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Abstract
Predictive coding models propose that predictions (stimulus likelihood) reduce sensory signals as early as primary visual
cortex (V1), and that attention (stimulus relevance) can modulate these effects. Indeed, both prediction and attention have
been shown to modulate V1 activity, albeit with fMRI, which has low temporal resolution. This leaves it unclear whether
these effects reflect a modulation of the first feedforward sweep of visual information processing and/or later, feedback-
related activity. In two experiments, we used electroencephalography and orthogonally manipulated spatial predictions and
attention to address this issue. Although clear top-down biases were found, as reflected in pre-stimulus alpha-band activity,
we found no evidence for top-down effects on the earliest visual cortical processing stage (<80ms post-stimulus), as
indexed by the amplitude of the C1 event-related potential component and multivariate pattern analyses. These findings
indicate that initial visual afferent activity may be impenetrable to top-down influences by spatial prediction and attention.
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Introduction
Influential predictive coding theories postulate that predictions
derived from past experience reduce the magnitude of sensory
responses, and that attention can modulate these effects by boost-
ing prediction precision (Rao 2005; Friston 2009). Indeed, recent
fMRI studies show that predictions based on visual regularities in
the environment can modulate neural responses already at the
lowest level of the cortical hierarchy, in primary visual cortex (V1)
(e.g., Alink et al. 2010). Moreover, these effects have been shown to
depend on attention (e.g., Kok, Rahnev et al. 2012). For example,
Kok, Rahnev et al. (2012) orthogonally manipulated spatial predic-
tions (stimulus likelihood) and attention (stimulus relevance) and

found that V1 activity to predicted stimuli was reduced when sti-
muli were unattended, reflective of reduced prediction error, but
enhanced when stimuli were attended, suggestive of heightened
weighting of visual evidence by attention. Yet, other studies
reported opposing effects of prediction and attention, with predic-
tion and attention, respectively, reducing and enhancing V1
responses (Boynton 2009; Kok, Jehee et al. 2012). Since fMRI has
low temporal resolution, it is currently still unclear if these effects
of prediction observed in V1 reflect modulations of initial feedfor-
ward processing, later recurrent (i.e. feedback) processing, or a
summation of both. Based on theories of predictive processing,
one would expect predictions to modulate visual processing as
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early as V1 (Clark 2013). Yet, no study so far has shown that pre-
dictions can actually modulate initial visual afferent activity.

In the domain of visuospatial attention, the majority of human
studies have found no evidence for the notion that attention can
modulate the first feedforward sweep of activation, as reflected in
the amplitude of the earliest event-related potential (ERP), the C1
(Martínez et al. 1999, 2001; Noesselt et al. 2002; Di Russo et al. 2003,
2012; Bayer et al. 2017; Baumgartner et al. 2018). This component
peaks before 100ms and flips in polarity dependent on whether
the stimulus is presented in the upper or lower visual field, sug-
gesting strong contributions of V1 generators (Di Russo et al. 2003;
Kelly et al. 2013). Spatial attention is, on the other hand, robustly
associated with modulations of the subsequent visual-evoked P1
component, which reflects extrastriate processing. Accordingly,
attention effects observed in V1 in fMRI studies are typically inter-
preted as driven by feedback from higher visual areas (Martínez
et al. 1999, 2001; Noesselt et al. 2002; Di Russo et al. 2003). However,
several human Magneto- and electroencephalography (M/EEG)
studies (Slotnick et al. 2002; Kelly et al. 2008; Poghosyan and
Ioannides 2008; Rauss et al. 2009, 2012) challenge this conclusion
by showing attentional modulations of the C1. For instance, Kelly
et al. (2008) showed that, when individual differences in neuro-
anatomy are taken into account, spatial attention can increase the
amplitude of the initial phase of the C1 (50–80ms post-stimulus),
which conceivably more selectively indexes V1 activation. Yet, in a
direct replication Baumgartner et al. (2018) recently failed to find
the same effect, adding to the controversy of this issue.

Moreover, previous M/EEG work examining how early spatial
attention can influence cortical visual processing did not address
the possibility that top-down effects might have been absent in
the vast majority of previous studies due to the fact that in these
studies, stimuli appeared at attended and unattended locations
with equal probability (i.e., 50% cue validity; e.g., Di Russo et al.
2003; Kelly et al. 2008; Baumgartner et al. 2018). It is conceivable
that the exact timing of attention modulation depends on the
probability of a stimulus at a given location. Indeed, functional
magnetic resonance imaging (fMRI) work suggests that stimulus-
evoked BOLD responses in V1 are largest when a given stimulus
is both relevant and more likely (Kok, Rahnev et al. 2012). Thus,
the fact that the vast majority of previous studies examining
effects of top-down attention on initial visual cortical afferent
activity used attention-directing cues with no predictive value
may have prevented them from observing effects at the level of
C1. Consequently, at present, it remains unclear whether predic-
tions and attention can modulate the first feedforward sweep of
cortical visual information processing, and if so, how.

The aim of the current study was to determine if spatial pre-
dictions and/or attention can modulate the earliest stage of corti-
cal visual information processing exploiting the high temporal
resolution of EEG. In two experiments, we orthogonally manipu-
lated stimulus location predictability and relevance (cf. Kok,
Rahnev et al. 2012), using the same cueing task and individual C1
titration procedure as Kelly et al. (2008). This allowed us to deter-
mine if prediction and attention can modulate the first phase of
the C1 (< 80ms) and if they do so in interaction. Both attention
(Jehee et al. 2011) and prediction (Kok, Jehee et al. 2012) have also
been associated with sharpening of neural representations in V1
using BOLD fMRI. Therefore, next to examining modulations of
activation strength, using multivariate pattern analysis (MVPA)
we also investigated how early prediction and attention may
modulate visual representations. Lastly, we also explored their
effects on pre-stimulus alpha-band activity, indicative of a top-
down bias, and on several later ERP components that capture
subsequent processing stages.

Methods
Participants

Thirty-two and fifteen students participated in Experiment 1
and Experiment 2, respectively. All participants, recruited from
the University of Amsterdam, were right-handed, reported nor-
mal, or corrected-to-normal vision, and no history of a psychi-
atric or neurological disorders. Experiment 1 consisted of three
EEG sessions, of which the first was used to ensure a robust C1
ERP component in a given individual. Based on this screening,
the final set of participants, which participated in all three ses-
sions, consisted of 21 participants (6 males, average age = 22.4
years, SD = 3.9; age information is not available for two partici-
pants, but they were between 18 and 40 years old). In
Experiment 2, we excluded two participants, and the final set of
participants consisted of 13 participants (6 males, mean age =
20.9 years, SD = 2.1). One participant was excluded from the
due to extremely unmotivated behavior during the second
experimental session, and the other due to the absence of a C1
component at both stimulus locations. The study was approved
by the ethical committee of the Department of Psychology of
the University of Amsterdam. All participants gave their
informed consent and received research credit or money (10
euros per hour) for compensation.

Experimental Design and Stimuli

All stimuli were generated using Matlab and Psychtoolbox-3
software (Kleiner et al. 2007), and were presented on a 1920 ×
1080 pixels BenQ XL2420Z LED monitor at a 120-Hz refresh rate.
Stimuli were viewed with a distance of 90 cm from the monitor
in all sessions.

Experiment 1
Procedure. The experimental design and tasks were similar to
that of Kelly et al. (2008), who previously reported effects of
attention on initial visual afferent activity. Specifically,
Experiment 1 consisted of three EEG sessions: a “probe” session
and two experimental sessions. The probe session served to
identify two locations, diagonally opposite to each other, one in
the upper and one in the lower visual field, at which for a given
participant a reliable C1 could be detected (cf. Kelly et al. 2008).
This was done to account for the large variability in V1 anat-
omy between participants, which may complicate uniform
measurement of the C1 at a single electrode or a cluster of elec-
trode sites when the same location is used for stimulus presen-
tation for all participants (Foxe and Simpson 2002; Proverbio
et al. 2007; Kelly et al. 2008). These two locations were used in a
spatial cuing task in the subsequent experimental sessions. By
using diagonally opposite locations, the distance between the
attended (cued) and unattended (uncued) location was always
equal from fixation and the horizontal and vertical meridians.
In the probe session, participants performed a simple target
detection task (cf. Kelly et al. 2008), while their brain activity
was recorded with EEG. Participants were instructed to fixate
on a white cross at the center of the screen, while Gabor
patches were flashed briefly in a random order at one of eight
locations positioned equidistantly around fixation (see Fig. 1).
They had to respond with a left mouse button press only when
detecting a target, which was a Gabor patch with a black ring
superimposed that appeared on 25% of trials. Participants did
not have to respond to non-targets. Because stimuli were pre-
sented at each location equally often, it was assumed that
attention was distributed evenly across the eight locations.
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In two subsequent experimental sessions, administered on
separate days, participants performed a visual spatial cueing
task virtually identical to the task used by Kelly et al. (2008;
Fig. 1). The crucial difference with Kelly et al. is that we orthog-
onally manipulated stimulus relevance and probability in the
same way as in a previous fMRI study that observed modula-
tions of BOLD activity in V1 by spatial attention and prediction
(Kok, Rahnev et al. 2012). This allowed us to study the interac-
tive effects of attention and prediction on initial visual afferent
activity. On each trial, a centrally presented attention cue
instructed participants which location (the upper or lower) to
covertly attend to. This cue was followed by a stimulus, a
Gabor patch, at either the cued or the uncued location.
Participants had to press a mouse button when detecting a
Gabor patch with a black ring superimposed on it (i.e., the tar-
get) at the cued (relevant) location. While the stimulus could
occur at either cued or uncued location, target stimuli could
only appear at the cued location, i.e., the uncued location was
never task-relevant. The probability of a stimulus appearing at
a given location was manipulated in a block-by-block fashion
(cf. Kok, Rahnev et al. 2012). At the beginning of each block of
trials, a prediction cue informed participants about the likeli-
hood that a stimulus would appear at the upper or lower loca-
tion in that block. In different blocks, for a given location, this
likelihood could be high (75%), neutral (50%), or low (25%). This
way, crucially, in a given trial, a stimulus could be attended
and predicted, attended, and non-predicted (in the “neutral”
blocks), attended and unpredicted, unattended and predicted,
unattended and non-predicted, or unattended and unpredicted.
Participants were instructed to maintain fixation on the center
of the screen at all times.

