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Purpose:Monitoring the contractility of muscles assists the clinician in understanding how
muscle functions as part of the kinetic system. This study investigated the effect of knee
joint angles under different resistance on the stiffness of the medial gastrocnemius (MG),
lateral gastrocnemius (LG), and soleus (SOL) muscles using the shear wave elastography
(SWE) technique.

Methods: A total of 22 females were recruited. During isometric plantar flexion, at knee 0-
degree (fully extended) and knee 90-degree (flexed 90°), the shearmodulus on theMG, LG,
and SOL was measured by shear wave elastography at no contraction and two intensities
(40% and 80%) of maximal voluntary contraction (MVC). Shear modulus is a mechanical
parameter to describe stiffness, and stiffness is a proxy for muscle contractility.

Results: There weremoderate-to high-positive correlations between the active stiffness of
triceps surae muscles and isometric contraction intensity (r: 0.57–0.91, p＜0.001). The
active stiffness in MG and LG with extended knees was higher than that with flexed knees
(p＜0.001). The active stiffness in SOL with flexed knee was higher than that with extended
knee (p＜0.001).

Conclusion: Active stiffness can be considered a quantitative indicator generated by the
force output of the triceps surae. Different knee joint angles cause three triceps surae
muscles to exhibit non-uniform mechanical properties, which may explain part of the
mechanism of soft tissue injury during physical exercise.
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INTRODUCTION

The triceps surae are the important muscles for humans to be able to perform upright movements.
Injury, performance, and training of the triceps surae have been a popular issue in current sports and
sports science research (Peake et al., 2017; Liu et al., 2020). After the Achilles tendon rupture, the lack
of strength in the triceps surae is one of the signs of impaired ankle function (Sun et al., 2020). Forces
of passive muscle tension and active muscle contraction act directly on the skeleton during human
movement (Akuzawa et al., 2017). Control of motions is adjusted by the capacity of muscle
contraction. Stability and flexibility of the lower extremity joints are also affected by its
musculoskeletal system (Ham et al., 2020). The contraction capacity of muscle determines the
movement pattern and the strategy which is adopted by the body in response to various conditions
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(Bach et al., 1983). Therefore, monitoring the contraction
capacity of the triceps surae assists the clinician in
understanding howmuscle functions as part of the kinetic system.

The voluntary contraction of the triceps surae creates the bulk
of the plantar flexion torque in the mid–late gait stages (Li et al.,
2018). Isometric plantar flexion can maximize activity of the
triceps surae. The triceps surae comprises the medial
gastrocnemius (MG), lateral gastrocnemius (LG), and soleus
(SOL). The differences in fiber types and anatomical structures
result in different mechanical properties of three triceps surae
muscles during plantar flexion. The SOL has a higher percentage
of slow muscle fibers (70%), while both the MG and LG contain
approximately 50% of slow muscle fibers (Edgerton et al., 1975),
indicating that the contractility of the gastrocnemius is stronger
than that of the SOL. In addition, theMG and LG insert above the
knee joint, whereas the SOL inserts below the knee. Changes in
knee angles appeared to affect the determinants of three triceps
surae muscle behavior, including slack length of the series elastic
element, mean moment arm, maximum force, and length of the
contractile element (Out et al., 1996; Akasaka et al., 2004). In
general clinical palpation, the higher muscle contraction intensity
is, the stiffer muscle is. In the case of the triceps surae during
varied locomotion tasks, it can be speculated that contraction
capacity of muscle readjustment contributes to optimized
function by enabling for more exact exertion of joint moments
from the several muscle actuators that span the ankle and subtalar
joints. In clinical practice, a dynamometer is a kind of popular
quantifiable appliance for sports and rehabilitation training as it is
simple to use, portable, and cost-effective. However, it can only be
used to measure the strength of certain synergistic muscle groups
(Ashall et al., 2021; Tanveer et al., 2021), and it cannot be utilized
to establish biomechanical studies on individual muscles in vivo.

