal tertiary amine group,
as previously observed in other memoquin derivatives [120,121]. Conversely, the 1,4-
piperidine spacer of 21 was too rigid, thus hampering its adequate fitting into the AchE
gorge. Docking simulations showed that 20 was able to interact with the hAChE catalytic
site, and meantime to protrude towards the solvent-exposed gorge entrance, establishing
three key interactions at hAChE active site: (i) protonated nitrogen of the ligand formed
a cation−π interaction with the indole ring of Trp86 and the phenol ring of Tyr337; (ii)
the oxygen in position 1 of the quinone moiety made a H-bond with the backbone of
Phe295; (iii) the NQ moiety was engaged in favorable π−π stackings with the indole ring
of Trp286 of the PAS. The last finding was relevant in the context of previous reports which
connected the inhibition of AChE-induced Aβ aggregation to the ability of a binder to
interact with the PAS of the enzyme. Hence, a direct correlation between AChE inhibition
and AChE-induced aggregation was observed for 20 [122,123]. Indeed, the inhibition
of self-induced Aβ aggregation by 19 was lower than 21 (22% vs. 29%, respectively)
probably because compound 21 could take additional positive contacts with the biological
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target through its additional nitrogen atom. Compound 19 was tested in primary chicken
telencephalon neurons to substantiate its secretase inhibitory activity by affecting APP
processing [124]. Interestingly, 19 inhibited Aβ38, Aβ40, and Aβ42 secretion, with IC50
values of 19, 21, and 46 µM, respectively, without producing toxic effects in a concentration
range of 0.01−50 µM.

In 2015, Sparatore F. et al. described the multitarget profile of a library of thioxanthene-
9-one, xanthen-9-one, NQ (Figure 8) and AQ derivatives (see Figure 18) decorated with a
basic side chain of variable length (dialkylaminoalkyl and quinolizidinylalkyl chains) [125].
These molecules were tested against electric eel AChE (eeAChE) and equine serum BChE
(esBChE) and the spontaneous Aβ40 aggregation. In particular, most of NQs 23–30 proved
to be dual but AChE-preferring inhibitors (IC50 = 0.011–5.8 µM) over BChE, while Aβ40
aggregation was poorly inhibited (29, IC50 = 61 µM) or not affected. Regarding the influence
of the polymethylene linker tethering the NQ scaffold to the basic moiety, its elongation
was responsible for an increase of the ChE inhibitory potencies. However, a remarkable
37-fold decrease of AChE inhibition was observed when the trimethylene linker of 28
(IC50 = 0.011 µM) was further elongated of two units (29, IC50 = 0.41 µM). Compound 28
confirmed the same degree of activity against the human AChE (hAChE, IC50 = 0.04 µM).
As lead of NQ subset, it was also investigated for its ability to cross the BBB by passive
diffusion, βand to interact with P-glycoprotein (P-gp), which is involved in the efflux
transport of drugs: it showed an efflux ratio (ER) equal to 0.78 comparable to that of
diazepam (ER = 0.79), used as reference compound. In vitro assay for cytotoxicity against
the neuroblastoma cell line SH-SY5Y revealed for compound 28 a low IC50 value of 3.6 µM,
but a good selectivity ratio (toxicity/AChE inhibition) equal to 327.
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The mechanisms that regulate levels and activity of BACE1 may serve for therapeutic
purpose of AD. Nascent BACE1 to complete maturation has to be transiently acetylated
by two endoplasmic reticulum acetyl-CoA:lysine acetyltransferases, named ATase1 and
ATase2 [126] (Figure 3). These enzymes are up-regulated in the brain of AD patients and
increase the levels of BACE1 and the generation of Aβ. Interestingly, from a step-by-step
screening of a library of 14,400 compounds, Puglielli L. et al. identified the 2-chloro-3-
(2-ethoxyanilino)-1,4-naphthoquinone and a phenoxazin-5-one derivative as promising
compounds, being able to selectively down-regulate ATase1 and ATase2 activity in vitro,
without interfering with the acetylation of other classes of proteins [127].

3.3. NQ-Based Hybrids

The simplest way to incorporate two (or more) different activities in one single
molecule is the combination of their respective pharmacophoric elements, that are re-
sponsible for the diverse biological properties [128]. The multitarget approach may be
considered an evolution of this concept. The rationale for using the bivalent ligand ap-
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proach stems from the possibility of tackling the intricate array of AD, through dimeric
structures capable of bridging independent recognition sites of validated targets (such as
AChE, Aβ and BACE1).

In this context, the NQ scaffold was included in three different types of hybrid
molecules (Figures 9 and 10). In two of them, the NQ nucleus was combined with the
structure of tacrine, which was the first marketed AChE inhibitor for AD therapy, and
withdrawn from use in 2013 due to its hepatotoxicity [129]. Despite this, tacrine continues
to be used as a template for the design of new safer analogues against AD [130].
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QuinoPyranTacrines (QPT), by M. Chioua et al., resulted from the condensation of
1,4-NQ and tacrine motifs (31–34, Figure 9A) by means of a 4H-pyran ring, bearing at
position 4 an aromatic ring variously decorated with electron-withdrawing (F, NO2) and
electron-donor (OCH3) groups [131]. In the initial screening phase, all the compounds
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were tested for their potential hepatotoxicity, resulting non-hepatotoxic in the majority of
cases. The evaluation of their inhibitory action against human ChEs allowed only three
compounds to be identified as hAChE inhibitors. The 4-methoxy substituted derivative (32)
was the most active, displaying IC50 = 1.10 µM, but less potent than tacrine, and inactive
against BChE. The compounds were next evaluated for their antioxidant activity and shared
to scavenge the peroxyl radical with ORAC (oxygen radical absorbance capacity) values in
the range 1.54 (32)–3.34 (34) Trolox equivalents (TE), comparable to reference compound
ferulic acid (ORAC value = 3.74 TE). In particular, the electron withdrawing groups such
as R = 4-F (34) and 4-NO2 (33) were responsible for a greater antioxidant activity, while for
OCH3 group the substitution at position 2 of the aromatic ring was preferred (31). Docking
studies allowed the disclosure of the R-enantiomer of 32 as the best conformation to fit into
the AChE cavity. Thus, compound 32 may represent an interesting starting point for the
design of novel tacrine-based hybrids with enhanced efficacy and safety.