Design and stimuli. Non-target Gabor patches in all sessions
had a spatial frequency of six cycles per degree, a diameter of
1° at half-contrast, and 45° orientation. Targets in all sessions
were Gabor patches with a black ring superimposed. The black
ring had a radius of 0.4° from the center to outer edge of the
ring and thickness of 0.11°.

In the probe session, stimuli appeared randomly at one of
eight locations in an annulus of 4° from fixation, and a target
stimulus was presented on 11% of the trials (cf. Kelly et al. 2008;
Fig. 1). Stimuli were each presented in the middle of an octant
(starting with Location 1 in the upper visual field at a polar angle
of 157.5°, Location 2 at 112.5°, and so on). The probe session
started with a practice block consisting of 160 trials, followed by
10 blocks of 360 trials each interleaved with self-timed breaks.
After every third block, typically a longer break was taken to
ensure enough rest throughout the session. To encourage sus-
tained engagement of participants during the probe session, we
adaptively controlled task difficulty using a staircase procedure
by changing the luminance of the black ring that defined targets
(cf. Kelly et al. 2008). Ten difficulty levels varied in a range from
a 2% to a 47% reduction in brightness (with steps of 4.5%). Each
participant started with difficulty Level 4. After two hits with no
misses in between, the difficulty level increased by one level.
The difficulty level decreased after two false alarms with no
misses in between, or after a single miss. After each block, the
difficulty level was again reset to Level 4.

In two subsequent experimental sessions, participants per-
formed the spatial cuing task while we recorded their brain
activity with EEG and monitored fixation using eye tracking
(Fig. 1). Each block of 20 trials started with a centrally presented
prediction cue that indicated likely location of a stimulus in
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Figure 1. Experimental tasks and stimuli of Experiment 1. (A) In the probe session, stimuli were presented at eight locations around fixation to determine two diago-

nally opposite locations at which stimuli elicited a robust C1 for a given individual (numbers only shown for display purposes). For a representative subject, shown

are the corresponding C1 topographies for an upper location (Location 4) and a lower location (Location 8) averaged over the 50–80ms post-stimulus period. On the

right, the corresponding ERP waveforms are shown. As depicted in the figure, stimuli presented at the upper location elicited a C1 of negative polarity (blue line),

whereas stimuli presented at lower location elicited a C1 of positive polarity (red line). (B) The spatial cuing task used in the experimental sessions. Each block of the

task started with a prediction cue (the word “UPPER”, “LOWER”, or “NEUTRAL”), which signaled the likely location of a stimulus in the upcoming block of 20 trials

with 75% (upper or lower cue) or 50% (neutral cue) validity. In each trial, a spatial cue instructed participants to covertly direct their attention to the cued location,

which was followed after a fixed delay, by a stimulus, a Gabor patch, at either the cued (attended), or the non-cued (unattended) location. Participants were asked to

press a left mouse button if they detected a target, which could only appear at the cued location. Target stimuli appeared on 25% trials and were Gabor patches with

a black ring superimposed. The trial sequence shown above is an example of a trial in which a non-target stimulus appears at the location that is both more likely

(predicted) and relevant (attended). (C) Standard and target stimuli used in Experiment 1.
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that block of trials. Prediction cues were words: “UPPER” (75%
probability of target appearing at the upper location, i.e., 25%
chance of appearing at the lower location), “LOWER” (75% prob-
ability of target appearing at the lower location), or “NEUTRAL”
(50% probability of target appearing at either the upper or lower
location) presented for 1000ms (cf. Kok, Rahnev et al. 2012).
After the prediction cue, a white fixation cross (0.3° in length
and 0.12° in width) was shown at the center of the screen for
another 1000ms. Each trial in a block started with a centrally
presented attention cue, a small white rotated L-shape (line
elements were 0.15° in length and 0.06° in width) pointing
towards a specific location that participants needed to attend
covertly. The attention cue was presented for 200ms at 0.4°
eccentricity from the central fixation cross, and pointed to the
upper or lower location with equal probability. The direction of
the attention cue was randomized within a block of trials so
that both locations were equally often relevant in a block.
Locations were marked with four white small squares outlining
a 2.75° × 2.75° area on the screen. A stimulus appeared on the
screen 733ms after attention cue offset at 4° eccentricity (cf.
Kelly et al. 2008). The inter-trial interval was jittered between
1000 and 1500ms. The difficulty of the spatial cueing task was
adjusted online and titrated to 75% correct by adaptively
changing the luminance of a black ring on target Gabor stimuli,
which appeared on 25% of trials. In comparison to difficulty
levels employed in the probe session, here we used more fine-
grained step sizes to adjust the task difficulty. There were 40
difficulty levels, again in a range from 2% to 47% reduction in
brightness. The starting difficulty level for the first experimen-
tal session was the mean difficulty level reached in the probe
session. Difficulty level was calculated and adjusted if neces-
sary at three points in the experiment (in every forced break;
see below). The difficulty would increase four levels when
mean accuracy was above 90%, and for two levels if accuracy
was higher than 80%. When accuracy was between 75% and
80%, the difficulty level increased one level, and when it fell
between 70% and 75%, it decreased one level. Task difficulty
decreased for two levels and four levels if the performance was
below 70% and 60%, respectively. Difficulty levels were adjusted
automatically in every forced break, but the experimenter could

overwrite this if necessary, for instance, if the false alarm rate
was high and hit rate therefore inflated.

Each experimental session consisted of 2008 trials divided
into 16 runs. Each run contained six blocks of 21 trials, 2 of
each prediction condition (“UPPER”, “LOWER”, “NEUTRAL”).
Randomization and counterbalancing were done for 502 trials
at a time to prevent trials of the same condition to be overrep-
resented in a certain period of the task. Eight “NEUTRAL” blocks
had one trial less due to rounding. After every fourth run, there
was a longer forced break, and participants could take a short-
er, self-timed break in between the other blocks or runs. In
every break, participants received written feedback about their
performance (percentage of hits, average reaction time, and
false alarm rate if it was higher than 15%), and a verbal warning
if they had broken fixation excessively. They also received writ-
ten feedback on the computer screen if they had too many false
alarms, and were encouraged to keep their performance up to
high levels. Before the start of the experiment, every partici-
pant practiced two upper, two lower, and two neutral predic-
tion blocks.

Experiment 2
Procedure. In Experiment 2, we aimed to determine if we could
replicate the findings from Experiment 1 using a further opti-
mized design. Specifically, in Experiment 2, in order to increase
the signal-to-noise ratio of the neural signal used to test for the
effects of attention and prediction, we used large-scale, high-
contrast V1-tuned stimuli (Fig. 2) that have been shown to elicit
large C1s (e.g., see Pourtois et al. 2008). Second, subjects per-
formed an orientation discrimination task on the stimuli,
which likely relies on V1 processing. Third, stimuli were only
presented in the upper field to avoid overlap between the C1
and subsequent P1 component. While the C1 generated by
lower-field stimuli peaks over lateral posterior electrodes, like
the P1, the C1 generated by upper field stimuli peaks over mid-
line posterior electrodes, allowing for a better separation of the
two components (Qu and Ding 2018). The task and procedure
were otherwise similar to Experiment 1, except for some addi-
tional changes that we detail in the below.
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Figure 2. Experimental tasks and stimuli of Experiment 2. (A) Example of a trial of the spatial cueing task. Each block of 20 trials started with the presentation of a pre-

diction cue (the word “LEFT”, “RIGHT”, or “NEUTRAL”) signaling the likelihood that a stimulus would occur at the upper left or right location in that block. Each trial

started with the presentation of an attention-directing cue, which instructed participants to covertly direct their attention to the cued location (centrally presented

fixation cross in red or blue signaling right or left location, respectively). After a fixed interval, the cue was followed by a stimulus, a texture stimulus, at the cued or

uncued location. Participants had to press the left mouse button in case of a target stimulus at the cued location. The depicted sequence shows an example of a pre-

dicted attended trial in which a target stimulus is presented at the more likely and relevant location. (B) Target stimuli appeared on 25% of trials and were texture sti-

muli with the foreground region (three vertically-oriented lines in the center of a stimulus) tilted towards the left or right with respect to the foreground region. On a

standard stimulus, the foreground region formed a 90° degrees angle with respect to the background lines.
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We expected that the V1-tuned stimuli used in Experiment
2 would elicit a detectable C1 component at the scalp in the
majority of subjects. Therefore, we skipped the probe session
in Experiment 2. Participants thus came to the lab twice for an
experimental session in which they performed a spatial cueing
task for ~120min, while their brain activity was recorded with
EEG and eye fixation was monitored with eye tracking. In the
first experimental session, they first performed a detection task
to titrate the initial difficulty level of the subsequent spatial
cueing task. Each task was preceded by detailed instructions
explaining the task and a short practice block to familiarize
participants with the task.

As in Experiment 1, in the spatial cueing task, spatial attention
and prediction were manipulated independently. The to-be-
attended (i.e., task relevant) location was cued on a trial-by-trial
basis, while location likelihood (25%, 50%, 75%) was varied block-
wise. Thus as in Experiment 1, a stimulus could be attended and
predicted, attended and non-predicted, attended and unpre-
dicted, unattended and predicted, unattended and non-predicted,
or unattended and unpredicted. As in Experiment 1, a response
was required only when a target stimulus was presented at the
cued location, while standard stimuli did not require a response.
A target stimulus could never appear at the uncued location.