Recently, as a non-invasive and radiation-free imaging
method, shear wave elastography (SWE) has been widely used
to assess the relationship between local muscle stiffness and
contractility. The shear modulus and normalized joint torque
with isokinetic dynamometry showed a good linear relationship
in the rotator cuff muscle (Kim et al., 2018). Previous research has
discovered that muscle stiffness is proportional to contractility
(Mendes et al., 2018; Wang L. et al., 2020). SWE is based on
Hooke’s law, and muscle stiffness is described as the slope
between changes in force and muscle deformation (Creze
et al., 2018). SWE uses shear wave velocity to quantify local
muscle stiffness: μ = 3ρ·v2 (μ: shear modulus, ρ: tissue density, and
v: shear wave velocity). Shear modulus is a mechanical parameter
to describe stiffness, and stiffness is a proxy for muscle
contractility. Our previous study shows that SWE is a reliable
method for measuring the triceps surae stiffness (Zhou et al.,
2019). To the authors’ knowledge, stiffness redistribution
produced by muscular contraction at different knee angles has
not been proven. Muscle stiffness redistribution can reflect
muscle force output under neurological modulation, which
helps clinicians to monitor muscle contractile performance
and design more efficient physical training programs for patients.

It can be hypothesized that changing the knee joint angle can
alter the active stiffness of three triceps surae muscles, allowing
the body to be more economical and accurate in responding to

different functional tasks. Thus, the aim of this study was to assess
the active stiffness of the MG, LG, and SOL at different knee
postures during isometric plantar flexion.

MATERIALS AND METHODS

Ethics Statement
All procedures were approved by the Ethics Committee of
Guangdong Provincial Hospital of Traditional Chinese
Medicine (YE 2020-329-01) and carried out following the
guidelines of the Declaration of Helsinki. All recruited subjects
were informed of the experimental procedures and the safety of
SWE in the present study. Each subject signed an informed
consent form.

Subjects
A total of 22 healthy female college students (mean age: 20.4 ±
0.8 years old, height: 160.05 ± 2.47 cm, and weight: 51.20 ±
4.04 kg) were recruited. The dominant leg was defined as the leg
used more for kicking. Only triceps surae muscles of the right calf
were measured. All subjects were identified as right
leg–dominant. Because the instrumentation has a small
threshold for musculoskeletal patterns that make it difficult to
monitor larger muscle stiffness in male subjects, only female
subjects were recruited for this study. Inclusion criteria were as
follows: all subjects were healthy and able to follow the operator’s
instructions. Exclusion criteria were as follows: anybody with a
lower limb neuroskeletal muscle injury, such as Achilles tendon
injury, heel discomfort, plantar fasciitis, or an anterior cruciate
ligament (ACL) injury, and individuals taking corticosteroid
medication.

Tools and Equipment
All ultrasound examinations were performed by an ultrasound
SWE system (Aixplorer Supersonic Forigin, France) with a 50-
mm linear array transducer (SL15-4, Supersonic Forigin, France),
using the instrument’s default standard musculoskeletal (MSK)
settings. Other settings of the SWE mode were as follows:
penetration mode with 85% opacity, and the middle part of
the muscle thickness was chosen for measurement. The size of
the region of interest (ROI) was set to 10 × 10 mm. The Q-box
diameter was set to 5 mm. Change from blue (soft) to red (hard)
was based on shear modulus. The measurable range was adjusted
to 0–300 kPa.

A micro FET2 hand-held dynamometer (HHD) (Hogan
Science, Salt Lake City, UT, United States) was used to
measure force during plantar flexor isometric contraction. The
HHDwas anchored on the wall as in the previous study (Krasnow
et al., 2011), using a hook and loop fastener for height
adjustability and stability. The HHD pad was placed on the
first metatarsal, which transforms the pressure data into lbs
through the pressure sensor and displays it on the screen.