Another example of NQ-tacrine hybrids was proposed by E. Nepovimova et al. who
connected the two scaffolds through a polimethylene chain (Figure 9B) with the aim to
target simultaneously Aβ aggregation, AChE and oxidative stress [132]. 1,4-NQ, 2,3-
dichloro-1,4-NQ and 5-hydroxy-1,4-NQ (juglone) were selected as scaffolds to be joined
to 6-chlorotacrine, which had showed an improved AChE inhibitory profile with respect
to tacrine [133], and to its 7-methoxy analogue, which confirmed a comparable efficacy
against AChE, but with significantly lower side effects compared to the parent drug,
probably due to a different metabolic fate [134]. The length of the linker connecting the two
frameworks was set according indications derived from preliminary docking simulations,
that suggested two or three methylene units as the best suited distance for a comfortable
positioning of the hybrid’s subunit within the AChE gorge.

All the hybrids turned out to be effective inhibitors of hAChE [132], in a wide range of
IC50 values from micromolar to sub-nanomolar concentrations (Figure 9B), surpassing the
potency of tacrine (IC50 = 500 nM). The presence of tacrine moiety undoubtedly contributed
to their inhibitory activity. Both the highest potency against AChE (sub-nanomolar to one-
digit nanomolar, Figure 9B) and the selectivity over BChE were displayed by 6-chlorotacrine
derivatives (R2 = Cl, 35–39). The unsubstituted tacrine derivatives showed moderate
activity (hAChE IC50 = 38–53.7 nM), while the 7-methoxytacrine compounds (40, as an
example) had dramatically lower potencies falling in the sub-micromolar or micromolar
range (hAChE IC50 = 348–6150 (40) nM). The best result was obtained by the 6-chlorotacrine
derivative of juglone which exhibited an IC50 = 0.72 nM (37).

In general, structural modifications of tacrine scaffold led to a drop in the inhibitory
activity on BChE except for the tacrine-1,4-NQ hybrid, which was 4-fold more potent than
tacrine. 7-Methoxytacrine-1,4-NQ-based derivative (40) was the only BChE preferential
inhibitor (hBChE IC50/hAChE IC50 = 10) in the series. Analysis of X-ray crystal structure
of the complex between Torpedo californica AChE (TcAChE) and the best AChE inhibitor
(6-chlorotacrine—juglone hybrid) showed that the 6-Cl atom interacted with the CAS via
hydrophobic contacts, the methylene chain was involved in water-mediated hydrogen-
bonds and the juglone moiety accommodated in the narrow bottleneck of AChE, making
van der Waals interactions [132]. In general, hybrids characterized by a propylene chain
as spacer were more potent than those endowed with ethylene one, whereas for juglone
derivatives, carrying the 5-OH group, likely involved in a hydrogen bond, even a shorter
link was permitted, allowing the molecule to properly fit within the AChE cavity. The
molecules were also tested against spontaneous amyloid aggregation at 10 µM, and 2-
chloroquinone scaffold linked to 6-chlorotacrine resulted to be the best suited for the
activity (39, Inhib. Aβ aggreg. % = 52.8), whilst the unsubstituted and the 7-methoxy
tacrine-based inhibitors resulted to be less effective (Inhib. Aβ aggreg. % = 20–30). Then,
the authors verified the neurotoxic profile of the compounds in immortalized mouse
cortical neurons Neuro2A (N2A) and primary rat cerebellar granule neurons, observing
that most of them showed no significant reduction in cell viability compared to untreated
cells. Hence, the two best performing molecules, the 6-chlorotacrine derivatives of 1,4-NQ
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(35) and juglone (37), were evaluated for their neuroprotective activity against two different
harmful stimuli, such as Aβ42 and oxidative stress. The cell viability significantly increased
in N2A cells pre-incubated with the two compounds at 12.5 µM, and then treated with
Aβ42 peptide, compared to the cells only incubated with Aβ [132].

The antioxidant properties of the most active compounds were tested through the
evaluation of ROS scavenging effects against human glioma T67 cells exposed to high level
of tert-butyl hydroperoxide (TBH, 100 µM) in the presence or absence of pre-treatment with
sulforaphane, used as a potent inducer of NAD(P)H quinone oxidoreductase 1 (NQO1),
which is an inducible enzyme involved in the conversion of quinones into the more antiox-
idant hydroquinone forms [132]. Remarkably, the treatment with the juglone derivative
of 6-chlorotacrine (37) completely suppressed TBH-induced intracellular ROS production,
confirming the expected antioxidant properties of this compound. Importantly, ex-vivo
experiments revealed the capacity of these hybrids of permeating the BBB, a fundamental
requirement to access to their multiple biological targets in the CNS.

Finally, the last example of hybrid-based strategy was proposed by Scherzer-Attali
et al. who in 2010 designed and synthesized a small library of NQ-tryptophan hybrid
molecules (Figure 10) as candidate inhibitors of amyloid assembly [67]. These compounds
demonstrated their efficacy by inhibiting β-amyloid aggregation in in vitro, in silico and
in vivo experiments. The idea of conjugating the NQ and tryptophan moieties aimed to
combine the crucial role of tryptophan during the amyloidogenic process [135] and the
recognized ability of quinones to impair amyloid aggregation. Among the compounds
tested, the N-(1,4-naphthoquinon-2-yl)-L-tryptophan (NQTrp, 41) hybrid was found to be
the most effective against Aβ40 aggregation, even at low molar ratios of 4:1 (Aβ40:NQTrp).
A similar experiment with Aβ42 resulted in an IC50 = 50 nM (Figure 10). Transmission
Electron Microscopy (TEM) imaging and circular dichroism (CD) spectroscopy showed
a drastic fibrils reduction and a decrease in the β-sheet conformation, respectively. The
affinity constant of NQTrp toward early oligomers of Aβ42 was estimated to be 90 nM.
Additionally, the authors assessed the effect of NQTrp on Aβ oligomers using transgenic
Drosophila melanogaster expressing human Aβ42 as animal model. The flies were fed with
NQTrp throughout their lifespan; notably, the treatment prolonged their lifespan and
completely abolished their defective locomotion. The western blot analysis of the fly brains
showed an important reduction of Aβ oligomeric species. They also tried to elucidate
the mechanism of interaction between NQTrp and Aβ peptides using Nuclear Magnetic
Resonance (NMR) spectroscopy and Molecular Dynamics (MD) simulations observing a
greater interaction with the central aromatic core of Aβ forming hydrogen bonds with its
Phe20-Glu22 region. In 2014, Zhang et al. [136] demonstrated via MD simulation that the
interaction is very dynamic and multiple, and evolves through many transient binding
contacts; hence, in addition to the central hydrophobic core (residues 17–21) and the side
chains of Phe19 and Phe20, the hydrophobic residues Leu34/Met35 and hydrophilic/polar
residues Arg5, Asp7, Tyr10, His13, Lys16, and Lys18 were identified as hot spots for NQTrp
binding to Aβ42.

