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Abstract

Clostridioides difficile PCR ribotype (RT) 017 ranks among the most successful strains of C. difficile in the world. In the past three 
decades, it has caused outbreaks on four continents, more than other ‘epidemic’ strains, but our understanding of the genomic 
epidemiology underpinning the spread of C. difficile RT 017 is limited. Here, we performed high-resolution phylogenomic and 
Bayesian evolutionary analyses on an updated and more representative dataset of 282 non-clonal C. difficile RT 017 isolates 
collected worldwide between 1981 and 2019. These analyses place an estimated time of global dissemination between 1953 
and 1983 and identified the acquisition of the ermB-positive transposon Tn6194 as a key factor behind global emergence. This 
coincided with the introduction of clindamycin, a key inciter of C. difficile infection, into clinical practice in the 1960s. Based on 
the genomic data alone, the origin of C. difficile RT 017 could not be determined; however, geographical data and records of 
population movement suggest that C. difficile RT 017 had been moving between Asia and Europe since the Middle Ages and was 
later transported to North America around 1860 (95 % confidence interval: 1622–1954). A focused epidemiological study of 45 
clinical C. difficile RT 017 genomes from a cluster in a tertiary hospital in Thailand revealed that the population consisted of two 
groups of multidrug-resistant (MDR) C. difficile RT 017 and a group of early, non-MDR C. difficile RT 017. The significant genomic 
diversity within each MDR group suggests that although they were all isolated from hospitalized patients, there was probably a 
reservoir of C. difficile RT 017 in the community that contributed to the spread of this pathogen.

DATA SUMMARY
All new whole-genome sequence data generated in this study, highlighted in the Supplementary Document, have been submitted 
to the European Nucleotide Archive under BioProject PRJEB44406 (sample accessions ERS6268756–ERS6268798). The complete 
genome of C. difficile MAR286 was submitted to GenBank under BioProject PRJNA679085 (accession CP072118). Details of 
genomes included in the final analyses (282 genomes in the global analysis and an additional 13 genomes from the smaller 
analysis), as well as records of the phenotypic analyses are available in the Supplementary Document, available at https://www.​
doi.org/10.6084/m9.figshare.14544792. An interactive version of the Bayesian phylogenetic tree in Fig. 1 is available at https://
microreactorg/project/v89tzQ8rii55PkAGF5Jo2r/64c80194.
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INTRODUCTION
Clostridioides difficile PCR ribotype (RT) 017, or sequence type (ST) 37, ranks among the most successful strains of C. difficile. 
Despite producing only one functional toxin (toxin B), C. difficile RT 017 has spread widely and caused outbreaks globally 
[1]. The severity of C. difficile infection (CDI) caused by RT 017 has been comparable to infection caused by C. difficile strains 
producing two or three toxins [2–4]. One factor that may have contributed to the success of C. difficile RT 017 is antimicrobial 
resistance (AMR) [5].

The evolutionary origins of C. difficile RT 017 remain contentious [1]. Possible contributing factors included the early erroneous 
dismissal of C. difficile RT 017 as non-pathogenic due to its lack of toxin A [6], and the use of diagnostic tests that only detected 
toxin A [7]. By the time that the pathogenicity of C. difficile RT 017 was recognized (1995) [8], the strain had already spread 
across the globe [1].

Based on multi-locus sequence type, C. difficile RT 017 is a member of evolutionary clade 4 [1]. This clade comprises several non-
toxigenic C. difficile and toxigenic C. difficile that only produces toxin B (A-B+CDT-) [9]. Epidemiological evidence suggested that 
C. difficile clade 4 originated in Asia and C. difficile RT 017 later spread globally. First, C. difficile RT 017 has been the dominant 
strain in Asia for decades [10–14] and has only appeared sporadically in other regions [8, 15–20]. Second, reports of other C. 
difficile clade 4 strains have been exclusively from Asian countries, such as C. difficile ST 81 in China [21, 22], C. difficile RT 369 
in Japan [23] and, most importantly, the high diversity of clade 4 non-toxigenic C. difficile in Southeast Asia [24]. However, there 
have not been many historical C. difficile RT 017 strains available from the region to verify this hypothesis [10–14].