Measurement Positions
In the 0-degree knee (K0), the trunk was secured by straps on the
platform, with the hip and knee joints in full extension; in the 90-
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degree knee (K90), a wooden block was placed in front of the
thigh, with the hip and knee joints at 90°. The trunk and thighs
were secured by straps to a wooden block (with loop hooks) to
prevent body movement. The regions of the MG, LG, and SOL
were identified by the ultrasound B-mode. The MG and LG were
at 30% (proximal) of calf-length (the MG’s length is measured
from the popliteal fossa to the lateral malleolus), where the cross-
sectional areas of the gastrocnemius are nearly maximum. The
length of the LG is measured from the popliteal fossa to the
medial malleolus. A tape was used to measure the length, and a
black pen was utilized to mark the location of the measurement
site (Zhou et al., 2019)). The SOL at 70% (distal SOL) of calf-
length (Akiyama et al., 2016) (Figure 1) marked the skin in these
positions with a waterproof marker. The sequence of imaging was
MG, LG, and SOL. The ankle joint was stabled at a neutral
position with a 0° in plantar flexion.

Procedures
In the pilot test, the maximal voluntary contraction (MVC) force
of the plantar flexors was measured at neutral ankle position
using a HHD (Figure 1). In addition, two repeated attempts for
each knee posture and 1 minute of rest was allowed between two
attempts. The mean value of two attempts was recorded as the
maximal intensity of isometric plantar flexion. One MVC was
recorded for each knee posture. Moreover, 3 min of rest between
two knee postures was allowed. The posture of the knee joint was
randomized. Visual feedback and strong oral encouragement
were given for all attempts. Subjects were instructed to
contract only the plantar flexors. Based on the isometric
plantar flexion force generated during the MVC (100%), 40%
and 80% of theMVCwere viewed as low and high loads in respect
to functional tasks such as walking and hopping (Kelly et al.,
2018).

Measurement of the muscle stiffness at no contraction and
two intensities of MVC after 30 min of the pilot test. 1) Without
contraction: the degree of the muscle stiffness was measured

with a position of the knee extension or knee flexion. To reduce
experimental errors, subjects were explicitly asked to keep the
lower extremity fully relaxed (Liu et al., 2020). 2) Isometric
contraction: an assistant instructed the subject to perform
isometric plantar flexion. Subjects did not view the %MVC,
and they were instructed to hold at a particular level of MVC by
the assistant. While the target (40% or 80% of MVC) force was
displayed on the HHD, the examiner measured the stiffness of
the muscle. The probe was placed on one muscle, and then the
experiment was repeated with the probe placed on the other
muscle. The probe was gently placed on top of a large amount of
coupling agent at the marker point. The targeted muscle fibers
were parallel. The sequence of the procedure was without
contraction, 40% contraction, and 80% contraction. Subjects
were required to maintain a target force for the duration of at
least 5 s. Then, the subjects were asked to relax for 1 min
between each measurement to avoid muscle fatigue. A sub-
threshold range of ±2.5%MVC was set up for the 40% and 80%
targets to account for the observed variation in contraction
control (Fukutani et al., 2012). Three values of shear modulus
were recorded for each measurement. The average values were
used for further analysis.

Statistical Analysis
A sample size of 4 (22 subjects included) was deemed sufficient to
achieve high statistical power. The effect sizes for MVC were
determined from our pretest (eight subjects). A effect size of 3.69
was calculated by the sample size calculator GpPower 3.1.9.2,
alongside a power of 95% and a significance level of 0.05. The
experience of our previous study has also been taken into account
(n = 20; Chen et al., 2022).