Scherzer-Attali et al. tested an analog of NQTrp, named Cl-NQTrp (42, Figure 10),
for its effect on in vitro Aβ aggregation and in vivo accumulation [137]. Cl-NQTrp was
able to completely inhibit the fibrillization and oligomerization of Aβ in vitro as well as
to extend the lifespan and to improve the defected locomotive behavior of transgenic
Drosophila melanogaster. Furthermore, Cl-NQTrp was found to correct cognitive defects in a
severe AD mouse model, markedly decreasing oligomerization and Aβ plaques load in
their brains.

In the same year, NQTrp and Cl-NQTrp were tested against different amyloid form-
ing proteins and peptides, both neuronal as α-sinuclein, and non-neuronal such as Islet
Amyloid Polypeptide, Prostatic Acid Phosphatase Peptide (PAP), calcitonin, insulin and
lysozyme [138].

Successively, Frenkel-Pinter et al. tested NQTrp and Cl-NQTrp as inhibitors of tau
aggregation both in vitro and in vivo [139,140] by using a paired helical filament, PHF6



Pharmaceuticals 2021, 14, 33 15 of 33

(highly repeated sequence 306VQIVYK311 responsible for aggregation of tau in paired
helical fragments (PHF) [141], as an in vitro model. Tau aggregates are formed by the
self-assembly of misfolded tau protein monomers into harmful oligomers and abnormal
fibers called paired helical filaments (PHFs) that form higher-order β-sheet rich aggre-
gates termed neurofibrillary tangles. PHFs consist of two filaments twisted around one
another with a width of 8–20 nm and a cross-β-sheet conformation [142]. Thus, the authors
estimated the potency of the two compounds to inhibit PHF6 aggregation by different
biophysical techniques [139,140]. Both NQTrp and Cl-NQTrp were found to inhibit PHF6
aggregation in a dose-dependent manner, obtaining the maximum inhibition at 1:5 molar
ratio (PHF6: NQTrp/Cl-NQTrp). The same behavior was further validated by CD spec-
troscopy and TEM imaging. Then they examined the in vivo efficacy using transgenic
Drosophila melanogaster overexpressing human Tau in its central nervous system or in its
retina. The treatment with either NQTrp or Cl-NQTrp reduced the accumulation of Tau
and its hyperphosphorylation, extended fly lifespan and generally led to an amelioration of
tauopathy-related defects compared to the untreated flies. Both compounds disassembled
preformed PHF6 fibrils in a dose-dependent manner with a maximum reduction of 40%
obtained by 1:5 molar ratio (PHF6: NQTrp/Cl-NQTrp). MD simulation elucidated the
interaction between NQTrp and Cl-NQTrp to PHF6 which exploited the same pattern of hy-
drogen bonds and π-π stacking, in line with the results for Aβ discussed above. It remains
to be seen whether the results can be replicated in a rodent tauopathy model [139,140].

On this wave, Scherzer-Attali group designed and synthesized four derivatives of
NQTrp (Figure 10) exploring the impact of configuration change (D-isomer of Trp) and of
single and double-methylation of NQTrp nitrogen atoms on affecting Aβ aggregation [143].
The effects of the different substitutions and rearrangements were studied in silico as
well as in vitro. The in-silico results suggested that the D-isomer and the N-methylindole
derivative had a binding affinity toward Aβ oligomers comparable to NQTrp, while the
N-methylnaphthoquinone and the dimethyl derivative were less efficient inhibitors and
have lower affinity. Therefore, methylation of the indole nitrogen, as well as L or D
stereochemistry did not seem to influence the inhibitory activity of Aβ oligomerization
(IC50 = 5–10 nM), nor the affinity (Kd = 90 nM) versus Aβ oligomers. However, regarding
the inhibitory activity on Aβ fibrillization, a different effect was observed. The N-methyl
indole derivative displayed a reduced inhibition of fibrillization (IC50 = 50 µM), which
was tentatively ascribed to a lower solubility, according to its more hydrophobic nature
compared to NQTrp. On the other hand, as expected, the methylation of aniline nitrogen
reduced the inhibition toward both fibrilization (IC50 = 25–50 µM) and oligomerization of
Aβ, demonstrating that the hydrogen bond formed between Aβ and the aniline position of
NQTrp is crucial both for binding and for inhibiting the aggregation. Regarding the double-
methylated derivative, the authors did not present experimental data, due to the unstable
nature of the compound, but the in-silico results were in line with that reported above.

