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ABSTRACT
Following the development of genome editing technology, it has become more feasible to create genetically modified
animals such as knockout (KO), knock-in, and point-mutated animals. The genome-edited animals are useful to
investigate the roles of various functional genes in many fields of biological science including radiation research.
Nevertheless, some researchers may experience difficulty in generating genome-edited animals, probably due to the
requirement for equipment and techniques for embryo manipulation and handling. Furthermore, after obtaining
F0 generation, genome-edited animals generally need to be expanded and maintained for analyzing the target gene
function. To investigate genes essential for normal birth and growth, the generation of conditional KO (cKO) animals
in which a tissue- or stage-specific gene mutation can be introduced is often required. Here, we describe the basic prin-
ciple and application of genome editing technology including zinc-finger nuclease, transcription-activator-like effector
nuclease, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associated protein (Cas)
systems. Recently advanced developmental biology methods have enabled application of the technology, especially
CRISPR/Cas, to zygotes, leading to the prompt production of genome-edited animals. For pre-implantation embryos,
genome editing via oviductal nucleic acid delivery has been developed as an embryo manipulation- or handling-free
method. Examining the gene function at F0 generation is becoming possible by employing triple-target CRISPR
technology. This technology, in combination with a blastocyst complementation method enables investigation of
even birth- and growth-responsible genes without establishing cKO strains. We hope that this review is helpful for
understanding and expanding genome editing-related technology and for progressing radiation research.
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INTRODUCTION
Since the appearance of zinc-finger nuclease (ZFN) in 1996 [1],
progress and spread of the technology, genome editing, defined
as ‘a targeted manipulation of genomes with site-specific artificial
endonucleases’, have been remarkable. Notably, Charpentier and
Doudna, who discovered one of the most useful genome editing

tools, clustered regularly interspaced short palindromic repeat
(CRISPR)/CRISPR associated protein (Cas), won the Nobel Prize in
Chemistry 2020 [2, 3]. The CRISPR/Cas system has made it more
feasible to create genome-edited animals such as knockout (KO),
knock-in (KI) or point-mutated mouse, rat and other animals (Table 1)
[4, 5], and therefore provided much benefit in analyzing functional
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Table 1. Representative methods to generate genome-edited animals by the CRISPR/Cas system

Microinjection Electroporation GONAD SCNT

Genome editing target Zygote/embryo Zygote/embryo Zygote/embryo Somatic cell
Requirement of manipulation
technique

Yes No No Yes

Requirement of embryo handling Yes Yes No Yes
Mosaicism Yes Yes Yes No
Applied animals (year of
publication)

Mouse (2013) [40] Mouse (2015) [42, 43] Mouse (2015) [48] Pig (2015) [103]
Rat (2013) [95] Rat (2014) [41] Rat (2018) [102] Cattle (2017) [104]
Hamster (2014) [96] Pig (2016) [45] Hamster (2020) [52] Sheep (2018) [105, 106]
Rabbit (2014) [97] Goat (2014) [107]
Monkey (2014) [98]
Pig (2014) [99]
Sheep (2015) [100]
Goat (2015) [101]

genes in almost all fields of biological science. Also in the field of
radiation research, genome editing has been applied for investigating
radiosensitive genes and creating animal models representing various
diseases initiated by radiation effects [6, 7]. Recently, the participation
of protein phosphatase magnesium-dependent 1 delta (Ppm1d) in
stem cell response to ionizing radiation-induced genotoxic stress in
colon was investigated by generating genome-edited mice in which
a truncating mutation was introduced into the Ppm1d locus [8]. For
monitoring ionizing radiation-mediated DNA damage, Sabol et al.
generated a mouse line expressing fluorescence protein-tagged Fanconi
anemia complementation group D2 by genome editing [9].

However, some researchers unfamiliar with this technology and
developmental engineering techniques may not feel that genome-
edited animals can be easily generated by their own hands. This is
caused, at least in part, by the requirement for expensive equipment
and training in techniques for embryo manipulation and handling
[10]. Furthermore, particularly in radiation research, the investigation
of radiosensitive genes by generating KO mice is often unsuccessful
because of their embryonic lethality [7]. In such cases, conditional KO
(cKO) animals that involve tissue- or stage-specific gene mutation are
produced [11]. Even when genome-edited animals are successfully
obtained at F0 generation, they usually need to be expanded by
backcross or intercross for use as established strains, and the strains
must be maintained properly. These time-consuming processes may
also be a burden for researchers employing the genome editing
technology in their studies.