SPSS 18.0 (SPSS Inc., Chicago, IL, United States) was used
for statistical analysis of all the data. The Shapiro–Wilk test
was used to check the normal distribution of all stiffness data.
All stiffness data were expressed as mean ± standard deviation.
All stiffness values were normally distributed. A 2-way (2 knee

FIGURE 1 | Schematic diagram of the shear modulus of triceps surae components during isometric plantar flexion. In the extended knee (K0), a subject was prone
and the trunk was secured to the platform using straps. In the flexed knee (K90), a heavy wooden block was placed in front of the thigh to avoid displacement of the lower
leg during isometric contraction. The force of the ankle plantar flexors was measured at 0° (neutral position) using a hand-held dynamometer (HHD) that was placed on
the first metatarsal. MG: medial gastrocnemius; LG: lateral gastrocnemius; and SOL: soleus.
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positions × 3 contraction intensities) analysis of variance
(ANOVA) was performed to evaluate the data to discover if
differences exist in muscle stiffness between the extended and
flexed knee when comparing various contraction intensities. If
there was a knee position × contraction intensity interaction,
the main effects were investigated and a Bonferroni correction
was applied on the post hoc tests. The plantar flexion force was
divided into two stages: the low-load stage (no contraction
(0%)–40%) and the high-load stage (40%–80%). The validity of
shear modulus was evaluated using general linear model
analysis. The slope of the stiffness is the regression
coefficient of the general linear equation, which indicates
the level of change in stiffness when altering the contraction
intensity. Correlation between muscle stiffness and plantar
flexion intensity was assessed using Pearson’s correlation
analysis. The correlation degree of the correlation coefficient
(r-value) was set to |r| > 0.8 for high correlation, 0.5 <|r| ≤ 0.8

for moderate correlation, 0.3 <|r| ≤ 0.5 for low correlation, and
|r| ≤ 0.3 for no linear correlation. Paired t-tests were applied to
verify differences in muscle stiffness between knee extension
and flexion. Cohen’s d was used to examine the effect size. The
significance level of the statistical data difference was set as
p = 0.05.

RESULTS

Shear Modulus of Three Triceps Surae
Muscles Between Extended and Flexed
Knees
Table 1 shows the relationship in the shear modulus of the MG,
LG, and SOL between extended knees and flexed knees. As the
intensity of isometric plantar flexion increased, the stiffness of the
MG, LG and SOL became harder. Both the MG and LG with
extended knees were stiffer than those of flexed knees (p＜0.001);
the SOL with a flexed knee was stiffer than that of an extended
knee (p＜0.001) (Figure 2).

Variations in the Shear Modulus of Muscles
With Different Levels of Plantar Flexion
There is a knee position × contraction intensity interaction, the
main effects are investigated, and a Bonferroni correction is
applied on the post hoc tests in Supplementary Table S1.
Table 2 shows the relationship between the stiffness of triceps
surae muscles and the intensity of isometric plantar flexion. There
were moderate-to-high positive correlations between the stiffness
of triceps surae muscles and isometric plantar flexion intensity (r:
0.57–0.91, p＜0.001). At flexed knees, the slope of the MG, LG,
and SOL at the high-load stage increased by 65%, 105%, and 41%
compared to that of the low load stage, respectively. But the
increase of the MG and LG in extended knees was blunted during
the high-load stage, and the slope of the MG and LG at the high-
load stage decreased by 27% and 36% compared to that of the low
load stage, respectively. Figure 3 shows the relationship between
the intensity and stiffness of the plantar flexion in the MG, LG,
and SOL with knee flexion and extension, respectively, in all
subjects (n = 22).

TABLE 1 | Shear modulus of the triceps surae muscle with different knee postures in different isometric contraction (plantar flexion) intensity.

