
Structure of the DBL3x domain of pregnancy-associated malaria 
protein VAR2CSA complexed with chondroitin sulfate A

Kavita Singh1, Apostolos G Gittis1, Phuc Nguyen1, D Channe Gowda2, Louis H Miller3, and 
David N Garboczi1

1Structural Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and 
Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, Maryland 
20852, USA.

2Department of Biochemistry and Molecular Biology, Pennsylvania State University College of 
Medicine, 500 University Drive, H171, Hershey, Pennsylvania 17033, USA.

3Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, 
National Institutes of Health, 5640 Fishers Lane, Rockville, Maryland 20852, USA.

Abstract

Plasmodium falciparum–infected erythrocytes bind to chondroitin sulfate A (CSA) in the placenta 

via the VAR2CSA protein, a member of the P. falciparum erythrocyte membrane protein-1 

family, leading to life-threatening malaria in pregnant women with severe effects on their fetuses 

and newborns. Here we describe the structure of the CSA binding DBL3x domain, a Duffy 

binding-like (DBL) domain of VAR2CSA. By forming a complex of DBL3x with CSA 

oligosaccharides and determining its structure, we have identified the CSA binding site to be a 

cluster of conserved positively charged residues on subdomain 2 and subdomain 3. Mutation or 

chemical modification of lysine residues at the site markedly diminished CSA binding to DBL3x. 

The location of the CSA binding site is an important step forward in the molecular understanding 

of pregnancy-associated malaria and offers a new target for vaccine development.

Plasmodium falciparum infection during pregnancy results in the sequestration of infected 

erythrocytes in the placenta causing maternal anemia as well as low birth weight, premature 

birth and increased infant mortality (for reviews, see refs. 1-4). Irrespective of gender, adults 

living in endemic areas generally acquire a degree of immunity that prevents severe malaria, 

but pregnant women, despite having pre-existing protective immunity, are susceptible to 
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severe disease, especially during their first pregnancy. Consequently, pregnancy-associated 

malaria poses a risk to millions of women across the globe every year.

Pathogenesis of malaria in pregnant women is primarily due to binding of infected 

erythrocytes to CSA in the placenta5-7. The parasite modifies the surface of infected 

erythrocytes to express P. falciparum erythrocyte membrane protein-1 (PfEMP1). PfEMP1 

moleculesareencoded by 50−60 parasite var genes and are involved in infected erythrocyte 

binding (sequestration) in the venules of many organs including the placenta. One var gene, 

var2csa, encodes the VAR2CSA PfEMP1 that is primarily responsible for binding to CSA8. 

VAR2CSA is upregulated in infected erythrocytes that are either isolated from the placenta9 

or selected in vitro to bind to CSA8. Furthermore, the ability of infected erythrocytes to 

adhere to CSA is lost10 or reduced11 when the var2csa gene is disrupted. Of the six DBL 

domains of VAR2CSA, at least three, DBL2x, DBL3x and DBL6ε, bind CSA12,13. In the 

laboratory, the binding of infected erythrocytes to placental chondroitin sulfate proteoglycan 

can be maximally inhibited by dodecasaccharides prepared from bovine tracheal CSA14.

In geographically diverse malaria endemic areas, antibodies that are naturally acquired by 

women during previous pregnancies block the binding of infected erythrocytes to CSA15. 

These findings suggest that epitopes expressed by various placental isolates are conserved 

and that a vaccine against pregnancy-associated malaria is possible. Owing to its sequence 

conservation, the DBL3x domain of VAR2CSA is considered to be a major target for 

vaccine development1. With this in mind, we have determined the structure of DBL3x, one 

of the CSA binding domains of P. falciparum VAR2CSA, and explored the structural basis 

of its binding to CSA by soaking and cocrystallization with CSA oligosaccharides of various 

sizes. In addition, we have investigated the binding of CSA to DBL3x through the use of 

chemical modification, mutation, flow cytometry and isothermal titration calorimetry (ITC). 