Another attempt of NQTrp optimization was made by Paul et al. in 2019, who
designed and synthesized NQTrp analogs (Figure 10) with the NQ moiety linked with
covalent bond to tryptamine (NQTA, 43) or L-tryptophanol (NQTOL, 44) [144]. These
analogs were evaluated for the inhibition of aggregation of amyloids and disaggregation of
preformed fibrillar assemblies of PHF6, Aβ42, and hIAPP in vitro. The hybrid molecules
appeared to be more efficient modulators toward the slowly aggregating peptides (Aβ42
and hIAPP) than the fast-aggregating peptide (PHF6). This is probably due to the slow rate
of primary nucleation of peptide molecules, which gives an adequate time for interaction of
the inhibitor molecules [145,146]. These hybrids were also found to be non-toxic toward the
neuroblastoma (SH-SY5Y) and kidney (HEK-293) cell lines and ameliorated the cytotoxicity
induced by PHF6, Aβ42, and hIAPP aggregates. Molecular docking studies revealed that
the hybrid molecules displayed significant interactions with the peptide monomers facili-
tating the inhibition of aggregation. In agreement with previous reports [67,147–153], the
study revealed that the hybrid molecules interacted with various residues of Aβ fragment
including Glu11, Val12, His13, His14, and Lys16, in addition to Leu17, Val18 located in
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the core hydrophobic region (16KLVFF20) [154], and this possibly rendered their inhibitory
effects toward Aβ42 aggregation. To further validate the results of the Aβ fragment, the
authors also performed a docking study of the hybrid molecules with Aβ40, and the pre-
dicted binding energies between them were in a similar pattern as with the Aβ fragment.
They observed that the hybrid molecules interacted with the different residues of Aβ40 pep-
tide, namely His6, Asp7, Ser8, His13, Gln15, Lys16, and Val18 through hydrogen bonding
and hydrophobic interactions, which were also very similar to those observed during Aβ
aggregation and agreed with previous reports [152,153]. Additionally, molecular dynamics
simulation provided a plausible mechanism for disassembly of preformed fibrils arbitrated
by the hybrid molecules. Namely, the hybrid molecules form hydrogen bonds predomi-
nantly with Val residue of PHF6, and Val was found to be the key residue in maintaining
the β-sheet conformation between the two PHF6 peptide pairs. Thus, these researchers
hypothesized that the interaction of the hybrid molecules with the hydrogen bond forming
residues of PHF6 peptide might disrupt the existing peptide-peptide interaction in the
β-sheet rich fibrillar arrangement, eventually disassembling the preformed aggregates.
It is noteworthy that in all in vitro assays as well as in the computational studies, NQTOL
appeared to be superior of the other hybrid molecules tested up to now. Collectively, these
results strongly support the anti-amyloidogenic potential of NQTrp for the development of
novel therapeutics against AD and other proteinopathies.

4. Anthraquinones

Among the AQ-based molecules which have been and are being currently studied as
potential central nervous system (CNS) active agents, most of them derive from natural
sources. To date, more than 700 natural AQs have been isolated from plants, lichens
and fungi. In plants, AQ metabolites are present in a wide range of species, predomi-
nantly in the families of Rubiaceae, Polygonaceae, and Rhamnaceae. These compounds are
structurally derived from the 9,10-anthracenedione nucleus [155], that is present in the
form of monomers and bi-AQs, when including in their structures one or two basic cores,
respectively [156] (Figure 11).
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In the field of drug discovery, the AQ nucleus is an important scaffold associated
with a wide range of pharmacological properties including anti-inflammatory, anti-cancer,
diuretic, laxative, antidepressant, antioxidant and anti-parasitic activities (Figure 11) [157].

Recently, the class of natural AQ compounds has aroused great interest for its ability
of hitting different molecular targets involved in AD (Figure 11). Different AQ-based
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molecules have shown to be capable of reducing the loss of cholinergic function in
Alzheimer’s patients by acting as cholinesterase inhibitors [49], reducing the formation of
protein aggregates, or acting as antioxidants, thus impairing the increased ROS formation
associated with the AD progression.

4.1. AQs from Natural Sources: Cholinesterase Inhibitors

AQs extracted from different botanical sources have been studied and tested against
human AChE and BChE. The chemical composition of the purified plant extracts of many
species such as Rumex abyssinicus, Cassia senna, Cassia occidentalis, Rheum palmatum L.,
Aloe vera, Polygonum multiflorum etc. has been determined and several 1,8-
dihydroxyanthraquinone-based compounds have been isolated and screened for a po-
tential application in AD.

Many derivatives of danthron (45, the unsubstituted 1,8-dihydroxyanthraquinone),
have been evaluated in different studies for their inhibition of AChE and BChE, advocating
their potential application for AD treatment. While danthron showed no activity against
ChEs in vitro, its analogue, emodin (46, 6-methyl-1,3,8-trihydroxyanthraquinone), which
can be found as a major constituent in several plants extracts, such as Rheum Palmatum
L., Rheum Abyssinicus, Cassia Obsutifolia etc., has been frequently reported in the literature
for its anti-AChE activity [49,158] (Figure 12). The presence of extra 3-hydroxyl- and a
6-methyl- groups on the danthron scaffold provided a selective anti-AChE profile (emodin,
IC50 (AChE) = 9.17 ± 0.41 µM [158]; 15.21 ± 3.52 µM [49]) over BChE (emodin, IC50
(BChE) = 157 ± 2.03 µM [158]). Notably, the importance of the 3-hydroxyl group to afford
AChE inhibition was observed in similar natural 1,8-dihydroxyanthraquinones (Figure 12).
Chrysophanol (47), whose structure differs from emodin due to the absence of the 3-
hydroxyl key group, has been reported to be at least ~2 fold less effective AChE inhibitor
(IC50 = 68.6 ± 0.84 µM [158]; 33.7 ± 1.83 µM [49]).

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 18 of 34 
 

 

 

Figure 12. Representative AQs as ChEs inhibitors; x symbol indicates the negative impact on the 

activity exerted by some substitutions in a few emodin analogues. 

Jung et al. also reported the anti-cholinesterase activity of the soluble extracts of Cas-

sia Obsutifoliae and, after isolation of their components, they observed that the best inhib-

itors were 1,8-dihydroxyanthraquinones such as alaternin (49), physcion (50) and emodin 

(46) which displayed IC50 values versus the hAChE ranging from 6.3 to 15.2 µM [158]. 

Alaternin also exhibited such degree of activity towards AChE, with a modest inhibition 

of BChE (IC50 = 113 µM). Conversely, the 8-methoxy- or 1,8-dimethoxyanthraquinone an-
alogues, such as obtusifolin (50), obtusin (51), questin (52), aurantio-obtusin (53), chryso-

obtusin (54), 2-hydroxyemodin-1-methylether (55) were inactive or significantly less ef-

fective (Figure 12) [158]. Interestingly, the insertion of a hydroxymethyl chain or of a car-

boxylic function in place of emodin 3-OH group led to a reduced AChE inhibition, as ex-

perienced by aloe-emodin (56, IC50 (AChE) = 71.8 ± 0.91 µM [49]; IC50 (AChE) = 57.2 ± 1.32 

µM [159]) and rhein (57, IC50 (AChE) = 18.1 ± 0.24 µM [159]). 