In 2017, Cairns et al. analysed the whole-genome sequence (WGS) data of 277 C. difficile RT 017 strains from around the world. 
Their results suggested an alternative hypothesis, that C. difficile RT 017 instead originated in North America, spread to Europe 
in the 1990s and later spread to other regions [25]. A more recent study based mainly on the same dataset agreed with this 
hypothesis but estimated the time of spread to be before the 1970s [26]. Despite the large dataset, this conclusion might have 
been influenced by a strain selection bias, as the North American strains included in the study were relatively older than strains 
from other regions [25, 26].

To improve upon the previous analyses, the present study included a larger number of strains, with a few early European strains 
and a greater diversity of Asian strains. We aimed to explore the origin and spread of C. difficile RT 017, as well as the key genetic 
factors driving its success.

METHODS
C. difficile RT 017 genomes
This study started with 929 C. difficile RT 017 strains from three collections: a set of 45 clinical C. difficile RT 017 strains from 
Thailand [32 phenotypically multidrug-resistant (MDR) and 13 non-MDR] some of which have been described previously 
[27], 97 previously unpublished C. difficile RT 017 strains from our laboratory’s collection and 787 C. difficile RT 017 genomes 
publicly available at the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/) as of January 2020. These collections 
included genomes of three C. difficile RT 017 isolated in the early 1980s (courtesy of Dr Jon Vernon and Prof. Mark Wilcox 
in Leeds, UK, but originally part of Prof. S. P. Borriello’s collection) [28]. Multilocus sequence typing (MLST) was performed 
directly from sequence read files using SRST2 v0.2.0 and the PubMLST C. difficile database (https://pubmlst.org/organisms/​
clostridioides-difficile/) as previously described [29, 30]. After excluding clonal and redundant strains (see below), 282 C. difficile 
strains remained in the final dataset.

Assembly of a new complete C. difficile RT 017 genome from Southeast Asia
To facilitate phylogenomic analysis of C. difficile strains from Thailand, a Thai C. difficile strain was selected for hybrid assembly of 
a closed reference genome. C. difficile MAR286 was a non-MDR strain as opposed to the existing MDR reference strain C. difficile 
M68 [31]. Short-read sequencing was performed on an Illumina HiSeq sequencing platform (Illumina) using 150 bp paired-end 
chemistry to a depth of 39× coverage as previously described [30]. Long-read sequencing was performed on the MinION Mk1C 
machine (Nanopore). The sequencing libraries were prepared using the Ligation Sequencing Kit (SQK-LSK109) and run on a 

Impact Statement

This study utilizes genomic sequence data from 282 non-clonal Clostridioides difficile ribotype (RT) 017 isolates collected from 
around the world to delineate the origin and spread of this epidemic lineage, as well as explore possible factors that have driven 
its success. It also reports on a focused epidemiological investigation of a cluster of C. difficile RT 017 in a tertiary hospital in 
Thailand to identify possible sources of transmission in this specific setting.
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FLO-MIN106 (R9.4.1) flow cell, according to the manufacturer’s instructions, for 24 h. Hybrid assembly was performed with 
Unicycler v0.4.8 using a conservative mode [32]. The final assembly graph was visualized and polished with Bandage v0.8.1 [33]. 
Genome annotation was performed using the NCBI Prokaryotic Genomes Annotation Pipeline [34].

AMR genotyping
AMR genotyping was performed as previously described [24]. Briefly, all read files were interrogated against the ARGannot 
database (for known accessory AMR genes) with two additional genes recently described in C. difficile, erm(52) and mefH [27], and 
a customized gyrA, gyrB and rpoB alleles database (for known resistance-conferring point mutations) using SRST2 [29, 35]. Strains 
that were positive for either ermB or tetM were interrogated for known transposons using SRST2 as previously described [29].

Evolutionary analysis of C. difficile RT 017
To investigate the evolution and spread of C. difficile RT 017, core genome SNP (cgSNP) and Bayesian evolutionary analyses were 
performed. All paired-end reads were trimmed using TrimGalore v0.6.4 to remove low-quality and adapter sequences (https://​
github.com/FelixKrueger/TrimGalore), mapped to the genome of C. difficile M68 and variants identified using Snippy v4.4.5 
(https://github.com/tseemann/snippy). The resulting VCF file was then screened to exclude variants occurring in the repetitive 
region using SnpSift v4.3t [36] and to exclude indels using VCF-annotate v0.1.15 [37]. Gubbins v2.4.1 was used to identify and 
remove recombination sites [38]. SNP-dists v0.7.0 was used to generate a pairwise cgSNP table (https://github.com/tseemann/​
snp-dists). Following the approach of Eyre et al. [39] and Didelot et al. [40], a threshold of 0–2 cgSNPs was used to determine if 
groups of two or more strains were clonally related.