Design and stimuli. In each trial, following a fixation period of
1000ms, an attention-directing cue indicated which of two
locations in the upper field was relevant. The upper-left loca-
tion was at a polar angle of 135° at 5° eccentricity, and the
upper-right at 45° at 5° eccentricity. In Experiment 2, the cue
used to direct attention was non-spatial, and consisted of the
central fixation cross turning blue or red indicating the left or
right location, respectively, as task-relevant for that trial. We
used a symbolic cue in Experiment 2, because the cue used in
Experiment 1 had a spatial component, which may have exoge-
nously instantiated an attentional bias in the direction of the
cued location (the tip of the L shape was pointing to the to-be-
attended location). The attention cue was presented for 200ms,
and followed by a 833-ms-long cue-stimulus interval, after
which a stimulus was presented at either the cued or the
uncued location (see Fig. 2). In order to enhance the signal-to-
noise ratio of the C1, stimuli used in this experiment were
high-contrast textures consisting of 7 × 7 white line elements
on a black background, all oriented horizontally, except for
three vertically-oriented line elements in the center of the tex-
ture stimulus (fourth row and third, fourth and fifth column-
elements). With respect to the background, these vertical line
elements formed a foreground region in the center of the stim-
ulus. The position of each stimulus line was jittered across
trials by adding a vertical and horizontal offset that varied
between 0° and 0.017° in order to minimize adaptation effects.
The entire texture stimulus was 4.75° × 4.75° in size. Each line
element was 0.42° × 0.03° and spaced 0.07° apart (see Fig. 2).

Standard and target stimuli differed only in the orientation
of the foreground region. The foreground line elements on a
standard stimulus formed a 90° orientation contrast with
respect to horizontally oriented background lines. Foreground
regions on target stimuli formed an orientation contrast differ-
ent (higher or lower) than 90° (within the bounds of 0–180°).
The magnitude of the difference between the orientation of the
foreground region on a target stimulus and the foreground
region on the standard stimulus defined task difficulty. Task
difficulty was adaptively changed after every break (self-timed
or forced), targeting t = 0.5, where t was the difference between
the hit and false alarm rate. If it was higher than 0.5, the diffi-
culty of the task increased, i.e., the difference of the foreground

orientation between standard and target stimuli decreased by
1°. The difficulty level remained the same for t = 0.5, and
decreased with one level if the performance dropped below t =
0.5, corresponding to an increase in the difference of the fore-
ground orientation contrast of 1°. At each difficulty level, the
foreground region on a target stimulus was tilted towards the
left (>90°) and towards the right (<90°) equally often.

The starting difficulty level of the spatial cuing task in the
first session was determined first for each participant in a sepa-
rate detection task. This simple detection task consisted of two
blocks of 200 trials each, divided by a self-timed break. The task
and procedure were similar to the spatial cueing task, except
that location relevance and location predictability were not
manipulated (cf. the probe session in Experiment 1). Stimuli
appeared in the upper-left or upper-right quadrant with equal
probability. Participants were instructed to press the mouse
button only when they detected a target stimulus (texture sti-
muli with the central foreground region forming the orientation
contrast different than 90° with respect to background), while
maintaining fixation. Target stimuli appeared on 25% of trials
at either location. Four possible target difficulty levels occurred
equally likely throughout the task. The difference between tar-
get foreground regions with respect to standard foreground
regions changed with a step size of 2°. For each of the four diffi-
culty levels (i.e., the highest difficulty level was ±2° + 90°), the
difference between the hit and false alarm rate was computed.
The difficulty level at which the performance was closest to t =
0.5 was selected as the starting difficulty level of the subse-
quent spatial cuing task. The difficulty level that a subject
reached in the last block of the first experimental session was
taken as the starting difficulty level for the second experimen-
tal session.

Data Acquisition and Preprocessing

Eye tracking. Eye movements were recorded using a Tobii X120
infrared eye tracker (120 Hz sample rate) and monitored online
throughout each session in both Experiments. A standard nine-
point calibration was performed at the start and after every
four blocks. If the eye position fell outside of a circle with
radius of 1.5° around fixation for more than 100ms, the central
fixation cross would turn from white to gray, indicating to par-
ticipants that their eyes were not on fixation and that they had
to fixate their gaze at the central fixation cross again.

EEG recordings and preprocessing. EEG data, digitized at 512Hz,
were continuously recorded in all sessions in both Experiments
using an ActiveTwo system (BioSemi, Amsterdam, the Netherlands),
from 64 scalp electrodes placed according to the 10/20 system, four
electro-oculographic electrodes placed above and below, and to the
side of the eyes, and two external electrodes attached to each ear-
lobe. EEG data were offline referenced to the average activity
recorded at the earlobes, resampled to 256Hz, filtered using a 50-Hz
notch filter, and then high-pass filtered at 0.1Hz and low-pass fil-
tered at 45Hz with a roll-off of 6dB/octave. The continuous data
were subsequently epoched from −2.1 to 2.1 s around stimulus pre-
sentation and baseline corrected to the average activity between
−80ms and 0ms pre-stimulus (cf. Kelly et al. 2008). Epochs with
EMG artifacts or eye blinks that coincided with stimulus or attention
cue presentation were rejected based on visual inspection.
Extremely noisy or broken channels were reinterpolated. Remaining
eye blink artifacts were removed by decomposing the EEG data into
independent sources of brain activity using an Independent
Component Analysis, and removing eye blink components from the
data for each subject individually. Preprocessing was done using the
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EEGLAB toolbox (Delorme and Makeig 2004) for Matlab (The
MathWorks, Inc. Natick, MA, USA) and custom-written Matlab
scripts.

Analyses

Analyses, unless reported otherwise, were done using the
EEGLAB toolbox (Delorme and Makeig 2004) for Matlab (The
MathWorks, Inc. Natick, MA, USA), custom-written Matlab
scripts (time–frequency analyses) and SPSS (repeated-measures
ANOVA and paired sample t-test).

Experiment 1
Eye-tracking. Eye tracking data were analyzed offline to deter-
mine for each trial, if eye deviation from fixation was >1.5
degrees for at least 50ms in a −500 to 500ms interval around
stimulus presentation, or if eye tracking data was missing for
more than 100ms in the same time window. These trials were
excluded from behavioral and EEG data analyses. To ensure
that the mean gaze deviation across participants did not differ
between conditions (e.g., varied as a function of location rele-
vance or location likelihood) at the time of stimulus presenta-
tion, we entered eye position values in the x- and y-direction
averaged across −200 to 100ms locked to the stimulus presen-
tation into separate repeated-measures ANOVAs with the
within-subject factors Attended Location (upper, lower) and
Predicted Location (predicted, non-predicted, unpredicted). To
enable direct comparison of deviations in the horizontal direc-
tion, values in the x-direction were multiplied by −1 for the
subset of subjects who had their upper and lower locations in
the right and left visual field, respectively. Thus, their eye
tracking data were transformed, as if, in each subject, the upper
location was in the left visual field and the bottom location in
the right visual field.

The spatial cueing task: behavior. Behavioral analyses were
conducted to ensure that our stimulus predictability manipula-
tion in the spatial cueing task impacted behavioral perfor-
mance. Specifically, we statistically evaluated the difference in
average reaction times, accuracy (percentage of correct target
detections) and d’ (target sensitivity) between three prediction
conditions, collapsed across the upper and lower-field condi-
tions, with a repeated-measures ANOVA with Prediction (P, NP,
UP) as a within-subject factor. d’, a sensitivity index based on
signal detection theory (Stanislaw and Todorov 1999), was com-
puted as Z(hit rate)-Z(false alarm rate).

The probe session EEG data. Following the procedure described
in Kelly et al. (2008), the probe task EEG data was analyzed in
order to identify two spatial locations, one in the upper and
one in the lower-field, diagonal to each other (e.g., upper left
Location 1 and lower right Location 5 in Fig. 1a), where stimuli
elicited a robust C1 ERP component. To this end, for each sub-
ject separately, we computed ERP waveforms to non-target sti-
muli for each of the eight locations separately and inspected
the waveforms for the presence of a C1. Following the same
procedure as Kelly et al. (2008) and Baumgartner et al. (2018),
we defined the C1 based on a combination of component tim-
ing, scalp topography, and polarity information. Specifically,
the C1 is characterized by (1) an onset around 50ms, (2) a rise
above baseline before 80ms and peak before 100ms over poste-
rior scalp regions, and (3) a positive polarity for lower-field sti-
muli and a negative polarity for upper-field stimuli (Di Russo
et al. 2002; Kelly et al. 2008). Based on these characteristics, a
pair of diagonally opposite locations showing a clear C1 was
selected for each subject. These were used as stimulus

locations in the spatial cuing task in the subsequent two exper-
imental sessions. Out of 32 participants tested in the probe ses-
sion, 11 participants were excluded from further testing, as
they did not exhibit a clearly identifiable C1 at two diagonally
opposite probe locations.

ERP analyses: C1 component. We created ERPs time-locked to
non-target stimuli, separately for upper and lower-field stimuli,
per condition. One participant’s data did not yield an identifi-
able C1 component for lower-field stimuli, due to which we
excluded his/her data from the C1 analyses. Based on the off-
line analysis of the eye tracking data, only trials in which the
eyes were within 1.5° from fixation were included in the ERPs.

To address our main question, if prediction and attention
independently or in interaction can modulate the first feedfor-
ward sweep of visual cortical activity, we conducted a three-
way repeated-measures ANOVA with Attention (A, UA),
Prediction (P, NP, UP), and Field (upper, lower) as within-subject
factors, and average voltage values in 50–80ms time window at
C1 peak channels as the dependent variable.