The relevance of the 1,8-dihydroxy substitution for an efficient AChE inhibition is 

also supported by the anti-cholinesterase activity elicited by the purified extracts of 

Morinda Officinalis, a tropical plant member of the Rubiaceae family. This plant is largely 

used in Chinese traditional medicine for the treatment of various diseases, and its extracts 

were found to be endowed with various biological activities, such as, inter alia, antioxi-

dant, anti-inflammatory and anti-AD activities [160]. The M. officinalis ethyl acetate and 

hexane fractions were obtained by Lee Y. et al. who identified eight AQ compounds (59–

65) lacking the 1,8-dihydroxy signature substitution (Figure 13) [161]. 

Figure 12. Representative AQs as ChEs inhibitors; x symbol indicates the negative impact on the activity exerted by some
substitutions in a few emodin analogues.



Pharmaceuticals 2021, 14, 33 18 of 33

In a recent paper, Augustin et al. characterized the Rheum abyssinicus extract describing
the anti-cholinesterase activity of one of its AQ components, helminthosporin (48, 3-methyl-
1,5,8-trihydroxyanthraquinone) against eeAChE and esBChE enzymes. This compound
was a more potent AChE inhibitor than emodin (IC50 = 2.63 ± 0.09 µM [49]), and showed
to target BChE with the same degree of potency (IC50 = 2.99 ± 0.55 µM [49]). For this
reason, helminthosporin resulted an interesting hit as dual acting ChEs inhibitor. It is worth
nothing how the different position of the 5-OH group of helminthosporin, with respect of
the 3-OH group of emodin, was responsible of a ~5-fold increase of AChE inhibition and
for the appearance of anti-BChE action. Molecular docking studies of helminthosporin in
complex with the AChE enzyme have been performed, showing that the presence of an
additional keto−enol tautomer (C5−OH, C10−CO) is responsible for the establishment
of H-bond interactions with Arg296, Ser293 and Phe295 residues in the PAS site of the
enzyme. Thus, these additional contacts could be accounted for the better activity of
helminthosporin over other AQs [49].

Jung et al. also reported the anti-cholinesterase activity of the soluble extracts of Cassia
Obsutifoliae and, after isolation of their components, they observed that the best inhibitors
were 1,8-dihydroxyanthraquinones such as alaternin (49), physcion (50) and emodin (46)
which displayed IC50 values versus the hAChE ranging from 6.3 to 15.2 µM [158]. Alaternin
also exhibited such degree of activity towards AChE, with a modest inhibition of BChE
(IC50 = 113 µM). Conversely, the 8-methoxy- or 1,8-dimethoxyanthraquinone analogues,
such as obtusifolin (50), obtusin (51), questin (52), aurantio-obtusin (53), chryso-obtusin
(54), 2-hydroxyemodin-1-methylether (55) were inactive or significantly less effective
(Figure 12) [158]. Interestingly, the insertion of a hydroxymethyl chain or of a carboxylic
function in place of emodin 3-OH group led to a reduced AChE inhibition, as experienced
by aloe-emodin (56, IC50 (AChE) = 71.8 ± 0.91 µM [49]; IC50 (AChE) = 57.2 ± 1.32 µM [159])
and rhein (57, IC50 (AChE) = 18.1 ± 0.24 µM [159]).

The relevance of the 1,8-dihydroxy substitution for an efficient AChE inhibition is also
supported by the anti-cholinesterase activity elicited by the purified extracts of Morinda
Officinalis, a tropical plant member of the Rubiaceae family. This plant is largely used in
Chinese traditional medicine for the treatment of various diseases, and its extracts were
found to be endowed with various biological activities, such as, inter alia, antioxidant,
anti-inflammatory and anti-AD activities [160]. The M. officinalis ethyl acetate and hexane
fractions were obtained by Lee Y. et al. who identified eight AQ compounds (59–65) lacking
the 1,8-dihydroxy signature substitution (Figure 13) [161].
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Accordingly, the novel chemotypes exhibited a lower activity profile than the pre-
viously discussed natural analogues (see Figure 12). In this set of AQs the SAR analysis
revealed that the 1-methoxy substituent (i.e., 13–15, 18) clearly causes a dramatical de-
crease of anti-AChE activity (eeAChE) in comparison to the unsubstituted or 1-hydroxy
substituted series (i.e., 59, 62, 64 and 65) [161]. Notably, the 2-methoxy group seems to
be not favourable for the activity (i.e., 59 and 60); this trend may also be observed by
comparing the activities of obtusine and aurantio-obtusine with those of questine and
obtusifoline (Figure 12). Differently, the 2-carbinol substitution combined with 3-hydroxy
or methoxy one (i.e., 61 and 62) led to the most potent compounds. Position 3 permitted
a certain chemical variation of substituents, which impaired the activity less drastically;
even so, comparing the two most active compounds of this series, the replacement of the
3-methoxy group with the 3-hydroxy one enhanced the AChE inhibitory potency, and this
is suggestive of a better influence of a less bulk and/or HB donor group in this position.
These derivatives resulted selective AChE inhibitors, with IC50 > 200 µM against esBChE
enzyme [161]. These compounds, and some of aforementioned AQs have been also tested
as BACE1 inhibitors, whose activities will be discussed in a forthcoming paragraph.

4.2. AQs from Natural Sources: Tau Aggregation Inhibitors

Tau protein is an unfolded brain protein involved in the axonal transport associated
with microtubules. In neurodegenerative diseases, such as AD, tau protein is hyperphos-
phorylated in vivo. This promotes tau detachment from microtubules and auto-aggregation
forming toxic oligomers, which cause an inflammatory response.