Considered together, the data from these experiments reveal the location of the CSA binding 

site and the nature of its interaction with DBL3x.

RESULTS

Overall structure of DBL3x

We overexpressed the DBL3x domain (residues 1220−1580, GenBank AAQ73926) of the 

VAR2CSA protein from the A4 strain12 of P. falciparum in Escherichia coli as insoluble 

inclusion bodies (Methods). DBL3x was refolded in vitro to its functional form, was then 

purified and migrated as a monomer during size-exclusion chromatography. We determined 

the DBL3x crystal structure, both alone and bound to CSA oligosaccharides from four to 

twelve monosaccharides in length.

The DBL3x structure has three subdomains (using the nomenclature of ref. 16; Fig. 1). The 

first subdomain (residues 1220−1292; Fig. 1 , yellow) lacks regular secondary structure 

except for a single turn of helix and is held together by two disulphide bonds between 

Cys1230-Cys1273 and Cys1251-Cys1264. Subdomain 2 (residues 1293−1444) contains four 

helices (H1-H4) connected by four loops ( Fig. 1 , blue). An unpaired cysteine (Cys1418) in 

helix H4 reacted with cystamine during refolding, gaining a cysteamine adduct that we 

observed in the electron density map and confirmed by MS. The C-terminal portion 
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(residues 1424−1444) of subdomain 2 forms an extended structure that connects to the third 

subdomain. Cys1437 forms a disulfide bond with Cys1344 on helix H2.

Subdomain 3 (residues 1445−1580) ( Fig. 1 , red) has two long antiparallel helices, H5 

(residues 1449−1476) and H6 (residues 1499−1529), that are connected to each other by a 

large loop (residues 1477−1498) and that make contacts with subdomains 1 and 2. The C-

terminal portion of subdomain 3 (residues 1563−1580) forms a flat structure of small helices 

connected by short linker regions. Subdomain 3 contains four disulfide bonds: Cys1462-

Cys1546, Cys1476-Cys1501, Cys1505-Cys1574 and Cys1486-Cys1576 (Supplementary 

Table 1 online). Near the C terminus, the bond between Cys1486 and Cys1576 was not 

visible and, presumably, was disordered in the crystal. In addition, nine N-terminal residues, 

three C-terminal residues and loop residues 1279−1285, 1327−1337, 1387−1397 and 

1486−1494 were disordered and not visible in the electron density.

Comparison with known DBL structures

The prediction that the DBL domains would have a conserved protein fold was made when 

the var genes were first cloned, on the basis of the observation of conserved cysteines and 

aromatic residues (Trp, Tyr, Phe)17-19. The structures of three other DBL domains have 

been determined from two proteins that are not PfEMP1 family members: the P. falciparum 

erythrocyte binding antigen (EBA)-175, which has two DBL domains F1 and F2 (PDB 

1ZRL)20, and the Plasmodium knowlesi (Pk)α-DBL protein, which has one DBL domain 

(PDB 2C6J)16. The structure of the PfEMP1 DBL domain reported here, DBL3x, adds to 

the evidence that PfEMP1 domains have the conserved DBL protein fold. Structure-based 

sequence alignments of DBL3x with EBA-175 and Pkα-DBL show conserved cysteines 

amid a few other conserved residues (Supplementary Fig. 1 online). We also observed 

conserved helices in the absence of substantial sequence identity. Structural 

superimpositions of DBL3x and the three other DBL domains yielded r.m.s. deviations on 

all Cα atoms for F1, F2 and Pkα-DBL of 2.8Å, 2.7Å and 2.2Å, respectively. Overlays of the 

four structures based on the structural superimposition of the long helices in subdomain 3 

made it clear that each DBL domain has its three subdomains positioned differently 

(Supplementary Fig. 2 online). Differences in subdomain positions relative to each other 

probably contributed to our finding that only the Pkα-DBL structure (r.m.s. deviation 2.2Å) 

yielded convincing solutions when used as a model in several molecular replacement 

programs. Calculated phases from the best molecular replacement solutions, however, were 

poor, and it was necessary to improve them through multicrystal averaging (Methods).