To determine possible effects of attention and prediction on
the later phase of the C1, which more likely also reflects contri-
butions from extrastriate sources, we repeated the same analy-
ses, but now with C1 peak amplitude as the dependent
variable. C1 peak amplitude was determined as follows. Based
on the condition-average upper- and lower-field ERPs, for each
subject separately, we determined at which electrode and
latency the amplitude of the C1 was most positive (for lower-
field stimuli) or negative (for upper field stimuli) within a time
window of 50–100ms post-stimulus. The obtained C1 para-
meters (two peak amplitudes and peak latencies per subject,
one for each field) were then used to quantify C1 peak ampli-
tude separately for each condition of interest. On average, the
C1 peaked at 93ms for upper, and at 100ms for lower-field sti-
muli. Average C1 amplitude over +/− one sample around the
peak sample (~12ms) was then used as the dependent variable
in a three-way repeated-measures ANOVA to test for the pres-
ence of top-down modulations of the later phase of the C1. The
repeated-measures ANOVA examined the independent and
interactive effects of attention and prediction and included the
within-subject factors Attention (A, UA), Prediction (P, NP, UP),
and Field (upper, lower). In all repeated-measures ANOVAs, the
polarity of C1 amplitude to upper-field stimuli was inverted so
that all values were positive and therefore directly comparable
to amplitudes of lower-field stimuli. For all repeated-measures
ANOVA analyses, here and in following sections, whenever
Mauchly’s test suggested a violation of sphericity, we report
Geenhouse–Geisser corrected P-values.

In case of non-significant effects of prediction and/or atten-
tion on the initial or later phase of the C1, we performed
Bayesian statistics using JASP (JASP Team, 2018) software to
determine the strength of evidence for the null hypothesis of
no effect (Masson 2011; Wagenmakers et al. 2018). Generally
speaking, Bayesian statistics allows the quantification of the
probability of hypotheses for and against the absence of effects,
i.e., H0 and H1, given the observed data p(H|D). These probabili-
ties can be statistically compared and expressed as a Bayes fac-
tor (BF01), which indicates the posterior probability of the H0

over H1 (Masson 2011). The higher the value of the Bayes factor
BF01, the stronger the evidence in favor of H0 being true. Here,
we used terminology for interpreting Bayes factors suggested
by Jeffreys (1961), and labeled a BF01 from 1 to 3 as anecdotal
evidence in favor of H0, values from 3 to 10 as substantial, and
those above 10 as strong evidence in favor of H0. To evaluate the
main and interaction effects of interest, we conducted a Bayesian
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repeated-measures ANOVA with the same within-subject factors
to determine the strength of evidence in favor of the H0. In case
we needed to quantify evidence for an interaction effect, we com-
puted inclusion Bayes factor (BFinclusion) across matched models,
which is the ratio between the sum of posterior model probabili-
ties P(M|data) of all models that contain the interaction effect of
interest, but no interactions with the interaction effect of interest,
and the sum of posterior model probabilities of all the models
included in the numerator term but without the interaction of
interest. This factor thus indicates the extent to which data sup-
ports the inclusion of the interaction effect, taking all relevant
models into account. For the sake of consistency in interpreting
the BFinclusion in line with the BF01, we inverted (1/ BFinclusion =
BFexclusion) this factor such that it indicates the evidence in favor
of H0 (Wagenmakers et al., 2018) in accordance with terminology
suggested by Jeffreys (1961).

EEG multivariate analysis: Top-down effects on spatial representa-
tions. Both attention (Jehee et al. 2011) and prediction (Kok,
Jehee et al. 2012) have also been associated with sharpening of
neural representations in V1 using BOLD fMRI. Therefore, next
to examining modulations of activation strength using univari-
ate ERP analyses (described above), using MVPA, we also inves-
tigated how early attention and prediction may modulate
sensory representations, as reflected in the pattern of EEG
activity across electrodes. This multivariate approach may be
more sensitive in picking up weak top-down modulations
when those affect the distribution of activation across scalp,
than the analytic approach by Kelly et al. (2008) of only looking
at the C1 peak electrode that we followed in our ERP analysis
(Slagter et al. 2018). However, note that the univariate approach
might prove more sensitive in cases when top-down effects are
locally-specific, as the multivariate approach is less sensitive to
effects present at only a few electrode sites.

In order to examine the effects of attention and prediction
on the representational content of neural activity, as reflected
in distribution of neural activity across the scalp we used the
ADAM toolbox (Fahrenfort et al. 2017) to train a linear discrimi-
nant classifier to distinguish the patterns of activity between
conditions using the raw EEG signal measured at all electrodes
(features for classification). Specifically, we tested if patterns of
neural activity differ between attended versus unattended, and
predicted versus unpredicted conditions. We used a 10-fold
cross-validation to evaluate classification performance. Raw
EEG data was divided into 10 folds (information about the order
of trials was removed). Next, a classifier was trained on 90% of
the data to classify between stimulus classes, and then tested
on the remaining 10% of the data. The training and testing pro-
cedure was repeated ten times, so that each time a different
portion of data was used for training and testing to avoid
circularity (see Kriegeskorte et al., 2009). For each subject, clas-
sification accuracy was calculated as the average number of
correct condition classifications, first averaged across condi-
tions, and then across 10-folds. This was done for each sample
of the EEG signal, which resulted in vector of classification
accuracies over time. Classification accuracies were tested
using a one-sample two-sided t-test to evaluate if accuracies
differed significantly from chance. Intervals of significant
decoding were corrected for multiple comparisons using group-
wise cluster-based permutation testing, as described in Maris
and Oostenveld (2007) and implemented in the ADAM toolbox
(Fahrenfort et al. 2017). In this procedure, a sum of t-values in a
cluster of temporally adjacent significant time points (P < 0.05)
in the observed data is computed. This sum is compared with
the sum of t-values in a cluster of significant data points

obtained under random permutation. Random permutation
and computation of a sum of t-values under random permuta-
tion is repeated 1000 times. The P value used to evaluate the
significance of a cluster in the observed data is the number of
times the sum of t-values under random permutation exceeded
that of the observed sum, divided by the number of iterations.

Time–frequency analysis: Top-down effects on pre-stimulus alpha
activity. Attention and prediction have also been associated with
changes in pre-stimulus alpha oscillatory activity (Worden et al.
2000; Sauseng et al. 2005; Kelly et al. 2006; Horschig et al. 2014),
suggesting that these top-down factors can bias visual proces-
sing in advance. To assure that participants indeed used atten-
tion and prediction cues to adaptively track stimulus likelihood
and shift their attention to cued locations in advance, here we
performed a complex Morlet wavelet decomposition of raw EEG
data to obtain the time–frequency representation (Cohen 2014).
The wavelet convolution was performed in the frequency
domain, such that the power spectrum of EEG signal (obtained
using the fast Fourier transform) was multiplied by the power
spectrum of Morlet wavelets. Morlet wavelets were computed by
point-wise multiplication of a complex sine wave with a
Gaussian window: π σ−e ei tf t2 /22 2 (where t is time, f is frequency,
which increased from 2 to 40Hz in 30 logarithmically spaced
steps, and σ the width of the Gaussian, which increased logarith-
mically from 3 to 8 in the same number of steps). This was done
on a single-trial level. Based on the resulting complex signal, the
power at each frequency band and time point was computed as
the squared magnitude of the result of the convolution:

[ ( )] + [ ( )]real z t imaginary z t2 2 (Cohen and Donner 2013; Cohen
2014). Power values were baselined to average pre-stimulus
power between −1133 and −983ms (i.e., 200–50ms before atten-
tion cue onset) at each frequency band using a decibel (dB)
transformation: = ( )dB power xlog power power10 /t baseline10 (Cohen
and Donner 2013). To examine the effects of spatial prediction
and attention, per condition separately, trial-averaged alpha
power values (8–12Hz) were computed for two pairs of parieto-
occipital electrodes, PO4/PO8 and PO3/PO7 in a −500 to −100ms
pre-stimulus time-window, where anticipatory effects were
expected to be most pronounced (Worden et al. 2000; Sauseng
et al. 2005; Kelly et al. 2006). To test if prediction and attention
induced alpha power asymmetry between electrode sites contra-
lateral and ipsilateral to the predicted and to-be-attended loca-
tions, respectively, these values were submitted to a repeated-
measures ANOVA with the within-subject factors Attended
Location (upper, lower), Predicted Location (P, NP, UP), and
Hemisphere (contralateral, ipsilateral). Note that which electrode
pair for a given subject and to-be-attended location was con-
sidered contralateral or ipsilateral depended on whether the to-
be-attended location in the, for instance, upper visual field was
in the left or the right hemifield. Significant effects were
followed-up by repeated-measures ANOVAs and paired sample
t-tests.

ERP analyses: Top-down effects on later ERP components. A large
body of work has shown that visual processing after 100ms is
susceptible to top-down modulation (e.g., Noesselt et al. 2002; Di
Russo et al. 2003; Lasaponara et al. 2017; Marzecová et al. 2017).
Therefore, to confirm longer-latency activity modulations, in a
set of secondary analyses, we also examined how attention and
prediction, separately and/or in interaction, modulated stimulus
processing over time, after 100ms. Specifically, we examined
their effects on the amplitude of the visual-evoked P1 and N1
components, as well as of the later P3a and P3b components.
Consistent with previous studies (e.g., Noesselt et al. 2002; Di
Russo et al. 2003), the group- and condition-average P1 and N1
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components peaked over lateral occipitoparietal scalp sites. Two
pairs of lateral occipitoparietal electrodes (PO4/PO8 and PO3/PO7)
were hence used to calculate the amplitude of the P1 and N1
components contralateral and ipsilateral to the stimulus location,
separately per condition of interest. The largest positive voltage
value in 100–150ms interval, and the largest voltage negativity
within 150–200ms were selected to determine the latency of the
P1 and N1 peaks, respectively, for each subject separately. Time
windows for peak picking were based on visual inspection of the
group- and condition-average ERPs. The latencies of the contra-
lateral and ipsilateral P1 and N1 peaks were largely consistent
with previous studies. The contralateral P1 peaked at 137ms for
upper and at 117ms for lower-field stimuli, and at 145ms for
upper and 141ms for lower-field stimuli over ipsilateral sites. The
N1 peaked contralaterally at 180ms and 172ms for upper and
lower-field stimuli, respectively. The ipsilateral N1 peak wasmea-
sured at 200ms for upper, and at 181 for lower-field stimuli.
Average P1 and N1 amplitude values ±1 sample around the peak
sample were entered into separate repeated-measures ANOVAs
with four within-subject factors: Attention (A, UA), Prediction (P,
UP, NP), Hemisphere (contralateral, ipsilateral), and Field (upper,
lower). Significant effects that included the factor(s) Attention
and/or Prediction were followed-up by paired t-tests.