To facilitate the Bayesian analysis, clonal strains were removed from the dataset, leaving only one representative for each clonal 
cluster (n=282). Bayesian evolutionary analysis was performed using BactDating v1.0.1 [41]. In our previous study, BactDating 
allowed the comparison of a longer sequence alignment than the conventional beast software, which led to more precise confi-
dence intervals [9]. It is also compatible with Gubbins, which was used in the previous step [41]. BactDating was run using a 
Gubbins recombination-adjusted phylogenetic tree from the previous analysis (1455 sites) as an input with the following settings: 
Markov chain Monte Carlo (MCMC) chains of 5×108 iterations sampled every 5×105 iterations with a 50 % burn-in and a strict 
model with a rate of 1.4 mutations per genome per year as published by Didelot et al. [40]. These parameters were first tested on 
a smaller dataset (n=45, see below) and produced the best model. The molecular clock used in this study is best suited for the 
microevolutionary analysis and the investigation of transmission [40], which was the main focus of this study. However, this clock 
estimate does not take into account the quiescence of C. difficile spores and the analysis may have underestimated the time of 
spread (see Discussion). Traces were inspected to ensure convergence and the effective sample size (ESS) values for all estimated 
continuous variables were >200. The final Bayesian tree was annotated using iTOL v6 [42]. An interactive version of the Bayesian 
phylogenetic tree in Fig. 1 was uploaded to Microreact [43].

Bayesian analysis was also performed on a subset of 45 Thai C. difficile genomes, for which patient data and phenotypic AMR 
results were available [27, 44]. With this small dataset, several Bayesian evolutionary analyses were performed with different 
parameters, including the use of different input phylogenetic trees (Gubbins [41] versus PhyML [45]), strict versus relaxed clock, 
inclusion versus omission of collection dates, as well as different MCMC parameters. The cgSNP analysis was performed using 
the following reference genomes: MAR286 (this study; accession CP072118.1), M68 (accession FN668375.1), 630 (accession 
AM180355.1) and M120 (accession FN665653.1), to evaluate whether the choice of reference genome had any effect on down-
stream analysis. A pairwise whole-genome average nucleotide identity (ANI) between each C. difficile strain and the reference 
strains was generated using FastANI [46], and the results were used to compare strain relatedness with each reference.

Pangenome-wide association study
The cgSNP and Bayesian analyses identified two distinct C. difficile RT 017 sublineages. To determine significant genetic loci 
associated with each lineage, all C. difficile genomes were assembled and a pangenome-wide association study (pan-GWAS) was 
performed as previously described [9]. Briefly, Panaroo v1.1.0 was run with default settings on the annotated C. difficile genomes 
[47], and the results were used as an input for Scoary v1.6.16 to identify the significant genetic loci associated with each lineage 
[48].

Assessment of motility and cell aggregation
We also evaluated motility and cell aggregation in C. difficile RT 017 from the two lineages; C. difficile strain 1470 [ATCC 43598, 
non-epidemic lineage (NE)], MAR006 [epidemic lineage (E)], MAR024 (lineage E) and MAR 286 (lineage NE). First, a motility 
assay was performed as described by Tasteyre et al. in four separate batches [49]. In each batch, the growth diameter was recorded 
three times at different angles. Second, cell aggregation was assessed by measuring the optical density at 600 nm (OD600) of the 
undisturbed and disturbed 48-h-old growth in brain heart infusion broth [50]. These tests were performed with at least three 
biological replicates. C. difficile strain IS58 (RT 033, non-motile) was included as a negative control [51].

https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/tseemann/snippy
https://github.com/tseemann/snp-dists
https://github.com/tseemann/snp-dists
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Statistical analysis
All statistical analyses were performed using online tools by Social Science Statistics available at https://wwwsocscistatisticscom/. 
A P-value of ≤0.05 was considered to be statistically significant.