Despite these concerns, the genome editing technology is promis-
ing to provide benefits in the fields of not only medical science but
also the agroindustry. Therefore, in order to help researchers, especially
those participating in radiation research, to understand and utilize the
genome editing technology, we describe its basic principles and meth-
ods for producing genome-edited animals. In combination with new
developmental biology methods, the application of this technology has
been further expanded so that embryo manipulation or handling skills
are dispensable. We also introduce new CRISPR/Cas-based gene anal-
ysis procedures in which the establishment of genome-edited animal
strains would not be necessary.

GENOME EDITING SYSTEMS
Artificial endonucleases used for genome editing are restriction
enzymes that cleave phosphodiester bonds within a polynucleotide
chain of targeted DNA sequences in living cells. In cells, nuclease-
induced double strand breaks (DSBs) in DNA are repaired by
two main pathways: non-homologous end-joining (NHEJ) and
homology-directed repair (HDR) (Fig. 1). These pathways also
work in the repair of DSB caused by ionizing radiation [12, 13].
In NHEJ, the broken ends are directly reconnected regardless of
their sequence, frequently associated with the deletion or inser-
tion of a random number of nucleotide bases [14]. Therefore,
by introducing NHEJ in the translation site of target genes, we
can destroy their functions by deleting functional sequences or
causing frame shifts. In HDR, a homologous DNA sequence of
undamaged chromatid is used for repairing DSB by annealing or
recombination [15]. A donor single- or double-stranded DNA
with the homology arm can be artificially provided and integrated
into the broken locus. By utilizing these DSB-repairing pathways,
we can introduce mutations and artificial sequences into the tar-
get site.

Various types of artificial endonucleases have been developed for
genome editing so far [16, 17]. Among them, ZFN [18], transcription-
activator-like effector nuclease (TALEN) [19, 20] and CRISPR/Cas
[21–23] are mainly used. Both ZFN and TALEN have a Fok I nuclease
domain which is responsible for DNA cleavage [1], though they have
different DNA-binding domains for recognizing their target sites. ZFN
contains a series of zinc-finger (ZF) motifs as DNA-binding domains.
The single motif unit composed of about 30 amino acids recognizes
three bases of target sequences (Fig. 1). In contrast, a single unit of
transcription-activator-like effector (TALE) domain in TALEN, com-
posed of 34 amino acids, recognizes a single base of target sequences.
ZFN and TALEN recognize their targets based on a protein–DNA
binding reaction and need to be used as fusion proteins of the nuclease
domain and the DNA-binding domain. Therefore, the requirement
for multi-step procedures to construct the corresponding vectors for
targeting genome sequences is one of the weak points of ZFN and
TALEN systems [4].
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Fig. 1. Nuclease-induced DSB in DNA followed by repairing through NHEJ or HDR. ZFN and TALEN contain ZF and TALE
motifs, respectively, as DNA-binding domains. A Fok I nuclease domain is involved in both ZFN and TALEN for DNA cleavage.
The CRISPR/Cas system recognizes DNA via RNA–DNA interaction between guide RNA, such as crRNA–tracrRNA duplex and
single guide RNA (sgRNA), and its target DNA sequence adjacent to PAM. Then, Cas complexed with guide RNA works as an
endonuclease and cleaves the target DNA. The resulting DSB is repaired through the NHEJ or HDR pathway. In NHEJ, the broken
ends are directly reconnected, frequently accompanied by random deletion or insertion. In HDR, homologous recombination
with the corresponding sequence in undamaged chromatid occurs. When a donor DNA with a homology arm is provided
artificially, it can be integrated into the broken locus.