Location of the CSA binding site

To obtain crystals of the complex between DBL3x and CSA, DBL3x was cocrystallized or 

soaked with size-fractionated 6-O-desulfated oligosaccharides prepared from enzymatic 

digestion of bovine tracheal CSA. We measured X-ray data from 50 crystals, 35 of which 

were soaked or grown with carbohydrates, resulting in two space groups (P212121 and P21), 

each showing two sizes of unit cell (Methods). The refined structure of the native protein 

was used as a model to obtain molecular replacement solutions for each of the DBL3x 

crystals complexed with CSA that yielded X-ray data sets. We subjected these solutions to 

crystallographic refinement and examined the resulting electron density maps. In ten data 
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sets from crystals that included tetra-, hexa-, octa- or dodecasaccharides, we observed 

electron density that could not be explained by protein atoms. The extra electron density was 

seen in 2Fo – Fc maps contoured at 1.0 σ and in Fo – Fc maps contoured at 2.5 σ above the 

mean density. The density appeared in the same region of DBL3x, whether cocrystallized or 

soaked, with various sizes and concentrations of oligosaccharide (Fig. 2). We observed no 

extra density in crystals without added oligosaccharide, excluding the possibility that the 

density was due to HEPES, polyethylene glycol or water molecules. The extra electron 

density was of a size that could fit four to six monosaccharides. Residues that are within 5Å 

of the CSA density are Lys1324 and Lys1327 of subdomain 2, Arg1467 of helix H5 of 

subdomain 3, and Arg1503, Lys1504, Lys1507 and Lys1510 of helix H6 of subdomain 3. 

One strong region of density (1.5 σ in 2Fo – Fc, 3.0 σ in Fo – Fc), which we observed in 

every data set with carbohydrate density, is chemically consistent with a sulfate ion that 

seems to be coordinated by Lys1324, Arg1467 and Lys1504 (Fig. 2).

These areas of extra electron density appeared only when DBL3x crystals were soaked with 

CSA oligosaccharides or when crystals were grown in the presence of CSA 

oligosaccharides. There was a tendency for crystals with carbohydrate density to show the 

larger unit cell dimensions, whereas crystals without extra density showed the smaller unit 

cell dimensions. The binding of oligosaccharide seems to change the packing of DBL3x 

molecules in the crystal, which is consistent with the reduced resolution limit and overall 

diffraction quality of the complex crystals compared to native crystals.

The lysines of DBL3x are required for binding CSA

The binding of the DBL3x domain to CSA was assessed using flow cytometry, which 

showed that the recombinant DBL3x domain recognized CSA expressed on the surface of 

CHO-K1 cells (Fig. 3, peaks in magenta). The binding of DBL3x to the cells was inhibited 

by preincubating DBL3x with soluble bovine tracheal CSA, the starting material for the 

preparation of the oligosaccharides used in the crystals (Fig. 3a, cyan peak). CSA 

hexasaccharides prepared as described in Methods also inhibited the binding of DBL3x to 

the CSA expressed by the cells (Fig. 3a, blue peak). Preincubation of DBL3x with 

chondroitin sulfate C (CSC) did not inhibit DBL3x binding to the cells (data not shown).

The involvement of lysines in the binding of DBL3x to CSA was confirmed by flow 

cytometry (Fig. 3b). A version of the DBL3x protein in which all of the lysines were 

chemically modified by reductive methylation did not bind to CSA on the CHO-K1 cells 

(Fig. 3b, orange peak). The methylation of lysines is a mild chemical modification that does 

not change the charge on the lysine side chain, but adds two methyl groups to each primary 

amine21. Methylated DBL3x was still recognized in immunoblotting by monoclonal 

antibodies raised against the native DBL3x (data not shown), consistent with the gentle 

nature of lysine methylation.