RESULTS
The epidemic C. difficile RT 017 lineage emerged from Asia in the middle of the 20th century
To study the global population structure of C. difficile RT 017, cgSNP and Bayesian evolutionary analyses were performed on 
282 non-clonal C. difficile RT 017 genomes collected worldwide between 1981 and 2019 (Fig. S1, available in the online version 
of this article). The overall median year of isolation for this dataset was 2011 [quartile range (QR): 2008–2014]. The median 
years of isolation for the three main continents were as follow: Asia, 2014 (2010–2016), Europe, 2010 (2006–2012) and North 
America, 2009 (2004–2017). The Bayesian tree of C. difficile RT 017 could be divided into two parts based on the tree branching 
and topology (Fig. 1). The first part had deep temporal branches with a small number of strains, indicating an ancient lineage 
with limited spreading. This lineage was thus called the non-epidemic lineage (NE) and could be further divided into three 
sublineages (NE1, NE2 and NE3). The second part stemmed from sublineage NE3, which had shallow temporal branches with a 
large number of strains, indicating a rapid expansion of the lineage. This lineage was thus called the epidemic lineage (E). Table 1 

Fig. 1. Bayesian tree of 282 non-clonal C. difficile RT 017 genomes from around the world. The C. difficile RT 017 population could be divided into 
non-epidemic (NE; sublineages NE

1
–NE

3
) and epidemic (E) lineages. *The region of origin for each strain. Important genotypic AMR determinants are 

displayed on the right (A–E). The red star represents C. difficile M68, the reference genome in this analysis.

https://wwwsocscistatisticscom/
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summarizes 11 lineage-defining SNPs identified. None of the mutations was on the pathogenicity locus (PaLoc), the genetic 
region containing the toxin genes tcdA and tcdB. All C. difficile RT 017 strains carried the same tcdB allele (tcdB_9 according 
to the PubMLST database) and were expected to produce variant type toxin B [1]. Sublineages NE1, NE2 and NE3 consisted 
mainly of strains from Europe, North America and Asia, respectively, and the common ancestor of the three sublineages was 
estimated to have emerged in 1588 [95 % confidence interval (CI): 758–1858]. Sublineages NE1 and NE2 split around 1860 (95 % 
CI: 1622–1954). Lineage E was estimated to have split from sublineage NE3 around 1958 (95 % CI: 1920–1977) and later spread 
globally around 1970 (95 % CI: 1953–1983).

The acquisition of ermB was probably the driving factor of the epidemic C. difficile RT 017 lineage
After incorporating genotypic AMR data, an association between the acquisition of AMR genotype and the spread of C. 
difficile RT 017 was evident. Genotypically MDR C. difficile RT 017 strains were in the lower part of sublineage NE3 and 
lineage E, and only emerged around 1935 (95 % CI: 1851–1969). There had been multiple acquisition events for the two 
most common accessory AMR determinants: tetM and ermB. The earliest acquisition of tetM was probably through gaining 
Tn916, which occurred around 1914 (95 % CI: 1799–1964), while the earliest acquisition of ermB was probably through 
gaining Tn6194, which occurred around 1958 (95 % CI: 1920–1977), notably the same timeframe as the predicted time of 
emergence of lineage E.

Non-synonymous substitutions in RpoB (H502N, conferring rifamycin resistance) and in GyrA (T82I, conferring fluoroquinolone 
resistance) were found scattered throughout the population. In contrast, an R505K substitution in RpoB was found only in strains 
from sublineage NE3 and lineage E and was more common among Asian strains (37.2 % vs. 8.9 %, P<0.0001). The only European 
strains with an R505K substitution in RpoB were from an outbreak in Portugal [18]. Three independent GyrB substitution events 
were identified in this dataset: two D426N substitution events in North America around 2008 (95 % CI: 1998–2011) and 2015 
(95 % CI: 2012–2016), and one D426V substitution event in Ireland (C. difficile M68, the reference strain) around 2004 (95 % 
CI: 2001–2005) (star in Fig. 1). In addition to the important AMR determinants described above, the aac6-aph2 gene was also 
common among C. difficile RT 017, found in 73 strains in this dataset (25.9%), and more commonly among Asian strains (43.4 % 
vs. 14.2 %, P<0.0001).