Several natural derived AQs (Figure 14) have been screened to evaluate their neuro-
protective properties as inhibitors of tau aggregation. Emodin (46), which has been demon-
strated to act as a good AChE inhibitor, is known to act as a tau oligomerization inhibitor as
well [162,163]. Pickhardt et al. demonstrated for the first time the ability of emodin to block
the in vitro polymerization of tau protein K19 (three-repeat tau construct), after heparin
stimulation (IC50 values for PHF polymer assembly and disassembly = 1.6 µM and 2.8 µM,
respectively) [162]. On the other hand, Paranjape et al. observed that emodin did not show
a significant inhibitory activity against tau aggregation. This discrepancy was attributed to
the use of arachidonic acid in place of heparin as tau aggregation inducer, able to induce a
3-fold superior amount of aggregates in similar experimental conditions. In addition, the
two research groups used two different tau isoforms that could be featured by a slightly
different aggregation behaviour. In the same study, two 1,8-dihydroxyanthraquinone com-
pounds were obtained from genetic manipulated A. nidulans, which showed an improved
profile: 2,ω-dihydroxyemodin (66) and asperthecin (67) caused a decrease in tau filament
formation (IC50 values of 205 ± 28 µM and 39 ± 2 µM, respectively) in a dose dependent
manner, while still retaining the physiological tau function of stabilizing the assembly of
tubulin into microtubules [163]. Other AQ compounds (i.e., chrysophanol, aloe-emodin,
endocrocin, ω-hydroxyemodin, 3’-hydroxyversiconol) have been screened in this study,
but they were reported to show only a modest inhibition of tau aggregation.

In another study by Cornejo et al. the AQ parietin (68), extracted from Ramalina
terebrata, showed to inhibit tau oligomerization in vitro. Docking studies proposed the
putative binding mode of parietin to tau protein, suggesting a negative charge density
in the inhibitor structure as key feature for targeting some specific lysine residues of tau
fibril-forming motifs 306VQIVYK311 [163].
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Purpurin (69, 1,2,4-trihydroxyanthraquinone), obtained from the roots of the madder
plant (Rubia tinctorum) was able to inhibit ~ 50% of PHF6 fibrillization in vitro at equimolar
concentration (PHF6: Purpurin) and disassembled pre-formed PHF6 fibrils. Maximum in-
hibition occurred at a molar ratio of 1:5, which accounted for~90% inhibition. Viswanathan
et al. also demonstrated that purpurin ameliorated the AD-like neurodegenerative symp-
toms and rescued neurotoxicity of hTau in a transgenic fly model. Ex-vivo assays with
SH-SY5Y human neuroblastoma cell line overexpressing hTau showed that purpurin effec-
tively reduced the accumulation of the protein [164]. On the base of this findings, purpurin
has been proposed as an attractive lead molecule for AD drug development and other
related tauopathies.

Finally, the EtOAc extract of the lichen Xanthoria ectaneoides have been tested for its
potential tau aggregation inhibition and allowed the identification of two promising AQs.
Among the two identified derivatives, the only active compound in reducing tau aggre-
gation and promoting fibrils disassembly was the 2-hydroxy-3-[(8-hydroxy-3-methoxy-6-
methylanthraquinonyl)oxy]-propanoic acid (70) which acts via interaction with two specific
cysteine residues Cys291-Cys322 that are mainly involved in the polymerization process
of tau [165,166].

4.3. AQs from Natural Sources: BACE1 Inhibitors and Antioxidants

Beta-secretase 1 (BACE1) is the major β-secretase involved in APP cleavage which
determines amyloid-β formation in AD. Thus, the inhibition of BACE1 could be considered
as a potential target for the discovery of novel molecules for the treatment of AD.

Jung et al. tested the BACE1 inhibitory potential of the AQs extracted from Cas-
sia obtusifolia and discovered the promising BACE1 inhibitory activity of alaternin (49,
IC50 = 0.94 ± 0.04 µg/mL) and emodin (46, IC50 = 4.48 ± 0.09 µg/mL) [158]. Additionally,
2-hydroxyemodin-1-methylether (55), aloe-emodin (56), questin (52), chryso-obtusin (54),
and some glucoside analogues (chryso-obtusin-2-O-β-D-glucoside, gluco-obtusifolin and
chrysophanol triglucoside) displayed BACE1 inhibitory activities with IC50 values ranging
from 13.5 to 49.7 µg/mL. Molecular docking calculations on alaternin within the active site
of BACE1 allowed to highlight some key residues involved in the ligand-protein interaction;
alaternin established hydrogen bond (HB) interactions by mean of its two hydroxyl groups
at C(1) and C(10) with Ser36, Asn37, and Ile126 residues of the enzyme, whereas the methyl
group in 3 position is involved in hydrophobic interactions with a Tyr198 residue. The
docking pose of emodin showed a different HB interaction between Asp32 residue of the
enzyme and the hydroxyl group at C(8) of emodin, while its methyl group participated
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in hydrophobic interactions with five enzyme residues: Trp76, Val69, Phe108, Ala39, and
Ile118 [158].

The aforementioned Morinda officinalis extracts were also tested for their AD-related ac-
tivity against BACE1 enzyme. Compounds 60, 63 and 65 of Figure 13 demonstrated a good
inhibitory profile against BACE1 in vitro (IC50 = 9.29 ± 1.92 µM, IC50 = 25.89 ± 2.11 µM
and IC50 of 19.82 ± 3.05 µM, respectively), proving similar or higher potency than that of
the reference compound quercetin (IC50 = 22.75 ± 1.20 µM). Regarding BACE1 inhibitory
trend, AQs with only one substituent, such as compound 60 resulted to be more active
than the other analogues (58, 59, and 61–65) bearing a greater number of substitutions.
The OH group was proven as the best substitution for activity, in particular on C-1, 2, or 3
of AQ scaffold; moreover, three-substituted compounds provided greater activity than
derivatives bearing two substituents [161], probably in virtue of the capacity of establishing
more effective interaction with the enzyme.

4.4. Synthetic AQ Derivatives

Alongside the discovery of the several potential applications of natural AQ derivatives
in treating AD, synthetic analogues have been also developed, with the aim of probing the
chemical space around the AQ scaffold that is well tolerated for targeting diverse factors
implicated in AD pathogenesis, also simultaneously by exploiting the MTDL strategy.