CRISPRs were identified as a region of functionally unknown
repeated sequences in the Escherichia coli genome in 1987 [24]. It was
later shown that CRISPRs were derived from foreign DNA sequences,
and a complex of CRISPR RNA (crRNA) derived from CRISPR,
trans-activating crRNA (tracrRNA), and Cas exhibited endonuclease
activity against the foreign DNA in the presence of a complementary
sequence, suggesting that CRISPR/Cas originally works as an adaptive
defense system in bacteria [25, 26]. An artificial genome editing tool
based on the CRISPR/Cas system was developed in 2012 [3] and
applied to genome modification in cells of mammals including humans
in 2013 [27–29]. In contrast to ZFN and TALEN, CRISPR/Cas
recognizes its target DNA adjacent to a protospacer adjacent motif
(PAM) [30] with the help of guide RNA, such as a crRNA–tracrRNA
duplex and its chimeric RNA (single guide RNA) (Fig. 1). Cas works
as an endonuclease for initiating DSB repair responses. Among Cas
enzymes, Cas9 derived from Streptococcus pyogenes is the most popular
for genome editing, though other Cas9 variants have also been applied

[31–34]. Since the recognition of target sequences by CRISPR/Cas
is based on RNA–DNA interaction, we can easily choose the target
genes/sites by designing the base-pairing part (∼20 bp) of the guide
RNA. This simplicity and high efficiency give the CRISPR/Cas9
system a big advantage as the most useful genome editing tool.
Although several disadvantages such as off-target effects have been
argued, the effects occurring in genome-edited zygotes do not seriously
affect their phenotypes in most cases [35–37] and can be removed
by repeat backcrossing of the born animals with wild-type animals.
Procedures to decrease the frequency of off-target effects have also
been developed [38, 39].

PRODUCTION OF GENOME-EDITED ANIMALS
WITH A CRISPR/CAS SYSTEM

In 2013, Wang et al. reported for the first time the generation of KO
mice by co-injection of Cas9 mRNA and guide RNA into mouse
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Fig. 2. Methods to produce genome-edited animals with CRISPR/Cas system. (A) Microinjection of Cas9 and guide RNA
(gRNA) into zygotes and transfer of the embryos into recipient females. (B) Introduction of Cas9 and gRNA into zygotes or
embryos by electroporation. (C) In vivo genome editing to pre-implantation embryos in oviducts of pregnant female mice by
GONAD. (D) Nuclear transfer of genome-edited somatic cells.

zygotes and transferring the resulting embryos into recipient females
[40]. They also generated KI mice by injecting Cas9, guide RNA and
donor DNA oligos into zygotes. Currently, the microinjection of Cas9

into embryos is one of the standard methods to generate genome-
edited mice as well as other animals whose embryos can be handled and
manipulated (Fig. 2A, Table 1). However, in addition to various pieces



Genome editing and developmental biology for radiation research • i57

Fig. 3. Schematic procedure of the triple-target CRISPR system. Three guide RNAs are designed to distinct protein coding
regions of target gene exons. The sgRNAs and Cas9 mRNA/protein are introduced into wild-type zygotes by microinjection or
electroporation. The individual Cas9/sgRNA complexes generate DSBs in the target regions in both alleles. The mice derived
from the resulting zygotes contain biallelic mutations at nearly 100% efficiency.

of equipment such as an inverted microscope and micromanipulator,
highly skilled techniques for their proper usage are needed to employ
the basic CRISPR/Cas system [10].

From 2014, several groups succeeded in producing genome-
edited animals by direct introduction of Cas9 and guide RNA into
embryos using electroporation [41–43]. In this method, embryos
are placed between two metal plates suspended in Cas9- and guide
RNA-containing solution (Fig. 2B). Since Cas9 and guide RNA are
automatically introduced into embryos upon electroporation, genome-
edited embryos are easily produced without using special equipment
or trained skills for micromanipulation [44, 45]. Furthermore, an
efficient KI system in which Cas9/guide RNAs and DNA fragments
are introduced into zygotes by electroporation and adeno-associated
virus vectors, respectively, has recently been reported [46, 47].

Takahashi et al. developed a further improved genome editing
method, called genome editing via oviductal nucleic acids delivery
(GONAD) [48]. GONAD enables the in vivo genome editing of pre-
implantation embryos in oviducts of pregnant female mice (Fig. 2C).
In this method, we simply prepare pregnant female mice, surgically
expose their oviducts, and inject a genome editing solution containing
Cas9 mRNA and guide RNA into the oviduct. Since this oviduct
already contains pre-implantation embryos, we can introduce the Cas9
and guide RNA into the embryos by conducting in vivo electroporation
through electrodes sandwiching the oviduct. Genome-edited pups
can be obtained from this pregnant female at a certain rate. Because
of the successful avoidance of ex vivo handling of embryos outside
the oviduct, the utility of GONAD has been further expanded. The
improved GONAD (i-GONAD), containing some modifications such
as using Cas9 protein instead of its mRNA, can be utilized not only for
mouse and rat [49, 50] but also hamster whose embryo is very sensitive
to its surrounding environment in vitro (Table 1) [51, 52].