Table 1. List of lineage-defining cgSNPs

Position* Strand† Product N/S‡ Lineages

NE1 NE2 NE3 E

Lineage NE vs. lineage E

867 703 F Diguanylate kinase signalling protein N G§ G§ G§ T

Sublineages NE1 and NE2 vs. sublineage NE3

263 571 F FlgG N T§ T§ C C

480 088 R UvrA S A§ A§ G G

1 486 937 F Gfo/Idh/MocA family oxidoreductase N T§ T§ G G

1 789 300 F Serine O-acetyltransferase S C§ C§ T T

3 254 867 R ABC transporter N T§ T§ C C

3 808 791 n/a Non-coding region – G§ G§ A A

Sublineage NE1 vs. sublineage NE2

1 299 679 F Penicillin-binding protein 2 N G T§ G G

1 486 584 F Gfo/Idh/MocA family oxidoreductase N C T§ C C

2 928 003 R ABC transporter N G T§ G G

3 066 957 R Thioether cross-link-forming SCIFF peptide maturase N C T§ C C

*Position on C. difficile M68 genome.
†Coding strand (F, forward; R, reverse).
‡Non-synonymous substitutions (N) and synonymous substitutions (S).
§Different from the reference genome.
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The epidemic C. difficile RT 017 lineage expresses higher motility
The cgSNP that differentiated between lineages NE and E resulted in a substitution in a diguanylate kinase signalling protein, 
which may play a role in motility and biofilm formation in C. difficile [50, 52]. Thus, motility and cell aggregation assays were 
performed (Fig. 2). Strains from lineage E had an increase in growth diameter compared to lineage NE (average diameter 7.7 vs. 
5.9 mm, Wilcoxon rank sum P<0.0001, Fig. 2a) with a marginally significant change in the level of cell aggregation as shown by the 
lower change in OD600 between undisturbed and disturbed cultures (0.88 vs. 0.99, Wilcoxon rank sum P=0.031; for comparison, 
the non-motile C. difficile IS58 had 1.84-fold change in OD600, Fig. 2b).

In addition to the lineage-specific cgSNPs (Table 1) and the difference in the prevalence of genotypic AMR, pan-GWAS was 
performed to identify other significant lineage-specific genetic loci. A total of 32863 genes was identified in the dataset, 3560 
(10.8 %) of which were found in more than 95 % of strains and classified as core genes. Based on the GWAS, the locus most 
significantly associated with lineage E was the aminoglycoside resistance locus [containing aac6-aph2 and a gene resembling 
ant6(Ib) (72 % identity, E-value=5.01e-157); sensitivity 85.3 %, specificity 97.8 %]. Apart from AMR-related loci, lineage E was 
associated with a truncation of the formate dehydrogenase FdhF protein (sensitivity 75.3 %, specificity 97.8 %). A comparison of 
the FdhF protein is shown in Fig. S2 [53]. In an analysis of 260 representative C. difficile genomes across eight evolutionary clades 
[9], this truncated FdhF protein was not found in other C. difficile strains.

C. difficile RT 017 strains in Thailand were probably acquired outside of the hospital
In this study, a smaller subset of C. difficile RT 017 genomes from a single hospital in Thailand (n=45) was analysed to determine 
the best parameters to be used in the analyses above (Gubbins tree model, strict model with a rate of 1.4 mutations per genome 
per year, the inclusion of collection dates and the MCMC parameters described in the Methods). First, a local reference genome 
(MAR286; GenBank accession CP072118.1) was generated to evaluate the effect of the different reference genomes on the 
downstream analysis. Comparison of the C. difficile MAR286 genome with that of C. difficile M68, a commonly used reference 
genome of C. difficile RT 017, is shown in Table 2. Pairwise whole-genome ANI and cgSNP analyses were performed on Thai C. 

Fig. 2. Comparison of motility and cell aggregation between Lineages E (pink) and NE (lilac). (a) Lineage E had a larger growth diameter in semi-solid 
media. (b) Lineage E displayed a lower cell aggregation as measured by the difference in OD

600
 between undisturbed and disturbed broths. (c) The 

semisolid media for all tested strains. C. difficile IS58 (RT 033, dark grey) was used as a negative control. All error bars display 95 % confidence intervals.