ITC experiments also demonstrated the binding of CSA by DBL3x. When 30 μM bovine 

tracheal CSA was titrated into a solution of 30 μM DBL3x in the same 100 mM Na-HEPES 

buffer used in crystallization, we observed binding (Supplementary Fig. 3 online). We could 

not detect binding when methylated DBL3x was titrated with bovine tracheal CSA or when 
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unmodified wild-type DBL3x was titrated with unsaturated CSA disaccharides produced by 

chondroitinase ABC digestion (data not shown).

Lysine mutations proximal to the CSA reduce binding

In flow cytometry, we observed decreased CSA binding of a mutant DBL3x in which 

Lys1507 was replaced by alanine (Fig. 3c, purple peak). The use of a double mutant, with 

alanine substituted for both Lys1507 and Lys1510, additionally reduced the binding to the 

cells (Fig. 3c, green peak). In ITC experiments, both mutant DBL3x molecules yielded 

results consistent with the flow cytometry data (Supplementary Fig. 3). The titration data 

revealed a less favorable apparent enthalpy of binding of the mutants compared to wild-type 

DBL3x. Because the binding enthalpy is a direct measure of the interactions between bound 

ligand and protein relative to those existing when they are free in the solvent, the ITC results 

are evidence for the diminished strength of interaction between CSA and the DBL3x mutant 

molecules.

Electrostatic potential surface of DBL3x

The calculated electrostatic potential surface of DBL3x shows a patch of positive potential 

on the surface of the molecule near to the CSA electron density. Four lysine residues and 

two arginine residues contribute to the cluster of charges making up the patch (Fig. 4). The 

binding of CSA oligosaccharides seems to be largely electrostatic in nature, which is 

supported by our observation of decreased CSA binding to DBL3x with the addition of 50 

mM NaCl to the 100 mM Na-HEPES in ITC experiments (data not shown). The CSA 

oligosaccharides used for the crystal structure consist of negatively charged repeating 

disaccharides (Methods and Discussion). We have located one of the sulfates in the electron 

density as described above, which implicates the sulfate groups in binding to DBL3x. The 

DBL3x surface also shows that there is a patch of negative electrostatic potential at the 

bottom of the ‘valley’ between subdomains 2 and 3 contributed by a cluster of aspartic and 

glutamic acid residues (Fig. 4). The presence of this negatively charged area would make the 

binding of negatively charged CSA energetically unfavorable. This would explain the 

location of the binding site on the top surface of the two helices of subdomain 3 and at the 

loop between helix H1 and H2 in subdomain 2. To clarify the extent of the binding site, we 

positioned a CSA hexasaccharide model as a rigid body along the location of the CSA 

electron density, superimposing a sulfate group from the CSA model on the sulfate 

identified experimentally in the electron density map (Fig. 4c).

DISCUSSION

We have described the structure of the CSA binding DBL3x domain of VAR2CSA, a 

parasite-encoded member of the PfEMP1 family of proteins expressed on the surface of 

infected erythrocytes and responsible for binding infected erythrocytes in the placenta. It 

contains three subdomains that are analogous to those described for the Pkα-DBL domain16 

and for the two DBL domains found in EBA-175 (ref. 20), both non-PfEMP1 proteins 

involved in parasite invasion of erythrocytes. Notably, we have identified the region in 

DBL3x that binds CSA to be located in a valley between subdomains 2 and 3.
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Chondroitin sulfate chains are unbranched polysaccharides of variable length, sulfate 

content and sulfation pattern. They are composed of repeating disaccharides of alternating 

glucuronic acid and N-acetylgalactosamine. Each N-acetylgalactosamine may be nonsulfated 

or sulfated, most commonly at the 4-O or 6-O position. Human placental CS contains 4-O-

sulfate on about 10% of N-acetylgalactosamines and does not contain 6-O-sulfate22. 