We also examined effects of prediction and attention on the
later P3a and P3b components, which are consistently shown to
be modulated by stimulus relevance and probability (e.g.,
Friedman et al. 2001; Polich 2007; Marzecová et al. 2017). To this
end, based on the condition-average data, collapsed across the
upper and lower location, we first determined the peak latency
of the P3a over fronto-central electrodes (FCz, Fz) in the
300–400ms time window, and the peak latency of the P3b over
parieto-central electrodes (POz, Pz) in the 350–450ms time win-
dow. The P3a peaked at 360ms for upper field, and at 348ms for
lower-field stimuli. The P3b peak was identified at 387ms for
upper and at 395ms for lower-field stimuli. Mean peak ampli-
tude values (peak ±12 samples around the peak, i.e., ~100ms)
were then calculated for each condition separately and averaged
across electrodes. These values were entered into separate
repeated-measures ANOVAs with factors Attention (A, UA) and
Prediction (P, NP, UP). Significant effects in all repeated-
measures ANOVAs were followed-up by paired sample t-tests.

Experiment 2
Eye tracking. Due to a malfunctioning eye tracker, only five parti-
cipants had full eye tracking datasets available in Experiment 2,
and their data were analyzed identically to the eye tracking data
in Experiment 1 (see above). For the remaining eight participants,

eye-tracking data was missing for more than 15% of trials (col-
lapsed across two sessions). For these participants, we manually
inspected the HEOG channel for horizontal eye movements and
removed trials with eye movement activity. To exclude possible
condition differences in eye position on sensory-evoked ERPs, we
statistically compared average x-coordinates (horizontal eye
movements), y-coordinates (vertical eye movements), and HEOG
recorded voltages in −200 to 100ms interval in separate
repeated-measures ANOVAs with Attended Location (upper,
lower) and Predicted Location (P, UP, NP) as within-subject fac-
tors. Following the empirical work of Mangun and Hillyard
(1991), we also estimated deviations from fixation in degrees of
visual angle based on HEOG voltages measured after cues direct-
ing attention to the left and right location, in the −200 to 100ms
interval around stimulus presentation.

Data acquisition, preprocessing and statistical analysis. Data
acquisition procedure and preprocessing steps were comparable
to those in Experiment 1. ERP and MVPA analyses were identical
to those in Experiment 1. As we were specifically interested in
top-down effects on the first feedforward sweep of activation,
replication ERP analyses only focused on the C1. The C1 compo-
nent was again assessed from the signal recorded from an indi-
vidually determined C1 peak channel at a peak latency
determined based on the condition-average data separately for
left and right upper field stimuli. The C1 component peaked at
86 and 84ms for left and right upper field stimuli, respectively.

Results
Experiment 1

Behavior. A repeated-measures ANOVA revealed that stimulus
predictability modulated the speed of responses to target sti-
muli (F2,18 = 4.617, P = 0.005, see Fig. 3A). As in Kok, Rahnev
et al. (2012), whose manipulation of location predictability we
adopted, participants were significantly faster in detecting tar-
get stimuli that occurred at predicted (P = 443.3ms, SD = 37.6)
compared with non-predicted (NP = 449.8ms, SD = 40.7, t19 =
−2.48, P = 0.023) and unpredicted (UP = 460.2ms, SD = 45.9, t19 =
−3.12, P = 0.006) locations. They were also significantly faster in
detecting targets at non-predicted in comparison to unpre-
dicted locations (t19 = 2.83, P = 0.011). As in Kok et al. (2012),
accuracy was not affected by stimulus predictability (F2,18 =
0.43, P = 0.487; P = 76.5, SD = 3.9; NP = 77.1, SD = 4.9; UP = 78,
SD = 8.3) (Fig. 3B). Target sensitivity, as indexed by d′, was also
not affected by stimulus predictability (F2,18 = 1.81, P = 0.19; d’ P
= 2.27, SD = 0.5; d’ NP = 2.39, SD = 0.6; d’ UP = 2.28, SD = 0.6).
These results confirm that predictions influenced stimulus
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Figure 3. Effects of prediction on behavioral performance in Experiment 1. (A) Speed of responses decreased linearly with increasing stimulus predictability:

Participants responded significantly faster to predicted than to non-predicted and unpredicted stimuli, as well as to non-predicted compared with unpredicted stimu-

li (**P < 0.01), confirming that our prediction manipulation was successful. Prediction did not significantly influence accuracy (B) or d′ (C).
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processing, as participants were fastest at detecting targets pre-
sented at the most likely location. Participants on average accu-
rately detected 74.5% (SD = 1.61) of the targets in the probe task
and 77.4% (SD = 4.8) of the targets in the spatial cueing task,
which is comparable to the performance level reported by Kelly
et al. (2008) (80.7%, SD = 3.3), and was expected given that we
titrated performance to 75%. Since target stimuli only appeared
at cued (i.e., attended) locations, we could only determine
effects of stimulus location predictability, not location rele-
vance, on performance.

Early C1 modulations. Our main question was whether prediction
and attention, independently or in interaction, may modulate the
first feedforward sweep of visual cortical activity, as indicated by
the early phase of the C1. Results from a repeated-measures
ANOVA addressing this question did not reveal any evidence for
top-down modulations: the main effects of Attention (F1,18 = 0.079,
P = 0.781) and Prediction (F2,17 = 0.608, P = 0.556) were not signifi-
cant, neither was their interaction (F2,17 = 0.173, P = 0.685). This
was further supported by results of a Bayesian repeated-measures
ANOVA, which provided substantial to strong evidence for the null
hypotheses against a main effect of Attention (B01 = 6.6), a main
effect of Prediction (B01 = 18.1). Furthermore, inclusion Bayes factor
across matched models provided substantial support against an
interaction between Attention and Prediction (BFexclusion = 10.9).
Since previous studies that tested the effect of attention on the
early phase of the C1 (Kelly et al. 2008; Baumgartner et al. 2018)
used cues that had no predictive value, we also tested whether
attention effects were present in prediction-neutral blocks. Still,
we found no difference in the amplitude of the early-phase C1 to
attended compared with unattended stimuli in prediction-neutral
blocks (t18 = 0.7, P = 0.49). The classical repeated-measures ANOVA
further revealed that the C1 amplitude in the early phase was sig-
nificantly higher for stimuli presented in the upper versus lower
visual field (main effect of Field: F1,18 = 9.383, P = 0.007), but the fac-
tor of Field did not interact with Attention (F1,18 = 2.489, P = 0.132),
Prediction (F1,18 = 1.219, P = 0.32), nor did it modulate their interac-
tion (F2,17 = 2.479, P = 0.114). Thus, in contrast to the notion that
predictions can modulate afferent activity in V1, we found no evi-
dence for top-down modulation of the early phase (50–80ms) of
the C1.

C1 peak modulations. Inspection of Figure 4 revealed that the
C1 component might be modulated by top-down factors to a
greater extent slightly later in time, around its peak. Therefore,
we also examined if prediction and/or attention might modu-
late the peak of the C1. A repeated-measures ANOVA also
revealed no significant effect of Attention on the later phase of
the C1 (F1,18 = 0.742, P = 0.400). Yet, a significant interaction
between Attention and Field (F2,17 = 6.925, P = 0.017) suggested
that attention may have modulated the later phase of the C1
differentially at upper versus lower locations. This was con-
firmed post hoc: the C1 peak was significant larger for stimuli
presented at attended versus unattended locations only when
stimuli were presented in lower visual field (t18 = 2.314, P =
0.033), and not when they were presented in the upper visual
field (t19 = −0.515, P = 0.612). These findings conceivably reflect
differential overlap from the P1 attention effect, that one would
expect for lower visual field stimuli only, as in contrast to upper
visual field stimuli, which generally elicit a C1 that is maximal
over midline electrodes, lower visual field stimuli elicit a C1
that is typically maximal over the same lateral posterior scalp
regions as the P1 (Martínez et al. 1999, 2001; Di Russo et al.
2012, 2003; Kelly et al. 2008; Baumgartner et al. 2018).

Furthermore, we found that the C1 peak was modulated by
stimulus location likelihood, as suggested by a significant main

effect of Prediction (F2,17 = 3.743, P = 0.045). However, contrary
to the notion of prediction-based suppression of sensory pro-
cessing (e.g., Alink et al. 2010; Kok, Jehee et al. 2012; Kok,
Rahnev et al. 2012) this effect was driven by a significantly
larger C1 peak to predicted than to unpredicted stimuli (t18 =
2.4, P = 0.027), and by a significantly larger C1 peak to non-
predicted than to unpredicted stimuli (t18 = −2.330, P = 0.032).
The difference between predicted and non-predicted C1 peaks
did not reach significance (t18 = .038, P = 0.970) (see Fig. 4B). The
prediction effect was not modulated by the Field (F2,17 = 0.255,
P = 0.778). Finally, attention and prediction in interaction did
not modulate the C1 peak amplitude (F2,17 = 0.706, P = 0.508).