7

Imwattana et al., Microbial Genomics 2022;8:000792

difficile RT 017 genomes against different reference genomes and the results are summarized in Table 3. Thai C. difficile strains 
were closest to C. difficile M68. Using C. difficile M68 as a reference resulted in the longest average mapped length, significantly 
longer than C. difficile MAR286, the second closest reference genome (P<0.0001). Accordingly, C. difficile M68 was chosen as 
a reference for subsequent analysis. The average number of pairwise cgSNP differences based on C. difficile M68 and C. difficile 
MAR286 was 0.49 SNPs (95 % CI: 0.44–0.54). The difference between C. difficile strains in this study and the other two reference 
genomes was more pronounced, resulting in a greater number of pairwise cgSNP differences compared to C. difficile M68: 5.42 
SNPs (95 % CI: 5.15–5.69) for C. difficile 630 and 9.39 SNPs (95 % CI: 9.05–9.72) for C. difficile M120.

Using C. difficile M68 as a reference, 308 high-quality cgSNPs were identified across 45 C. difficile strains. The final Bayesian 
phylogenetic tree is shown in Fig. 3. Based on this phylogeny, 44 C. difficile RT 017 strains, excluding the outlier, could be classified 
roughly into three groups: the oldest group (G1, n=13), most of which were non-MDR C. difficile RT 017; a group of early MDR C. 
difficile RT 017 (G2, n=15); and the most recent and rapidly expanding clade of MDR C. difficile RT 017 (G3, n=16). The common 
ancestor of all Thai C. difficile RT 017 was estimated to have arisen around 1988 (95 % CI: 1949–2000). The common ancestors of 
the three groups were estimated to have arisen around 1999 (1993–2004), 2003 (1995–2007) and 2012 (2009–2013), respectively.

Seven small clonal groups (CGs) were identified across the tree (CG1–CG7 in Fig. 3), three of which (CG2, CG5 and CG7) were 
from different patients who were in the hospital during the same period, suggesting possible direct patient–patient transmission 
(red boxes). Two CGs (CG1 and CG3), and two small CGs in CG5, included strains that were isolated from the same patients 
within 2 months, suggesting recurrence of CDI (blue boxes). The other two CGs (CG4 and CG6) included strains isolated from 
different patients without an obvious epidemiological link, one of which included strains from two specimens collected 3 years 
apart, suggesting contaminations in the hospital environment (red asterisks in Fig. 3). The remaining C. difficile strains were 
non-clonal.

Table 2. Comparison of two C. difficile RT 017 reference genomes

Parameter M68 MAR286

Accession FN668375.1 CP072118.1

Genome size (bp) 4 308 325 4 242 261

Genes 3983 3892

Coding sequences 3830 3761

rRNAs 40 35

tRNAs 109 92

Non-coding RNAs 4 4

CRISPR arrays 4 6

GC content 28.9 % 28.8 %

AMR loci ermB (Tn6194) [MLSB], tetM (Tn6190) [tetracyclines],
D426V (GyrB) [fluoroquinolones]

ermB (Tn6194) [MLSB], tetM (Tn916) [tetracyclines]

Pairwise ANI 99.92 %

Table 3. Effect of the choice of reference genome on cgSNP analysis

Reference ST (clade) Accession Average mapped length (bp) No. of SNPs ANI (%)

MAR286 37 (4) CP072118.1 4 134 703.82 311 99.88

M68 37 (4) FN668375.1 4 176 850.73 308 99.93

630 54 (1) AM180355.1 3 836 370.82 267 97.98

M120 11 (5) FN665653.1 3 579 796.21 235 96.11

ANI, average nucleotide identity; SNPs, single nucleotide polymorphisms; ST, sequence type.
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DISCUSSION
Despite being one of the most successful strains of C. difficile, very little is known about the evolution and spread of C. difficile 
RT 017. This study addresses this knowledge gap using high-resolution phylogenomic analyses on a comprehensive and diverse 
dataset of 282 global C. difficile RT 017 genomes. We found that the population of C. difficile RT 017 can be divided into two 
lineages, agreeing with the previous study by Cairns et al. [25]. However, the data disagree on the geographical origin of C. difficile 
RT 017. Our study suggests that C. difficile RT 017 may have originated in Asia, supporting the epidemiological studies [1], then 
spread to Europe and North America. This probably resulted from the inclusion of a few older European strains (isolated between 
1981 and 1985) to reduce the gap in collection years between the two continents (P=0.6745 in this dataset) and a large diversity 
of Asian strains from 11 countries and administrative regions.