Infected erythrocytes bind to chondroitin sulfate proteoglycans that have 4-O-sulfates, and 

the binding can be inhibited by soluble 4-O-sulfated chondroitin sulfate, but not by 6-O-

sulfated chondroitin sulfate14. In this work, we used bovine tracheal CSA (a copolymer of 

53% 4-O-sulfate, CSA, and 39% 6-O-sulfate, CSC) from which the 6-O-sulfate groups were 

removed chemically and fractionated by ion-exchange chromatography to obtain partially 

sulfated CS fractions of varying 4-O-sulfate contents23. Several sizes of oligosaccharides 

obtained from a CS fraction containing 50% 4-O-sulfated and 50% nonsulfated disaccharide 

moieties could bind to the DBL3x domain in the crystal. Furthermore, a hexasaccharide 

fraction inhibited the binding of DBL3x to CSA expressed on the surface of CHO cells. 

Another X-ray structure of the DBL3x domain was recently reported24. In that work, 

soaking crystals with ammonium sulfate or with the mixture of unsaturated CSA and CSC 

disaccharides obtained by bacterial chondroitinase ABC digestion of bovine trachea CSA 

showed a sulfate bound at the same location as the sulfate bound to DBL3x in the present 

study. Electron density for an unsaturated disaccharide was not observed24, which is 

consistent with our finding that unsaturated CSA disaccharides did not compete with CSA 

for binding to DBL3x.

The heterogeneity in size and charge density of glycosaminoglycans hinders the 

determination of the structural basis of their interaction with proteins. The lack of a well-

defined and continuous electron density for the different CSA oligosaccharides studied here 

could be due to the presence of multiple modes of binding, partial disordering, 

conformational fluctuations or chemical heterogeneity. Charged oligosaccharides that 

interact with proteins may be held in place predominantly by charge interactions without 

many other substantial interactions. In defining the binding of a heparin-like ligand to a 

thrombospondin domain, the density of the bound heparin-like molecule was also not well 

defined25,26, but sulfates could be positioned in the largest electron density, as in this work. 

We speculate that the flexible oligosaccharides bound to DBL3x may be mobile, with 

mainly charged groups from both protein and ligand involved in binding.

When two of the lysines (Lys1507 and Lys1510) in proximity to the CSA density were 

mutated to alanine, flow cytometry and ITC revealed substantially decreased binding of the 

mutant DBL3x proteins to soluble CSA. Furthermore, a 67-residue peptide from a DBL3γ 

domain, which corresponds to the H5 and H6 helices of the DBL3x subdomain 3, has been 

shown to bind CSA as efficiently as the entire DBL3γ domain27 (Supplementary Fig. 4 

online). Taken together, these data indicate that the extra electron density observed in this 

work indeed comes from CSA bound to DBL3x. This region is highly conserved in all 

VAR2CSA DBL3x domains28.

This mode of binding, which involves only surface-exposed residues and does not seem to 

involve nonbonding (van der Waals) interactions, is consistent with the small differences 

between the native and complexed structures of DBL3x. When superimposing the two 
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models based on the Cα positions of all helices, the r.m.s. deviation is only 0.9Å. 

Overlaying the two models using only the Cα atoms of helices H5 and H6, the r.m.s. 

deviation is 0.4Å between these helices in each model. The low r.m.s. deviation implies that 

CSA binding to the charged surface of DBL3x does not alter the protein structure. When the 

models are aligned by H5 and H6, the r.m.s. deviation between the coordinates of both 

subdomain 2 regions is 0.8Å. We do not see flexibility or movement of the subdomains 

relative to each other.

The results of our study provide a structure-based explanation for how the interaction 

between CSA and DBL3x depends on the overall charge distribution in the protein fold. The 

specificity of CSA binding may be mediated not just by clusters of basic residues but also by 

their particular location in the tertiary structure of the protein. The specificity of binding of 

CSA to DBL3x is probably due to the coordination of 4-O-sulfate groups and to a particular 

conformation of CSA that is favored by the distribution of charged residues on the protein.