In contrast to the results of the classical repeated-measures
ANOVA, a Bayesian repeated-measures ANOVA yielded strong
evidence in favor of the null hypothesis against an effect of
Prediction on the later phase of the C1. Specifically, the Bayes
factor indicated that the data were 10.9 more likely under the
null hypothesis, constituting strong evidence against a main
effect of Prediction. However, because the main effect of
Prediction was significant in the classical repeated-measures
ANOVA, we followed-up the Bayesian null effect by a Bayesian
equivalent of the paired samples t-test between prediction con-
ditions. A discrepancy between the classical and Bayesian
ANOVA models could have appeared due to violations of
assumptions (e.g., homogeneity of variances and normal distri-
butions) of a repeated-measures (Bayesian) model (https://
forum.cogsci.nl/discussion/4306/discrepancy-between-bayesian-
and-regular-repeated-measures-anova; https://forum.cogsci.nl/
discussion/3596/large-bayes-factor-changes-with-exclusion-of-
single-subject-bayesian-anova.), leading to model misspecifica-
tion. Indeed, the follow-up analysis yielded results in line with
the classical model. Namely, we found substantial evidence
against the null hypothesis that the peak of C1 does not differ
between predicted and non-predicted condition (B01 = 4.2), and
below anecdotal evidence for no difference in C1 peak amplitude
in predicted versus unpredicted (B01 = 0.44) and non-predicted
versus unpredicted (B01 = 0.5) conditions.

Moreover, in line with the classical analysis, the Bayesian
analysis suggested substantial evidence for the null hypotheses
of no effect of Attention (BF01 = 4.9) and substantial evidence
for no interaction between Attention and Prediction (BFexclusion =
8.5). Finally, evidence against a Field by Attention interaction
was only anecdotal (BFexclusion = 2), which is in line with the
result obtained by using the frequentist approach. Thus, while
the classical (frequentist) repeated-measures ANOVA suggested
that predictions may modulate the later phase of the C1, this
was not supported by our Bayesian analysis, which provided
strong evidence for the absence of an effect of prediction. Thus,
we found no evidence that prediction and/or attention can mod-
ulate the early phase of the C1, and mixed evidence for an effect
of prediction on the later phase of the C1 in a direction oppo-
site to what one would expect based on predictive processing
theories in which predictions are proposed to reduce visual
responses (i.e., prediction errors) (e.g., Friston 2009; Alink
et al. 2010).

Top-down effects on neural representations. Using multivariate
decoding analyses, we next examined potential effects of atten-
tion and prediction on representational content, as both atten-
tion (Jehee et al. 2011) and prediction (Kok, Jehee et al. 2012)
have been associated with sharpening of neural representa-
tions in V1 using BOLD fMRI. Using a backward decoding model,
we obtained a time course of decoding accuracies, indicative of
when in time precisely attention and prediction began to mod-
ulate neural activity patterns. Figure 5 shows classification
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accuracies over time for attended versus unattended (Fig. 5A)
and predicted versus unpredicted stimuli (Fig. 5B). The classifier
was able to discriminate between attended and unattended
conditions with above-chance accuracy from ~133 to 992ms
post-stimulus (two-tailed cluster P < 0.001 after 1000 iterations).
Predictions modulated patterns of neural activity slightly later
in time, from ~242ms until about 648ms post-stimulus, as
revealed by significant decoding (predicted vs. unpredicted)
(two-tailed cluster P < 0.001 after 1000 iterations). These multi-
variate results corroborate and extend the univariate ERP
results, and support the conclusion that spatial attention and
prediction did not modulate visual information processing
before 80ms.

Pre-stimulus alpha power modulations. Given the absence of
top-down modulations of visual activity before 80ms, we next
examined if attention and prediction modulated pre-stimulus
baseline activity, as indexed by pre-stimulus alpha-band oscil-
latory activity. By examining attention- and prediction-related
changes in pre-stimulus alpha power, we wanted to ensure
that subjects in fact directed their attention in advance to the
cued location and that location likelihood was used to predict
upcoming stimuli in advance. Previous studies have robustly
related spatial attention (albeit confounded with prediction as
attended stimuli were also more likely than unattended stimu-
li) with greater alpha activity over ipsilateral versus contralat-
eral posterior scalp regions, in line with the notion that
attention can bias sensory regions in advance to favor proces-
sing of task-relevant over irrelevant information (Worden et al.
2000). There is also initial evidence to suggest that predictions
can modulate pre-stimulus alpha activity (Horschig et al. 2014).

Indeed, although attention did not modulate the stimulus-
evoked C1, attention did modulate pre-stimulus alpha-band
activity, as suggested by a significant main effect of Hemisphere
(F1,19 = 25.470, P < 0.001). This main effect captured the expected
pattern of relatively greater alpha activity over ipsilateral vs. con-
tralateral posterior scalp regions (contralateral power = −0.63, SD

= 0.66, ipsilateral power = −0.28, SD = 0.54) (see Fig. 6A). This
asymmetry in pre-stimulus alpha power was not significantly
affected by whether attention was directed to the upper or the
lower location (Attended Location x Hemisphere interaction: F1,19
= 3.491, P = 0.077), although total alpha power was significantly
higher when upper (upper locations = −0.34, SD = 0.54) compared
with lower locations (lower locations = −0.57, SD = 0.7; main
effect Attended Location: F1,19 = 5.518, P = 0.03) were attended.
This analysis confirms that participants covertly directed their
attention in advance towards the cued location.

The main effect of Predicted Location (F2,18 = 0.433, P =
0.591) and the interaction between Predicted Location and
Hemisphere (F2,18 = 0.689, P = 0.445) were not significant.
However, a significant Attended Location x Predicted Location x
Hemisphere interaction (F2,18 = 9.027, P = 0.002) suggested that
prediction had an effect on pre-stimulus alpha asymmetry that
was dependent on the to-be-attended location. Indeed, a post
hoc analysis revealed that, when lower locations were cued,
the interaction between Predicted Location and Hemisphere
was significant (F2,18 = 5.33, P = 0.019), while this was not the
case when upper locations were cued (F2,18 = 0.568, P = 0.510). A
paired sample t-test further revealed that pre-stimulus alpha
power was significantly greater over ipsilateral vs. contralateral
posterior scalp regions when lower locations were cued (i.e.,
attended) and predicted (t19 = −3.15, P = 0.005, predicted contra-
lateral = −0.72, SD = 0.85; predicted ipsilateral = −0.38, SD =
0.65), but not, for instance, when two locations were equally
likely (t19 = −1.308, P = 0.207, non-predicted contralateral =
−0.67, SD = 0.8; non-predicted ipsilateral = −0.52, SD = 0.57).
These results suggest that when the likelihood that a stimulus
would occur at the attended lower visual field location was
high, alpha power exhibited the characteristic lateralization in
particular for predicted locations (see Fig. 6C). These results
suggest that predictions and attention may interact to bias
visual regions in advance, however here, only when lower-field
locations were task-relevant.
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P1 and N1 modulations. Given the lack of a C1 modulation, it is
important to demonstrate that later effects of attention and pre-
diction on visual processing shown consistently in previous
research (Di Russo et al. 2003; Marzecová et al. 2017), were

replicated. In line with this body of research (e.g., Hillyard et al.,
1998) and as can be seen in Figure 7, the P1 was enhanced by
attention, although specifically over contralateral posterior
scalp regions(contralateral: t19 = 3.103, P = 0.006; ipsilateral: t19 =
−0.182, P = 0.858), as reflected by a significant interaction
between Attention and Hemisphere (F1,19 = 7.221, P = 0.015;
main effect of Attention: F1,19 = 1.395, P = 0.252). The P1 was
also modulated by predictions over contralateral posterior
regions, albeit only marginally (Hemisphere x Prediction inter-
action: F2,18 = 3.184, P = 0.065; main effect Prediction: F2,18 =
1.017, P = 0.330). The effects of attention and prediction on the
P1 were independent of each other, as reflected by a non-
significant interaction between Attention and Prediction (F2,18 =
0.317, P = 0.732). All other interaction effects of Attention and/or
Prediction with Field and/or Hemisphere were non-significant
(all Ps > 0.103).

As expected, attention also enhanced the amplitude of the
N1 component (F1,19 = 22.431, P < 0.001; Fig. 7). This attention
effect was bilateral (Attention x Hemisphere: F2,18 = 0.272, P =
0.608) and observed independent of stimulus location (Attention
x Field: F2,18 = 0.006, P = 0.941), although it was somewhat larger
for lower-field stimuli over the ipsilateral hemisphere, as indi-
cated by a significant Attention x Hemisphere x Field interaction
(F1,19 = 7.843, P = 0.011) (see Fig. 7).

Prediction did not modulate the N1 (F2,18 = 1.493, P = 0.251), but
a marginally significant interaction between Prediction x Field
(F2,18 = 2.141, P = 0.063) suggested that the differences in N1 ampli-
tude between prediction conditions might be greater at upper loca-
tions (see Fig. 7). Notably, the interaction between Attention and
Prediction (F2,18 = 3.311, P = 0.06) was marginally significant. With
the exception of a four-way interaction between Attention,
Prediction, Field, and Hemifield (F2,18 = 2.966, P = 0.038), suggesting
that the interaction between attention and prediction differed sig-
nificantly across specific combinations of stimulus locations and
hemisphere, none of the other interaction effects of Attention
and/or Prediction with Field and/or Hemisphere reached signifi-
cance (all Ps > 0.077).

Thus, attention robustly modulated later visual processing,
as indexed by the P1 and N1, whereas effects of prediction on
later visual processing were relatively weak and only margin-
ally significant.

P3a and P3b modulations. Prediction and attention have also
robustly been shown to modulate later, post-perceptual stages
of information processing (Friedman et al. 2001; Polich 2007). In
line with these observations, attention and prediction, inde-
pendently and in interaction, modulated the amplitude of the
P3a and P3b ERP components. Both attention (F1,19 = 29.040, P <
0.001) and prediction (F2,18 = 18.330, P < 0.001) reduced the
amplitude of the P3a component (Fig. 8). Moreover, as sug-
gested by a significant interaction between Attention and
Prediction (F2,18 = 8.831, P < 0.001), the effect of prediction was
larger in the unattended compared with the attended condition
(Fig. 8C).