Some antitumor AQ-based compounds, such as rubicins and xanthrones (Figure 15),
have been reported as endowed with activity against some factors implicated in AD. The
anthracycline antibiotic 4’-deoxy-4’-iododoxorubicine (71, IDOX) demonstrated to reduce
the AD amyloid accumulation by binding amyloid deposits and promoting their degrada-
tion and resorption [167]. The synthetic AQs mitoxantrone (72, MTX) and pixantrone (73)
also demonstrated to inhibit fibrillogenesis of Aβ42 in ThT fluorescence assay (pixantrone:
IC50 = 26 ± 4 µM) [168].
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Mitoxantrone have also been reported to being able to specifically bind a stem-loop
structure in the pre-splicing 4R tau, stabilizing the structure, thus reducing tau aggregation
and NFT formation. Yang, L. et al. synthesized a series of MTX (74–88) analogues in order to
clarify the nature of the interaction of MTX with the tau stem-loop domain (Figure 16) [169].

Thus, the binding affinity to pre-mRNA stem-loop tau and stabilizing activity of
the analogues have been determined: the insertion of two side chains, as showed by
analogues 79–85 and 86–88, yielded an increased or comparable activity to that of MTX
(MTX, binding affinity: EC50 = 0.89 µM; stabilizing activity: IC50 = 0.46 µM), while for the
analogues (74–76) devoid of a side chain or decorated with only one side chain (77, 78),
the activity slightly decreased or even extinguished. Compound 85, bearing two side
chains functionalized with a polyaminoethyl motif, resulted in a 7-fold increase in binding
potency and a 3-fold increase in stem-loop stabilization compared to MTX (85, binding
affinity: EC50 = 0.13 µM; stabilizing activity: IC50 = 0.13 µM) [169].
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To date, no data are available regarding a potential activity of MTX against the
cholinesterase enzymes, however the anti-ChE activity of a series of related AQ-polyamine
conjugates (AQ-PCs) have been described by Hong C. et al. (89–92, Figure 17), suggesting
also for MTX an additional mechanism of action that will deserve further investigations [170].
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Figure 17. Hong, C. et al. aromatic-polyamine derivatives as ChE inhibitors.

AQ-PCs (89–92) demonstrated a good AChE inhibitory activity, while being substan-
tially inactive against BChE. Compounds 90 and 91 resulted to be the best AChE inhibitors
with IC50 values of 1.50 µM and 2.63 µM, respectively. Docking calculations suggested
the possible binding mode of these compounds, encompassing both the PAS and CAS
sites: a protonated NH2 of the polyamine chain takes contacts to PAS by means of a п-
cation interaction with Trp279, while the aromatic tricyclic scaffold establishes п-пstacking
interactions in the CAS [170].

As mentioned in the NQ section (Figure 8), Sparatore F. et al. also described in
their work a series of AQs (92–97, Figure 18) bearing different basic side chains (dialky-
laminoalkyl or quinolizidinylalkyl moieties) connected to the AQ scaffold through different
linkers of variable length (from 1 up to 5 atoms) [125]. These AQs displayed a dual
inhibitory profile towards both eeAChE and esBChE enzymes, with low micromolar or
sub-micromolar IC50 values (Figure 18), while provided a slightly lower inhibition of Aβ40
aggregation (IC50 in the range 6.4–61µM), thus fulfilling the fundamental requisite for a
multitarget mechanism of action [125].
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Wang, J. et al. recently described the potential activity of a series of synthetic
azaanthraquinone compounds (series 99 and 100, Figure 19) for the treatment of AD,
where different substitutions in position 6 of the scaffold were explored [171]. These
compounds were found to interfere with different key target points of AD neurode-
generation. They showed the ability to block Aβ42 aggregation and secretion, and par-
ticularly six compounds, bearing the piperidine or tetrahydroisoquinoline or pyrroli-
dine rings, shared a potency trend comparable to the reference compound curcumin
(% inhibition at 100 µM = 48.1% ± 2.7 µM). Moreover, they displayed anti-inflammatory
properties by suppressing NO and iNOS production, and by modulating the synthesis
of cytokines. Meanwhile, these azaanthraquinones proved to be AChE-preferring in-
hibitors with respect to BChE with micromolar IC50s (the most active compounds were
the piperidine derivatives 99a and 100a: AChE IC50 = 1.08 and 1.12 µM, respectively),
and to permeate the blood-brain barrier in vitro. Other promising properties included a
low degree of toxicity and a neuroprotective efficacy against H2O2-induced neurotoxicity
towards SH-SY5Y neuroblastoma cells [171].
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Figure 19. Wang, J. et al. synthetic azaanthraquinones as MTDLs.

Finally, high throughput screening (HTS) technology was applied on a heterogeneous
compound library in order to discover novel tau aggregation inhibitors and allowed the
identification of a single AQ-based compound (101, 31G03 of Figure 20) which demon-
strated an IC50 of 0.63 µM in vitro. This compound may represent an interesting hit worthy
of further structural optimization towards the development of improved agents for the
treatment of AD [172].
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4.5. AQ-Based Hybrids

AD progression is characterized by the concurrence of different pathological events
occurring in parallel, such as Aβ aggregation, tau hyperphosphorylation and oligomeriza-
tion, synaptic dysfunctions, and inflammation. Thus, the synthetic efforts in drug design
are recently focused on the possibility of including in the same molecule structural features
that could hit different key point targets of AD at the same time.

The natural occurring AQs, such as the aforementioned emodin (46) and rhein (57),
showed an interesting dual inhibitory activity against hAChE and tau, thus their scaffolds
have been selected as prototypes in order to design novel more efficient multitarget drugs.
Since, rhein (IC50(AChE) = 18.1 µM [159]) showed only a marginal inhibitory activity
towards hAChE but possessed the analogous chemical features shared by the previously
identified tau oligomerization AQ blockers (see MTX analogues of Figure 16), Viayna et al.
developed a series of rhein hybrids (102a–h) [173] linked by different spacers to huprine
(103, Figure 21), a very potent AChE inhibitor (KI(AChE) = 24 pM) that is able to establish
a specific interaction with the enzyme catalytic anionic site (CAS) [174].
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The hybrids have been tested as racemic mixtures and demonstrated potent hAChE
inhibition, with IC50 values falling down in the low nanomolar range. The hybrids pre-
sented linkers of different length and nature, thus allowing a careful analysis of the SAR.
The inhibitory potency decreased gradually from the compound with the pentamethylene
linker (102a) to the longest undecamethylene analogue (102g). The introduction of a planar
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and more rigid aromatic ring within the linker produced a negative effect on the inhibitory
potency towards the enzyme. The best AChE inhibitor, 102a, showed an IC50 of 1.07 nM,
comparing favorably to that of the reference compound huprine. Docking studies revealed
that the (−)-hybrids generally bind to the enzyme better than (+)-derivatives taking simul-
taneous contacts with both CAS and PAS sites: the huprine moiety takes place into the CAS
site, while the AQ ring establishes weaker contacts with the PAS. These derivatives were
also screened for their activity against Aβ aggregation and BACE1 enzyme, demonstrating
also in these cases a potency in the nanomolar range [173].