As a target for vaccine development to protect pregnant women from malaria, it is important 

to note that the second helix of subdomain 3 of DBL3x contains highly conserved 

residues28,29. This conservation, especially for a receptor under immune selection, is highly 

unusual in P. falciparum. However, conservation has been suspected owing to the finding 

that women become immune to VAR2CSA after their first pregnancy15 and consequently 

are protected from pregnancy-associated malaria. Thus, a vaccine designed using DBL3x 

structural information may elicit an immune response that would effectively block the 

binding of infected erythrocytes in the placenta during pregnancy.

METHODS

Protein production

We cloned the DBL3x (residues 1220−1580, GenBank AAQ73926) from genomic DNA of 

the A4 strain (also called FCR3 or IT) of P. falciparum in the pLM1 expression plasmid30. 

The plasmid was transformed into BL21(DE3)-RIL cells that were then grown to an optical 

density at 600 nm (OD600) of 0.8 and induced with 1 mM IPTG to produce insoluble protein 

as inclusion bodies. Solubilized inclusion bodies were refolded at 4 °C in 1 liter of buffer 

containing 50 mM Tris-HCl, pH 7.6, 50 mM NaCl, 500 mM arginine-HCl, 2 mM EDTA, 40 

mM sucrose, 2 mM DTT and 5 mM cystamine-HCl. After refolding for 12−15 h, we added 

11 g cystamine-HCl to react with free cysteines, and the refolded protein was dialyzed 

against 20 mM Tris-HCl, pH 7.5. We purified refolded DBL3x using cation-exchange 

chromatography and size-exclusion chromatography. Purified DBL3x was dialyzed against 

10 mM Tris-HCl, pH 7.5, at 4 °C and concentrated to 10 mg ml−1 for crystallization.

We used standard techniques to add the six-histidine tag to the C terminus and to mutate 

DBL3x. The His-tagged and mutant proteins were expressed and refolded under the same 

conditions as the wild-type protein. The refolded protein solution was adjusted to the 

binding buffer conditions (20 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole-HCl, 

pH 7.4). The protein was then bound to a nickel–nitrilotriacetic acid (Ni-NTA) Sepharose 

column and eluted with a gradient of 0.5 M imidazole-HCl in the binding buffer. The protein 

was further purified by size-exclusion chromatography, then dialyzed against 10 mM Tris-
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HCl, pH 7.5, at 4 °C and concentrated to 20 mg ml−1. DBL3x was exhaustively methylated 

as described31. MS of methylated DBL3x confirmed the addition of two methyl groups to 

each of the 50 lysines and to the N terminus.

Preparation of size-fractionated and partially desulfated oligosaccharides from bovinr 
tracheal CSA

Bovine tracheal CSA, desalted on Dowex 50W-X8 (H+) resin, was neutralized with pyridine 

and lyophilized. The pyridinium salt of CSA thus obtained was 6-O-desulfated using N,O-

bis(trimethylsilyl)acetamide in pyridine and fractionated on DEAE-Sephacel columns as 

described previously14,23. The chondroitin 4-O-sulfate fraction containing 50% 4-O-

sulfated and 50% nonsulfated disaccharide moieties was partially depolymerized with ovine 

testicular hyaluronidase and the oligosaccharides of varying sizes that formed were isolated 

by size-exclusion chromatography on Bio-Gel P-6 (ref. 14).

Crystallization of DBL3x

Crystals were grown using the hanging-drop method by mixing 1 μl of protein and 1 μl of 

precipitant and equilibrating against 500 μl of precipitant. Crystals appeared with 20−25% 

(w/v) PEG3350 in 100 mM Na-HEPES buffer at pH 7.5 in 2−3 weeks. When grown in the 

presence of 4−10 μg ml−1 of high-molecular-weight CSA (bovine tracheal CSA, Sigma-

Aldrich C9819) crystals appeared more quickly, in 4−5 d. Native crystals and crystals used 

for soaking grew in the presence of this low concentration of high-molecular-weight CSA.