Muscles Contraction
intensity

K0 (kPa) K90 (kPa) p Cohen’s d

MG Without contraction 36.58 ± 8.26 8.83 ± 1.50 <0.01 4.67
40% of MVC 118.70 ± 25.70 23.45 ± 9.62 <0.01 4.91
80% of MVC 178.10 ± 25.32 47.66 ± 20.11 <0.01 5.70

LG Without contraction 27.80 ± 7.37 14.97 ± 4.40 <0.01 2.11
40% of MVC 88.34 ± 27.19 34.08 ± 12.44 <0.01 2.56
80% of MVC 127.02 ± 29.94 73.30 ± 29.65 <0.01 1.80

SOL Without contraction 16.48 ± 5.56 33.60 ± 10.89 <0.01 −1.98
40% of MVC 35.87 ± 13.48 77.84 ± 13.34 <0.01 −3.12
80% of MVC 57.98 ± 17.30 140.43 ± 19.81 <0.01 −4.43

K0: Knee 0°, K90: Knee 90°, MG: medial gastrocnemius, LG: lateral gastrocnemius, SOL: soleus.

FIGURE 2 | Bar graphs of the shear modulus of three triceps surae
muscles between extended and flexed knee. ** means significant intergroup
difference (p < 0.001). Red, blue, and green represent no contraction (0%),
40%, and 80% maximum voluntary contraction (MVC) during isometric
plantar flexion, respectively. MG: medial gastrocnemius; LG: lateral
gastrocnemius; and SOL: soleus.
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DISCUSSION

The main findings of our study were that 1) he slope of the MG
stiffness with an extended knee was larger than that with a flexed
knee, and the slope of the SOL stiffness with flexed knees was
larger than that with extended knees. 2) The stiffness of the MG
and LG with an extended knee was larger than that with a flexed
knee. The stiffness of the SOL in a flexed knee was larger than that
in an extended knee. 3) There was a moderate-to-high positive
linear relationship between the stiffness of muscle and the
intensity of isometric plantar flexion.

During the high-load stage, the slope of MG stiffness with flexed
knees was larger than that with extended knees. The slope of SOL
stiffness changes with an extended knee was larger than that with a
flexed knee. This was the first trial to compare the active stiffness

recruitment of three triceps surae muscles at different knee postures.
First, the pennation angle between the fiber and fascia of the MG is
~60° (Hirata et al., 2016). According to the trigonometric function
relationship, the force is transmitted to the tendon by the cosine
torque of the pennation angle. The factor for the MG is 0.5. In other
words, only half of the force is transmitted to the Achilles tendon. In
addition, muscles operate with high gear ratios during the low-load
stage; fibers rotate to larger angles of pennation, which consume part
of the force. Muscles operate with lower gear ratios during the high-
load stage; fibers rotate lightly, helping conserve force (Bach et al.,
1983). Thus, the contribution of the MG with extended knees at the
high-load stage would be smaller than that at the low-load stage.
Second, the possibility of neural mechanisms interfering with the
SOL cannot be ruled out (Lauber et al., 2014). During isometric
plantar flexion with flexed knees, the contractility of the

TABLE 2 | Correlation between muscle stiffness and isometric contraction intensity.

Muscles Knee Low-load stage High-load stage

Slope (kPa/%MVC) R∧2̂ Pearson’s r Slope (kPa/%MVC) R∧2̂ Pearson’s r

MG K0 2.05 ± 0.64 0.83 0.91* 1.48 ± 0.59 0.58 0.76*
K90 0.36 ± 0.23 0.54 0.73* 0.61 ± 0.36 0.38 0.62*

LG K0 1.51 ± 0.63 0.71 0.84* 0.97 ± 0.59 0.32 0.57*
K90 0.47 ± 0.31 0.52 0.72* 0.98 ± 0.63 0.44 0.66*

SOL K0 0.48 ± 0.30 0.48 0.69* 0.55 ± 0.31 0.34 0.59*
K90 1.11 ± 0.31 0.77 0.88* 1.56 ± 0.44 0.78 0.88*

K0: knee 0°, K90: knee 90°, MG: medial gastrocnemius, LG: lateral gastrocnemius, SOL: soleus, Low-load stage: without contraction ~40% of MVC, High-load stage: 40%–80% of MVC,
*p＜0.05.