Based on the difference in structure, the two lineages of C. difficile RT 017 were classified as non-epidemic (NE, a small number 
of strains with little population expansion) and epidemic (E, a larger number of strains with rapid population expansion) lineages. 
Although not exclusively containing strains from one continent, the NE lineage could be divided into three sublineages predominantly 
containing strains from Asia, Europe and North America. This suggests that the spread of C. difficile RT 017 between these continents 
had occurred since the end of the 16th century. This roughly coincides with the estimated time of PaLoc acquisition ~500 years ago 
[54]. Sublineages NE1 (Europe) and NE2 (North America) were more closely related to one another than to sublineage NE3 (Asia). In 

Fig. 3. Bayesian tree of 45 Thai C. difficile RT 017 strains. ‘THP’ refers to strains isolated in 2015 and ‘MAR’ to strains isolated in 2017–2018. Red boxes 
indicate that the patients were in the same department when the strains were isolated. Blue boxes indicate that the strains were isolated from the 
same patient within 2–8 weeks.
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turn, sublineage NE3 was more closely related to sublineage NE1 than sublineage NE2, as demonstrated by fewer cgSNP differences 
(Table 1). Thus, the spread of C. difficile RT 017 probably began with population movement between Asia and Europe (1588, 95 % CI: 
758–1858) before spreading from Europe to North America (1860, 95 % CI: 1622–1954). The direction of the spread between Asia 
and Europe cannot be determined from this analysis; however, based on the high prevalence and diversity of clade 4 strains in Asia 
[10–13, 24], it is likely that C. difficile RT 017, as well as other strains in clade 4, originated in Asia, travelled to Europe and subsequently 
crossed the Atlantic to North America.

Even though C. difficile RT 017 could be found in at least three continents by the end of the 19th century, the Bayesian analysis 
suggests that the epidemic lineage E emerged solely from Asia (sublineage NE3) following the acquisition of ermB-positive 
Tn6194 in 1958 (95 % CI: 1920–1977), before spreading globally in 1970 (95 % CI: 1953–1983). The time of acquisition of the 
ermB element coincides with the introduction of clindamycin into clinical practice in the 1960s [55]. This pattern of spread is 
similar to C. difficile RT 027, another epidemic strain that spread in and from North America in the early 2000s [56] driven by the 
acquisition of fluoroquinolone resistance in 1993/94 [56], following the widespread use of levofloxacin for community-acquired 
pneumonia [57]. This provides supporting evidence that the use of antimicrobials and the acquisition of AMR determinants 
are significant in the spread of C. difficile. Although the prevalence of fluoroquinolone and rifamycin resistance was also high 
in C. difficile, the widespread resistance across all lineages suggests the independent acquisition of resistance after the spread 
of the strain.

The analyses were first performed on a small dataset of Thai clinical C. difficile RT 017 isolates (n=45) with complete metadata 
to evaluate the performance of the pipeline. These analyses accurately identified four pairs of C. difficile strains isolated from 
the same patients, provided good correlations between AMR phenotypes and genotypes [27], as well as AMR genotypes and 
cgSNP population structure. When performed on the global dataset (n=282), the analyses accurately predicted the emergence 
of C. difficile M68 (2001–2005), a strain from a 2003 outbreak in Ireland [31]. Also, appropriate timelines for the emergence of 
Argentinian (1996–2000) and Portuguese (2003–2011) clusters [18, 20] were estimated, supporting the accuracy of the analyses.