Starting from the best hybrid of the series (102a), a second generation of hybrids have
been developed (104a–d, Figure 21) [175], by varying the structure of the chlorobenzene
ring of the huprine moiety with different aromatic or heteroaromatic rings, in order to better
understand the structural determinants that mediate the interaction of the huprine moiety
of these hybrids to the catalytic site of BACE1. However, this kind of substitutions resulted
as less efficient in the inhibition of AChE or BACE1 enzymes, even though they retained
or displayed increased potencies as Aβ42 and tau antiaggregating agents. Additionally,
the [1,8]-naphthyridine (104a) or thieno [3,2-e]pyridine (104c) hybrids exhibited a potent
antioxidant activity, superior to that of the known antioxidants trolox and gallic acid, thus
resulting overall the most promising MTDLs [175].

The same approach also represented the foundation for the development of a different
series of rhein hybrids by Li S.Y. et al. (105a–n, Figure 22), who combined the AQ scaffold
with the anti-cholinesterase drug tacrine [176]. Tacrine has been the first drug approved
for the treatment of AD as anti-cholinesterase agent, capable of inhibiting both AChE
and BChE. The therapeutic application of this drug has been hampered by the emergence
of severe adverse effects, such as hepatotoxicity. Thus, the design of these rhein-tacrine
hybrids have been guided by leveraging the potent ChEs inhibition of tacrine, which
selectively binds the CAS site of the enzymes, in combination with the metal-chelating,
hepatoprotective effects as well as the ChEs inhibitory activity of rhein scaffold, that thanks
to its aromatic character could interact with the PAS. Structural modification on tacrine
nucleus were focused on the 6-position substitution and the size of its carbocyclic ring, also
exploring the length of the polymethylene linker between the two scaffolds [176].
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The two most active compounds in inhibiting the hAChE were 105b
(IC50(AChE) = 27.3 nM; IC50(BChE) = 200 nM) and 105f (IC50(AChE) = 22.0 nM; IC50(BChE)
= 773 nM). The SAR clearly showed that the best size for the carbocyclic ring of tacrine
was represented by the six terms ring, as well as the best suited spacer anchoring the two
scaffolds seemed to be 6 carbons. In comparison with tacrine, the two hybrids showed
an enhanced inhibition of AChE and a reduced ability to block BChE activity (tacrine:
IC50(AChE) = 135 nM; IC50(BChE) = 45 nM). A similar inhibitory profile to that of tacrine
was observed for cycloheptyl derivative 105l (R = H, m = 3, n = 6; IC50(AChE) = 130 nM;
IC50(BChE) = 11 nM), which was featured by the highest selectivity profile for BChE.
The molecular modeling studies revealed the binding mode of the hybrid 105b inside
AChE active site (PDB:2CKM), where the tacrine moiety was bound to the CAS interact-
ing with Phe330 and Trp84, while the rhein moiety established π–π stacking interactions
with Trp279 and Tyr70 of PAS [176]. The occupancy of the AChE’s PAS by the hybrids,
as predicted by docking simulations, motivated the authors to assess their capability to
inhibit AChE-induced amyloid fibrillation, which derives from the formation of a stable
AChE–Aβ complex involving some hydrophobic residues of PAS [177]. Accordingly, all the
hybrids presented a strong inhibitory activity on AChE-induced Aβ aggregation, with 105b
providing the greatest potency value (70.2% at 100 µM). Collectively, the multifunctional
effects of these hybrids enabled them as potential drug candidates for the treatment of AD,
deserving further research.

5. Conclusions

The cause of Alzheimer’s disease is still unknown, and the discovery of factors re-
lated to the key pathophysiological hallmarks of AD has not been able to uncover the
source of the neurodegenerative processes observed in patients. The currently available
treatments do not allow long-lasting cytoprotection of nervous cells and appear to be
only symptomatic with limited efficacy and perturbing adverse effects [178,179]. To date
most pharmaceutical approaches aimed at modifying a single pathological pathway (e.g.,
cholinergic dysfunction, Aβ and/or tau aberrant processing) have provided an unsatis-
factory response [180]. Therefore, from the medicinal chemistry point of view, there is
a need of identifying novel chemotypes with a view to formulating medicaments able
to ensure a more positive disease outcome over current therapy. Phytochemicals from
medicinal plants and other sources are getting attention, as they may provide a valuable
alternative to synthetic molecules. During the last years, the ongoing search of 1,4-quinone-
based structures, namely NQ and AQ derivatives, have favored a deepening insight of
their potential also for treatment of AD. These aromatic bi- and tricyclic systems have
demonstrated their relevant contribution to the activity as main structures or important
substructures. Moreover, they showed the ability to tackle single or, even more, multiple
factors, including ChEs, Aβ and tau proteins, as the most frequently affected targets, thus
confirming a multitarget profile, that enables them as valuable candidates for AD therapy.
Bulk of evidence supports the multitarget directed ligand (MTDL) approach as an efficient
tool to get around the problem of drug-drug interaction and to reduce the risk of toxicity
that occur during polypharmacotherapy [181]. The greatest results have been obtained
by following a conjugation approach, that has allowed the yield of hybrid molecules com-
posed of a NQ- or AQ-based derivative in combination with another relevant structure,
merged or tethered through a linker of variable length and nature, in order to integrate
their properties for a more effective treatment of AD. The new SAR insights gathered from
this review provide crucial information for the development of more promising options for
AD therapy towards the setting up of a drug candidate based on NQ and AQ scaffolds.
However, most of the research in this context has limited the study of biological evaluation
to an early stage, mainly at enzyme and cellular level, and a few studies have explored the
drug-like properties of these molecules, thus further efforts are deserved, before they could
be translated into therapeutics for an effective AD management.
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