FIGURE 3 | (A–C) represent the stiffness of the medial gastrocnemius (MG), lateral gastrocnemius (LG) and soleus (SOL) with flexed knees, respectively. (D–F)
represent the stiffness of the MG, LG and SOL with extended knees, respectively. Changes in stiffness is related to isometric contraction intensity (0%: no contraction,
40%, and 80% of maximum voluntary isometric contraction) for triceps surae muscles in 22 subjects. Each subject is represented by a different symbol. * Significant (p <
0.05) at different contraction intensities.
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gastrocnemius muscle is diminished. The recruitment increased in
the SOL can compensate for the loss of recruitment produced by the
MG. From a physical standpoint, softer or stiffer materials exhibit
greater or less compliance (Ditroilo et al., 2011). Softer
gastrocnemius with flexed knees indicates higher compliance,
allowing knees to be more flexible in extension. Knee
hyperextension is avoided by strengthening the stiffness of
gastrocnemius with extended knees. However, if the stiffness of
the gastrocnemius is insufficient, shear loads are distributed to the
anterior cruciate ligament (Morgan et al., 2014), leading to ligament
injury during sports. This would suggest that optimum stiffness of
the gastrocnemius is essential for knee stability and flexibility.

Although both the MG and LG have 50% of slow muscle fibers
(Edgerton et al., 1975), we also found that the slope in the MG
stiffness with an extended knee was larger than that in the LG.
The result could be described by their architectural properties.
First, the physiological cross-sectional area in MG is 2.1 times
more than that in LG (Albracht et al., 2008). Second, the Achilles
tendon consists of tendons originating from the SOL, MG, and
LG. According to Pękala et al. (2017), the LG and MG tendon
twist 135.98 ± 33.58° and 28.17 ± 15.15°, respectively. Tendons
with higher torsional angles sacrifice more elastic energy during
plantar flexion, resulting in less force transferred to the LG and
less stiffness recruited from the LG.

We also compared the relaxed stiffness of the SOL at two knee
angles. Contrary to our previous study results in male subjects (Liu
et al., 2020), the relaxed stiffness of the SOL at flexed knees was
higher than that at extended knees for female subjects in the current
study. One study showed that males have more septal connections
between the superficial fascia and the dermis than females (Rudolph
et al., 2019). This suggests that males are more susceptible to fascial
force transmission. Males show a tighter connection between
connective tissue and muscle bellies during passive extension of
the knee joint. The distal SOL was pulled by upward stress from the
gastrocnemius fascia and resulted in a tighter SOL. The increased
tension in the distal SOL makes itself stiffer; thus, the SOL with
extended knees exhibited higher stiffness in males.

Muscle contraction is powered by the interaction capacity of
myosin molecules with actin filaments (Kaya and Higuchi et al.,
2013), which in turn alters the active stiffness in macro conditions.
SWE quantifies and visualizes the distribution of active stiffness
caused by muscular contraction. Our results showed that there
were moderate-to-high positive correlations between muscle
stiffness and plantar flexion intensity. It has been demonstrated
that the stiffness in the rectus femoris increases with the increase of
impedance (p < 0.001) (Tang et al., 2020). At an isometric trunk
extension task,Murillo et al. observed thatmultiplemuscle stiffness
increased as resistance load increased (Murillo et al., 2019). These
studies showed that changes in active stiffness could be described as
an alternative indicator of the degree of muscle contractility.