The P3b was also modulated by predictions, but in contrast
to the P3a, not by attention, as reflected by a significant main
effect of Prediction (F2,18 = 32.283, P < 0.001) and an insignificant
main effect of Attention (F1,19 = 0.058, P = 0.812). As expected,
and can be seen in Figure 8B, the amplitude of the P3b compo-
nent scaled down as the probability of a stimulus increased.
The interaction between attention and prediction was not sig-
nificant (F2,18 = 4.474, P = 0.199), suggesting that prediction
effects on the P3b were not modulated by attention.

To summarize the results of Experiment 1, while ERP and
multivariate analyses did not provide any evidence for a
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modulation of visual activity before 80ms post-stimulus by
prediction or attention, these top-down factors were associated
with robust modulations of later stages of information proces-
sing. Moreover, modulations of pre-stimulus activity indicated
that prediction and attention biased sensory processing in
advance. Nevertheless, this did not affect the very first stage of
cortical information processing.

Eye-tracking. The analysis of eye tracking data indicated that
the mean eye position at the time of stimulus presentation (−200
to 100ms) was not modulated by Prediction in the x-direction
(F2,18 = .443, P < 0.714) or y-direction (F2,18 = 1.405 P < 0.271). Yet,
attention did affect mean eye position at the time of stimulus
presentation, as indicated by a significant main effect of
Attended Location in both directions (x-direction: F1,19 = 83.254
P < 0.001; y-direction: F1,19 = 56.861 P < 0.001). Yet, post hoc
inspection of the data suggested that, albeit consistent across
subjects, these differences in eye position were very minor in
magnitude (the average difference in gaze direction between
cued locations in x and y directions was 0.16° and 0.4°, respec-
tively; absolute average deviations from fixation were: x-direction
attend low (right): 0.06°; x-direction attend up (left): −0.1°; y-direc-
tion attend low (right): 0.24°; y-direction attend up (left): 0.16°). It
is unlikely that such minor differences can explain possible dif-
ferences in stimulus-evoked ERPs between attended and unat-
tended stimuli, which is supported by the lack of an attentional

modulation of the first ERP component, the C1 (reported above).
Moreover, the interaction between Attended Location and
Prediction was not significant (x-direction: F1,19 = 2.018, P = 0.162;
y-direction: F1,19 = .396, P = 0.679).

Experiment 2
In Experiment 1, we obtained moderate to strong evidence
against a modulation of stimulus-driven activity by spatial pre-
diction and attention before 80ms. While our C1 peak analysis
suggested that prediction may modulate the later phase of the
C1, this effect was statistically weak, not supported by Bayesian
analyses, and in a direction opposite to what one would expect
based on predictive processing theories in which predictions are
proposed to reduce visual responses (i.e., prediction errors) (e.g.,
Friston 2009; Alink et al. 2010). To more conclusively establish
the absence of top-down effects before 80ms, we conducted a
second EEG experiment to determine if our findings would repli-
cate using a design that was further optimized to detect activity
generated by V1. We again independently modulated spatial
attention and prediction using a similar cueing paradigm as in
Experiment 1 with three important improvements. First, we
used large-scale, high-contrast texture stimuli that are known to
elicit large C1s (e.g., see Pourtois et al. 2008). It is possible that in
Experiment 1, we did not observe any attention- and/or
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prediction-based modulations of the earliest stage of visual
information processing due to the relatively low signal-to-noise
ratio at this stage of processing. By enhancing the signal-to-
noise ratio of the C1, we expected that our sensitivity to measur-
ing weak top-down effects would be improved (Slagter et al.
2018). As a second improvement, in Experiment 2, we used a
task in which participants had to perform an orientation dis-
crimination task (vs. a ring detection task), which conceivably
relies on V1 activity. Third and lastly, we presented stimuli in
the left or right upper visual field (versus at two diagonally oppo-
site locations, one in the upper and one in the lower visual field,
as in Experiment 1). By presenting stimuli only in the upper
visual field, we importantly aimed to minimize overlap between
the C1 and the subsequent P1 component (Qu and Ding 2018),
which is only problematic for lower-field stimulation. This
allowed us to better isolate possible C1 effects. In addition, some
studies report that modulations of the C1, e.g., by attentional
load (Rauss et al. 2009) and perceptual learning (Pourtois et al.
2008), are only present for upper visual field stimuli (see also
Slotnick 2018). Thus, in Experiment 2, we aimed to determine if
we could observe early (before 80ms) effects of prediction and/
or attention when using V1-tuned stimuli, an orientation dis-
crimination task, and an upper-field stimulation protocol, or
would replicate our null results from Experiment 1.

Behavior. Contrary to the observed prediction-related increase in
reaction time in Experiment 1 and in Kok, Rahnev et al. (2012),
stimulus predictability had no influence on average reaction time
to target stimuli (F2,11 = 0.819; P = 0.632, P = 528.7, SD = 108.2; NP =

531.6, SD = 109; UP = 535, SD = 100.4) (see Fig. 9). Yet, as in
Experiment 1 and Kok, Rahnev et al. (2012), we found that stimulus
predictability did not affect response accuracy (F2,11 = 1.550, P =
0.225, P = 74.6, SD = 8.2; NP = 76.2, SD = 8.1; UP = 76.6, SD = 7.3) or
sensitivity to target signals, expressed in d’ (F2,11 = 0.150, P = 0.863;
d’ P = 1.58, SD = 0.3; d’ NP = 1.6, SD = 0.3; d’ UP = 1.61, SD = 0.44).
While the mean accuracy was comparable between the experi-
ments, reaction times were about 60–100ms slower in Experiment
2. Moreover, d’s were consistently lower in Experiment 2. These
results indicate that participants took more time to respond and
were less sensitive to target signals in Experiment 2, indicating
that our task design changes made the task used in Experiment 2
more difficult. It is unclear which changes specifically may have
led to these differential results between experiments (e.g., the use
of a non-spatial symbolic cue in Experiment 2 versus a spatial cue
in Experiment 1, the line element stimuli in Experiment 2 versus
the Gabor stimuli in Experiment 2).

ERP results. In Experiment 2, we examined attention/predic-
tion effects on the early (50–80ms) and late phase of the C1 and
on early patterns of activity, to address our main question of
whether top-down factors can modulate initial afferent activity
and representational content before ~80ms.

As expected, the texture stimuli used in Experiment 2 eli-
cited a C1 that was on average almost twice as large as in
Experiment 1 and on average 3–4 times larger than in Kelly
et al. (2008) for upper-field stimuli. Nevertheless, replicating the
C1 results from Experiment 1, analyses examining effects of
prediction and attention did not reveal any evidence for top-
down modulation of C1 amplitude during the early phase
(50–80ms post-stimulus) or the late phase (peak) of the C1 in
Experiment 2. Specifically, during the early phase of the C1, the
main effects of Attention (F1,12 = 0.078, P = 0.785) and Prediction
(F2,11 = 2.495, P = 0.318), as well as their interaction (F2,11 =
0.001, P = 0.999), were all far from significance. This was sup-
ported by Bayesian analyses, which showed substantial evi-
dence for the null hypothesis against the main effects of
Attention (BF01 = 4.95), Prediction (BF01 = 6.99) and their interac-
tion (BFexclusion = 8). Moreover, a post hoc analyses showed that
Attention effects were absent also in prediction-neutral blocks
(t10 = 0.602, P = 0.56). It should be noted that, although the
number of trials in the attended and unattended non-predicted
conditions were lower (248 and 336 trials, respectively) than in
the study by Kelly et al. (2008), the C1 was 3–4 times larger in
amplitude in the current than in this original study, reducing
its sensitivity to background EEG noise.

The same was true for the late phase of the C1 (main effect of
Attention: F1,12 = 1.083, P = 0.318; main effect of Prediction: F2,11 =
2.405, P = 0.376; interaction Attention and Prediction: F2,11 = 0.522,
P = 0.607). This was further corroborated by Bayesian statistics,
which again provided substantial support for the absence of these
effects (Attention BF01 = 3.09; Prediction BF01 = 8.55; Attention x
Prediction BFexclusion = 7). Thus, in Experiment 2, we again found
no evidence for a modulation of the first feedforward sweep of cor-
tical activity by either prediction or attention.

MVPA results. In line with the ERP findings and the multivar-
iate results from Experiment 1, decoding analyses did not
reveal modulations of the pattern of EEG activity by attention
or prediction before 80ms (attended vs. unattended: 164 and
852ms, P = 0.002; prediction: 414 and 508ms, P = 0.015). These
overall smaller effects compared with Experiment 2 probably
have to do with the smaller sample size affecting the statistical
power of the performed tests.

Eye-tracking. For only 5 of our 13 participants, we could col-
lect eye-tracking data in Experiment 2. For those participants,
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we compared average deviations in x and y directions. The only
significant effect observed was a main effect of Attended
Location for deviations in x-direction (x-direction: F1,12 = 6.551,
P = 0.025; y-direction: F1,12 = 0.512, P = 0.488). Similarly to what
we found in Experiment 1, the difference in the eye position in
the x-direction after attention cues pointing to the left versus
to the right was very small: 0.24°. Moreover, average deviations
from fixation (x-direction attend right: 0.05°; x-direction attend
left: −0.19°; y-direction attend right: 0.06°; y-direction attend
left: 0.05°) were very small. Thus, these eye tracking data also
suggest negligible differences in eye position as a function of
attention. Importantly, as in Experiment 1, the main effect of
Predicted Location and the interaction effect between Predicted
Location and Attended Location were non-significant (all Ps >
0.168).

For participants without the eye tracking data (n = 8), we
relied on averaged HEOG voltage values to determine that fixa-
tion was maintained at the time of stimulus presentation. A
repeated-measures ANOVA showed that the main effects of
Attended Location, Predicted Location and their interaction
were not significant (Attended Location: F1,7 = 0.00, P = 0.994;
Predicted Location: F2,6 = 0.141, P = 0.898; Attended Location x
Predicted Location: F2,6 = 0.404, P = 0.684), suggesting that there
was no systematic bias in the average gaze in favor of relevant
and/or predicted locations. In line with this, the average devia-
tion of the HEOG amplitude after a cue pointing to the left was
−0.05 μV, and −0.27 μV after a cue pointing to the right location
in the upper visual field, which corresponds approximately to
average eye deviations of 0.005° to the left and 0.024° to the
right (see Mangun and Hillyard 1991). These results suggest
that differences in eye position at the time of stimulus presen-
tation between conditions likely did not affect our ERP and
MVPA results.