Besides the aforementioned AMR genes, the epidemic lineage E was also associated with the presence of an aminoglycoside resistance 
locus and a truncated FdhF protein. Being a strictly anaerobic bacterium, C. difficile is intrinsically resistant to aminoglycosides, and the 
presence of an additional aminoglycoside-resistance locus is unlikely to have provided any advantage to the bacterium [58]. However, it 
may suggest that the epidemic strains were from an area with a high prevalence of aminoglycoside-resistant enteric bacteria, especially 
enterococci [59]. Formate dehydrogenase is an enzyme involved in the reoxidation of NAD [60]. Based on the prediction by the UniProt 
database [61], the truncated region is the coiled-coil domain that probably serves as a binding site for NAD. Thus the truncated protein is 
probably non-functional, although C. difficile has several pathways for oxidizing NAD and the truncated FdhF may not ultimately have 
any effect on growth or virulence [60]. Another significant genetic variant associated with lineage E was a point substitution (W366L) on 
the diguanylate kinase signalling protein (Table 1). This protein is involved in the regulation of cyclic dimeric guanosine monophosphate 
(c-di-GMP), which plays a role in motility and biofilm formation [50, 52]. In our preliminary assessment, strains from lineage E had 
increased motility in vitro. This provides a foundation for further in vivo studies to determine the effect of these phenotypes on the 
virulence and transmissibility of the epidemic strains.

Analyses of the Thai clinical C. difficile strains provided information on disease transmission in the country that differs from a 
previous report from the UK [16]. The UK study reported a cluster of closely related C. difficile RT 017 strains in a single hospital 
in London that was different to strains from other parts of the city, suggesting an intra-hospital outbreak [16]. In the current 
study, all Thai strains were isolated in a single tertiary hospital over 4 years (2015–2018), but most of them were not closely related. 
Overall, these strains were more closely related to C. difficile M68, a strain isolated in Ireland in a different decade [31], than to a 
non-epidemic strain from the same hospital. This suggests that the high prevalence of C. difficile RT 017 in the hospital was not 
due to an ongoing outbreak. Indeed, evidence of direct patient–patient transmission could be identified in only a few cases. The 
remaining cases acquired C. difficile RT 017 elsewhere, probably from the community [62, 63].

Although evidence of C. difficile RT 017, or other clade four strains, in the environment in Asia has yet to be provided [24, 64], 
it may be inferred by the persistence of C. difficile RT 017 in the human population [10–14]. This mimics the situation in North 
America, where successful public health interventions have led to a significant decrease in the burden of the epidemic C. difficile 
RT 027, although complete eradication has not been achieved [65]. By contrast, C. difficile RT 027 has almost completely disap-
peared in Europe [66]. The persistence of C. difficile RT 027 in North America was linked strongly to continuous spillover from 
several environmental sources, including household environments and companion animals [67, 68]. Similar studies in Asia are 
needed to verify the presence of C. difficile RT 017 in the environment, which would further suggest that C. difficile RT 017 has 
long been integrated into the Asian community.

This study also demonstrates the effect of reference genome selection on downstream analysis (Table 3). The results were comparable 
when a reference from the same ST was used (an average difference of 0.49 SNPs, clonality cut-off point of 2 SNPs) [40]. Differences 
became more pronounced as the reference strain became less related, suggesting that a reference genome from the same ST should be used 
to ensure accurate cgSNP results. With the introduction of ONT, it is now possible to assemble a complete genome of a local reference 
strain to maximize the accuracy of cgSNP analysis using a combination of short- and long-read sequences.
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A limitation of this study remained the relatively low number of early C. difficile RT 017 strains in general and the lack of older 
strains from Asia. This probably led to some uncertainty in the estimations, as reflected by wide 95 % CIs, especially around the 
root of the Bayesian tree. Also, the biological clock of 1.4 mutations per genome per year used in this study did not account for 
the presence of C. difficile spores, the genomes of which may remain unchanged for decades or centuries [40]. This may affect the 
estimated time at the root of the tree, which could be earlier than the current estimate. The inclusion of more early strains will 
help adjust the model leading to a more accurate estimate. Although it may be difficult to acquire old clinical strains, it may be 
possible to get historical strains from other sources. Soil is one promising source for ancient C. difficile, as it is a reservoir for C. 
difficile spores and several methods have been developed to measure the age of the soil [69], which can be used as a substitution 
for the collection date in a Bayesian evolutionary analysis.

In conclusion, C. difficile RT 017 had been circulating between Asia and Europe for centuries before spreading to North America. 
The epidemic lineage of C. difficile RT 017 emerged from Asia in the middle of the 20th century following the acquisition of 
ermB. A focused investigation of contemporary C. difficile RT 017 in Thailand revealed that the population was highly diverse 
and community reservoirs/sources may have played an important role in the transmission of disease in this country.
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