Microscopic-level analyses of the active stiffness production
indicate that it occurs in an environment of tissues that exhibit
spring-like behavior. Muscle myosins are highly efficient motors
that adjust the power output according to loads. When the load
increases, it elicits a stronger binding between myosin and actin
(termed the “cross-bridge”) (Cheng et al., 2020) and decreases the
detachment rate of myosin molecules (Veigel et al., 2005). Also,

the active stiffness is regarded as mechanical information for the
force driven by cross-bridges (Wang T. et al., 2020). Excessive or
insufficient stiffness might provide the wrong information to the
nervous system, which would result in uncoordinated muscle
contractions and an increased risk of soft tissue injuries. The
Achilles tendon is the conjoined tendon of the SOL, LG, and MG.
They are identified as discrete components during anatomical
dissection. There are different stiffness recruitment of three
triceps surae muscles in different knee postures. The MG
showed larger stiffness with extended knees in our result.
Moreover, the smallest component of the Achilles tendon is
the sub-tendon from the MG (27.68%) (Pękala et al., 2017).
These factors suggest that the sub-tendon from the MG is more
vulnerable to injury due to its tighter movements, which may
explain how the tear of a single sub-tendon occurs on the stage
from flexed to extended knees (Thermann, 2019).

We also considered that a lower coefficient of fitting (R-squared
range: 0.32–0.78) appeared at the high-load stage in the current
research. Our results agreed with a study by Inami et al. who found
that the force–stiffness relationship was not linear (Inami et al.,
2017). However, Ateş et al. (2015) indicated a high coefficient of
fitting (R-squared range: 0.86–0.98) of the relationship between
stiffness and Abductor Digiti Minimi torque. A high R-squared
indicates the fit of the regression model is excellent. There are
several explanations for this discrepancy. First, this variation can be
justified by the deformation of foot soft tissue during a higher level
of plantar flexion. Inevitable ankle joint angular rotation affects
muscle torque (Karamanidis et al., 2005). The study by Hessel et al.
(2021) illustrated that changes in torque and force moment may
have a potential effect on muscle contractility. The muscle output
strategy is altered to maximize performance on the various task
demands. Second, the possible interference of force transmission
between sub-tendons cannot be ruled out (Gains et al., 2020).
Therefore, the active stiffness recruitment might be adjusted to
make the output power more economical at a specific knee
position.

SWE provides a quantitative assessment of mechanically
driven muscle recruitment in macroscopic conditions. Active
stiffness can be regarded as a parameter indicator of muscle
contraction capacity for physiotherapy or therapeutic feedback in
the fields of sports science and rehabilitative training. SWE
provides additional information on voluntary muscle
contraction by adding stiffness as another measurable
characteristic of current ultrasound imaging techniques. As far
as we are concerned, the exact proportion of fibers (Liu et al.,
2019) and muscle–tendon interaction force could not be
determined in vivo. Further studies will investigate other
factors that affect stiffness recruitment.

LIMITATIONS

There were several limitations in the present study. First, the
mechanical behavior of the Achilles tendon may also influence
the active stiffness of the triceps surae. The stiffness of the Achilles
tendon exceeded the threshold of the SWE’s device. We were
unable to explore the biomechanical link between the triceps
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surae and the Achilles tendon in vivo. Second, although we
instructed the subjects not to contract auxiliary muscles (e.g.,
quadriceps), we were unable to confirm that this was the case due
to the lack of electromyography (EMG) equipment. In the next
trial, we will introduce an EMG device to objectively monitor
muscle activity. Finally, in our preliminary experiments, muscle
stiffness in male subjects with 80% MVC often exceeded the
measurement range of the instrument. Therefore, only female
individuals were recruited in this study. Finally, the results of this
study apply only to healthy young people. In the future, we will
progressively conduct studies on injured patients.

CONCLUSION

In summary, SWE can be used to quantify active stiffness changes in
the triceps surae during muscle contraction. Knee joint angles can
affect the stiffness recruitment of the MG, LG, and SOL. The MG
and LG with extended knees showed higher stiffness at the low-load
stage, whereas the SOL with flexed knees exhibited higher stiffness at
the high-load stage. Non-uniform stiffness increase in MG, LG, and
SOLmay explain part of themechanism of soft tissue injury. Further
studies are necessary to evaluate the stiffness recruitment of other
muscles in different functional tasks.
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