Discussion
Influential predictive processing theories postulate that predic-
tions derived from past experience can influence sensory infor-
mation processing across the cortical hierarchy, and that
attention can modulate these effects by boosting the precision
of predictions (Rao 2005; Friston 2009; Kok, Rahnev et al. 2012).
In two studies, we exploited the high temporal resolution of
EEG, with an optimized design to detect activity generated by
V1. However, we found no evidence that spatial predictions
(stimulus likelihood), either independently or in interaction
with attention (stimulus relevance), modulated the earliest
stage of cortical visual information processing indexed by the
early phase of the C1 (50–80ms post-stimulus). Strikingly, we
did observe modulations of pre-stimulus alpha-band oscillatory
activity, suggestive of the implementation of a top-down sen-
sory bias prior to stimulus presentation. Nevertheless, this was
not accompanied by a modulation of the earliest visual-evoked
activity. These findings extend previous results from attention
studies by showing that visual activity prior to ~100ms may be
impenetrable to top-down influences in general (Martínez et al.
1999, 2001; Noesselt et al. 2002; Di Russo et al. 2012, 2003;
Baumgartner et al. 2018). Replicating previous findings (e.g.,
Marzecová et al. 2017; Baumgartner et al. 2018), attention and
prediction did affect subsequent stages of information proces-
sing, as reflected in modulations of the P1, N1 and P3 ERP com-
ponents. These ERP results were corroborated by MVPA
analyses, which revealed the earliest attentional modulations
from ~130ms and prediction modulations from ~240ms after
stimulus presentation.

In the majority of previous studies that found no effect of
attention on the early phase of the C1, attention-directing cues
had no predictive value (Di Russo et al. 2003; Kelly et al. 2008;
Baumgartner et al. 2018), which may have affected the level of
attention prior to stimulus presentation and thereby how early
attention influenced visual stimulus processing. However, our
results suggest that even when attended stimuli are highly
likely, the earliest stage of visual information processing may
remain unaffected by top-down influences. One study did
report early C1 modulations by attention, despite the equal
stimulus likelihood at attended and unattended locations
(Kelly et al. 2008). Yet, following a highly similar experimental
and analytical protocol, we and others (Baumgartner et al.
2018), in a larger sample size, did not replicate this original
finding. At present, one can only speculate as to what may
cause these differential effects (Kelly and Mohr 2018; Slotnick
2018). It is possible that small differences in the stimuli used in
our Experiment 1 and in Baumgartner et al. (2018) versus Kelly
et al. (2008) contributed to the discrepancy in findings.
However, using a V1-tuned task and stimuli, in Experiment 2,
we still obtained no evidence for a top-down modulation of the
C1. Another factor that might have lead to differential effects of
attention across these studies is how well experimenters moti-
vated participants to do their best during the task, as this may
impact how strongly attention is directed beforehand (see Kelly
and Mohr 2018). Yet, attention effects were absent in the cur-
rent study even when attention cues were highly predictive,
incentivizing participants to covertly attend to the cued loca-
tion in advance. Effects of spatial attention on the C1 were also
reported in a study by Rauss et al. (2009). In that study, the
authors varied attentional load at fixation and found a decrease
in C1 amplitude to stimuli presented in the periphery when
load was high. Yet, as effects of spatial attention in the periph-
ery were inferred only indirectly—in relation to the central load
manipulation, and eye tracking was not used, alternative expla-
nations for the diminished C1 cannot be excluded (e.g., differ-
ences in pupil size or eye-movements between load conditions,
Bombeke et al. 2016). In general, the five EEG/MEG studies in
humans (Slotnick et al. 2002; Kelly et al. 2008; Poghosyan and
Ioannides 2008; Rauss et al. 2012, 2009) that reported modula-
tions of the C1 component by spatial attention were either not
replicated (Rauss et al. 2009; see Rauss et al. 2012 for opposite
results, and Ding et al. 2014 for a null replication), or suffer
from methodological issues, such as low trial numbers (Poghosyan
and Ioannides 2008) or uncontrolled eye-movements (Slotnick
et al. 2002; see Baumgartner et al. 2018 for a more extensive
review of some of these studies), which calls for caution and
replication.

Albeit replicated across two experiments, the present null
finding cannot solely be taken to discard the notion from hier-
archical predictive processing models of vision that predictions
are implemented as early as V1 (Friston 2009; Clark 2013). It is
possible that despite our optimal design to detect V1 activity,
early prediction effects in V1 were too weak to be detected at
the scalp level, or take longer to be established than was
allowed for in our design. Also, the specific task that subjects
perform could be an important determinant for observing
effects. For instance, in the study by Kok, Rahnev et al. (2012),
which observed interactive effects of attention and prediction
in V1 using BOLD fMRI, participants were required to perform
an orientation discrimination task on all stimuli appearing at
the (attended) cued location. While in Experiment 2, partici-
pants also performed an orientation discrimination task, they
only had to indicate the orientation of target stimuli, not of the
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non-target stimuli that were used to compute the C1 response.
Yet, we orthogonally manipulated prediction and attention in a
similar manner as this previous fMRI study and used very simi-
lar gabor stimuli as this study in Experiment 1, and neverthe-
less did not observe an early-phase C1 effect. Moreover, in
Experiment 1, we replicated the behavioral effect of predictions
on response speed reported in this fMRI study, indicating that
stimulus location likelihood was adaptively tracked.

Another striking aspect of the present findings is that even
though the initial phase of the C1 was not modulated by predic-
tion/attention, we did observe attention-related effects on pre-
stimulus posterior alpha-band activity, indicative of the establish-
ment of a top-down visual bias (Worden et al. 2000; Sauseng et al.
2005; Kelly et al. 2006; Horschig et al. 2014). One possible explana-
tion to reconcile these opposing findings could be that prediction
signals and feedforward stimulus-driven activation recruit dis-
tinct neuronal populations (Bastos et al. 2012; Kok et al. 2016).
Another, not mutually exclusive, explanation could be that pre-
dictions selectively modulate stimulus-driven activity at higher
frequencies, specifically in the gamma range, that are not cap-
tured in ERPs and are in general difficult to measure with scalp
EEG. Higher cortical regions implement top-down predictions in
hierarchically lower cortical regions though synchronization of
activity in lower-frequency ranges (i.e., the alpha/beta band),
whereas prediction violations are propagated from lower to high-
er cortical regions through synchronization of gamma-band
activity (Arnal and Giraud 2012; Michalareas et al. 2016). Indeed, a

recent MEG study found that invalid predictions increased
gamma activity induced by task-relevant stimuli in V1, however,
not until 130ms after stimulus presentation (Auksztulewicz et al.
2017). Another MEG study employing a probabilistic cuing task
also reported stimulus-induced increases in gamma-band activity
by attention, which, in contrast to Auksztulewisz et al., decreased
as a function of stimulus predictability (Bauer et al. 2014). Yet,
there too, these gamma modulations occurred after 100ms.
Thus, top-down modulations of high-frequency gamma activity,
like our ERP effects, also seem to occur after the first feedforward
sweep of information processing. Nevertheless, an important
avenue for future studies is to further determine the role of neu-
ral oscillations in predictive processing.

Overall, our findings corroborate the so-called “majority
view” (Slotnick 2013), according to which attention can only
bias processing in V1 through delayed feedback from extrastri-
ate visual areas. This view is based on human EEG studies of
attention (e.g., Martínez et al. 1999, 2001; Noesselt et al. 2002; Di
Russo et al. 2003, 2012), but also supported by monkey studies,
in which recordings were made directly from V1 neurons. Also
in these studies, typically, no attention effects are observed on
neural activity in V1 prior to 100ms post-stimulus, and/or no
V1 effects are observed at all (Roelfsema et al. 2007; Briggs et al.
2013; Stănişor et al. 2013; Sharma et al. 2014). Our observations
extend these findings in the attention domain by importantly
suggesting that predictions regarding visual input may also not
(necessarily) influence the first cortical processing stage. They
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also suggest that previous observations based on the sluggish
fMRI BOLD response, showing that predictions can modulate
BOLD responses in V1 (Alink et al. 2010; Kok, Jehee et al. 2012;
Kok, Rahnev et al. 2012; St John-Saaltink et al. 2015), conceiv-
ably do not reflect a modulation of the first feedforward sweep
of cortical information processing, but later, recurrent effects.
Indeed, in our study, both prediction and attention modulated
later stages of information processing. Prediction effects on the
P1 were admittedly weak and absent for the N1 (see
Lasaponara et al. 2017 for similar findings), but prediction
effects on the P3a and P3b were robust and exhibited a pattern
that is consistent with earlier work demonstrating their role in
novelty processing and prediction updating (Friedman et al.
2001; Polich 2007; Marzecová et al. 2017). Consistent with pre-
dictive processing accounts and the idea of the inverse scaling
of neural response in relation to the size of prediction errors
(Friston 2009; den Ouden et al. 2012; Hohwy 2012), we observed
larger P3a and P3b responses to unpredicted than to predicted
stimuli at both attended and unattended locations.

In conclusion, we found no evidence that prediction and
attention, independently or in interaction, modulated neural
activity prior to 80ms after stimulus presentation, even though
pre-stimulus activity indicated the establishment of a top-
down visual bias. This conclusion converges with evidence
from a large body of research on attention. The results pre-
sented here additionally indicate that the absence of top-down
modulation of visual afferent activity by spatial attention in
previous studies cannot be explained by dampening of atten-
tional effects due to equal stimulus likelihood at attended and
unattended locations. Overall, prediction and attention may
modulate V1 processing through delayed feedback from extra-
striate visual areas, or, alternatively, through mechanisms that
are not captured by M/EEG.
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