The direct genome editing of zygotes described above is often
accompanied by problems related to genome editing efficiency or
mosaicism [53, 54]. Since successful genome editing in zygotes is
usually confirmed after the birth of neonates, this procedure may
not be suitable especially for several large animals with long sexual
maturation and pregnancy periods. To apply genome editing to such
animals, somatic cell nuclear transfer (SCNT) technology can be
utilized (Fig. 2D) [55, 56]. In contrast to zygote-based genome editing,
modified sequences in target genes can be confirmed in somatic cells
in vitro within several days after introducing Cas9 and guide RNA.
SCNT of successfully modified somatic cells can efficiently provide
the desired genome-edited animals at F0 generation (Fig. 2D). In order
to increase the application of this genome editing/SCNT-combined
method, particularly for investigating large animal models, further
improvement of SCNT efficiency may be desirable [57, 58].

TRIPLE-TARGET CRISPR METHOD
Although the CRISPR/Cas system is a powerful tool for genome edit-
ing, born animals derived from edited zygotes at F0 generation are
often a mosaic of the edited and wild-type cells [53], therefore a
backcross or intercross is necessary to obtain biallelic edited animals.
A modified CRISPR/Cas9 system using three guide RNAs to each
target gene (triple-target CRISPR) has been developed to enable the
production of biallelic mutated mice at F0 generation [59, 60]. In
the triple-target CRISPR system, three guide RNAs are designed to
distinct protein coding regions of target gene exons (Fig. 3). These
guide RNAs and Cas9 mRNA/protein are introduced into zygotes by
microinjection or electroporation [61–63]. The pups born from the
resulting zygotes contain biallelic mutations at nearly 100% efficiency.
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Fig. 4. Triple-target CRISPR method with blastocyst complementation. (A) F0 generation male mice produced by triple-target
CRISPR-induced Nanos3 KO showed a loss of spermatozoon. (B) Spermatozoa in fertile chimeric male mice generated by
injecting Dnmt3b−/− ESCs into blastocyst containing biallelic Nanos3 mutations are fully derived from the ESCs. (C) Animals
deficient for specific organs/tissues could be produced at F0 generation by subjection of genes responsible for the development of
target organs/tissues (“gene X”) to the triple-target CRISPR method. (D) The target organs/tissues fully derived from ESCs, even
if the lethal gene mutation is introduced in the ESCs, could be reproduced in F0 chimeric mice derived from blastocysts carrying
biallelic ‘gene X’ mutations.
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Since screening and analysis of the gene function can be achieved with-
out establishing or maintaining multi-generated KO animal strains, this
method has already been applied to KO of various genes [59, 61, 62, 64,
65] and mouse strains [63].

Triple-target CRISPR is an outstanding system to induce whole-
body biallelic KO in animals, though analyzing birth- and growth-
responsible genes is still complicated, because KO of those genes
usually causes embryonic or neonatal lethality. To circumvent
the problem, organ- and tissue-specific cKO methods have been
developed, especially using systems such as Cre-loxP-mediated genetic
recombination [11]. In this system, cKO can be achieved in vivo by
mating gene KI mice carrying a target gene flanked by two loxP sites
(flox mice) with a tissue/cell-specific promoter-driven Cre-transgenic
mouse strain (Cre mice). In fact, in the 4th International Symposium of
the Network-type Joint Usage/Research Center for Radiation Disaster
Medical Science, we demonstrated our recent work regarding the
contribution of an X chromosome gene, Kdm6a, to the pathogenesis
of bladder cancer by generating its cKO mice [66]. That was because
female homozygous systemic Kdm6a KO embryos die around
embryonic day 12.5 to 13.5 [67––69], while the majority of systemic
Kdm6a KO males (Kdm6a-/Y) showed perinatal lethality [67, 68, 70].

However, there are several concerns in using the Cre-loxP system.
Additional mating to insert the loxP sites in two alleles is required
for generating homozygous cKO mice. The generation of flox mice
was often technically troublesome, though it has been improved by
the development of the CRISPR/Cas9 method [71, 72]. The Cre
transgene sometimes causes non-negligible phenotypes [73, 74] and
expresses in unexpected tissues [75]. Organ- and tissue-specific cKO
still causes embryonic or neonatal lethality in some cases [76–78].
To circumvent the drawbacks of the Cre-loxP system, a tamoxifen-
inducible Cre-ERT2 system that enables not only organ/tissue- but
also time-specific KO of the targeted gene was developed [79]. Since
Cre-ERT2 is translocated into the nucleus and works at the time of
tamoxifen treatment, cKO of genes that result in lethality with the stan-
dard Cre-loxP system can be achieved in live animals by using the Cre-
ERT2/tamoxifen system. We also used this system for investigating a
role of Kdm6a in the regulation of aging-associated gene expression in
a murine hematopoietic system by achieving tamoxifen-inducible KO
of the Kdm6a gene [80].

Furthermore, a new system combining the triple-target CRISPR
system with a blastocyst complementation method has recently been
developed [63]. In the blastocyst complementation method, a tar-
get organ exclusively derived from embryonic stem cells (ESCs) or
induced pluripotent cells (iPSCs) can be generated in chimeric animals
by injecting these cells into blastocysts in which the development of the
original target organ is prevented [81, 82]. The triple-target CRISPR
system would be useful for inducing the organ deficiency by targeting
genes essential for its development (e.g., Fgfr2 or Fgf10 for the lung,
Pdx1 for the pancreas, and Sall1 for the kidney) [83–86]. Since the
deficient organs are expected to be complimented by pluripotent stem
cells injected into the blastocysts, the production of chimeric mice
containing the organ, even carrying a lethal gene mutation, could be
achieved at F0 generation.

The concept of the blastocyst complementation/triple-target
CRISPR-combined method was validated in germ cells, whose loss
was caused by KO of the gene coding nanos C2HC-type zinc finger

3 (Nanos3) [87]. The germ loss phenotype was confirmed in several
mouse strains by targeting Nanos3 in the triple-target CRISPR method
[63]. Mutating the DNA methyltransferase 3B (Dnmt3b)-coding gene
was reported to causes embryonic death [88], though the dispensable
role of Dnmt3b in germ cell development was demonstrated by a
germ cell-specific cKO study [89]. From fertile chimeric male mice
generated by injecting Dnmt3b−/− male ESCs into blastocyst carrying
biallelic mutations of Nanos3, only pups with ESC-derived coat color
were born. Since the contribution of pluripotent stem cells to germ
cells of F0 chimeric mice can be evaluated by the coat color of F1
offspring, it was suggested that spermatozoa of the fertile chimeras
were fully derived from the ESCs (Figs 4A and B) [63].

These technical improvements would make it more feasible to
screen and analyze the gene function in a specific organ in adult-
hood (Figs 4C and D). Many researchers have studied the influence of
ionizing radiation by focusing on various DNA repair genes, though
mutating those genes in animals frequently results in lethality [7].
Therefore, new technologies combining the blastocyst complemen-
tation and triple-target CRISPR methods would also be useful for
investigating those radiosensitive genes [90].

CONCLUSION
Genome editing technology has been increasingly applied in the field
of agriculture. We may soon be able to eat tomato containing a large
amount of gamma-aminobutyric acid, non-allergic eggs, muscular sea
bream, etc. In addition, attempts to use genome editing in the medi-
cal field are currently being explored. As its originators have become
Nobel Prize winners, the utilization of this technology is expected to
be further accelerated. Although, several concerns regarding ethical
problem as well as reputational damage may remain, particularly in
these fields of study, genome editing is already an indispensable tool
for progressing biological science. Coupled with evolving techniques
in developmental biology, genome editing is fast becoming a powerful
tool for analyzing gene function. The CRISPR/Cas system has recently
been available not only for genome editing but also for RNA editing,
epigenome manipulation, etc. [34, 91–94]. Furthermore, some of the
methods are already available even for researchers who are unfamiliar
with developmental biology, because expensive equipment and trained
skills are no longer necessary. Genome editing technology, together
with developmental biology, is promising to cause a revolution in
various fields of biological science including radiation research.
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