We performed cocrystallization experiments using DBL3x and CSA oligosaccharides 

ranging in size from 4 to 14 monosaccharides for various concentrations of oligosaccharides 

(1−10 mM). Experiments with oligosaccharides having four, six or eight monosaccharides 

yielded cocrystals under the same conditions as native crystals. Cocrystals were briefly 

cryoprotected with 35% (w/v) PEG3350 in 100 mM Na-HEPES, pH 7.5, before freezing the 

crystals in liquid N2.

Crystals were soaked with various concentrations (1−25 mM) of oligosaccharides from 4 to 

14 monosaccharides in length, with soaking times of a few seconds up to 24 h. The 

oligosaccharides were dissolved in the cryoprotecting solution of 35% (w/v) PEG3350, 100 

mM Na-HEPES, pH 7.5, and soaking was performed before freezing in liquid nitrogen. All 

native DBL3x and DBL3x–CSA complex crystals were grown in identical buffer conditions, 

except that in the cocrystallizations we added CSA oligosaccharides instead of high-

molecular-weight CSA.

Structure determinations

We collected 50 X-ray data sets and processed them with HKL200032 and XDS33. Our 

attempts to prepare heavy-atom derivatives were unsuccessful. Molecular replacement 

techniques were then pursued using the EBA-175 (PDB 1ZRL, PDB 1ZRO) and Pkα-DBL 

(PDB 2C6J) structures as search models. Residues of the protein models were all changed to 

serine, except for the alanine and glycine residues. Loop residues were removed, keeping 

only the residues of the largest helices and part of subdomain 1. The modified Pkα-DBL 

model was positioned in the DBL3x unit cell based on the X-ray data from one of our early 
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data sets (P212121, unit cell of 39.98, 83.34, 85.95, 90, 90, 90) using the maximum-

likelihood molecular replacement algorithms of the PHASER software package34. Although 

the PHASER Z-score, the log-likelihood gain and packing considerations indicated that the 

positioning of the model was correct, electron-density maps produced with calculated phases 

did not reveal new protein density beyond the polyserine model. Similar quality solutions 

were obtained in three other X-ray datasets: P212121, unit cell of 41.21 86.97, 91.50, 90, 90, 

90; P212121, unit cell of 39.91, 86.07, 86.95, 90, 90, 90; and P21, unit cell of 40.93, 85.56, 

97.59, 90, 94.4, 90. Using a mask made from the polyserine model, the rotation and 

translation operators relating the molecular replacement solutions of each data set, and 

calculated phases in each data set, we carried out multicrystal averaging to 3.0Å using the 

DMMULTI software35. This markedly improved the electron density, yielding densities for 

side chains and disulfides and allowing the backbone tracing of the five largest helices and 

the assignment of side chains in the H5 and H6 helices. The model was further improved by 

cycles of manual building and refinement36 and completed in the native data shown in 

Table 1. Structures of DBL3x–CSA complexes were solved with the native model in 

PHASER, refined in CNS36 and extensively rebuilt in the O graphics program37.

Flow cytometry

The binding of DBL3x to CSA expressed on the surface of CHO K1 cells (American Type 

Culture Collection) was monitored using flow cytometry38. Cells were harvested by 

trypsinization, washed, and suspended in FACS buffer (PBS containing 0.5% (w/v) BSA 

and 0.1% (w/v) sodium azide). About one million cells (100 μl) were incubated for 30 min 

with 15 μM of DBL3x either in the presence (1 mM) or absence of bovine tracheal CSA or 

shark cartilage CSC (Seikagaku Corp., 400670) at room temperature (20−22 °C). The 

bovine tracheal CSA was not 6-O-desulfated for the flow cytometry or ITC experiments. 

After incubation, cells were washed three times in FACS buffer and treated with anti-

DBL3x mAb for 30 min at 4 °C. The cells were washed twice in PBS and anti-DBL3x 

antibodies were detected with Alexa 488–labeled goat anti-mouse IgG (100 μl) (Invitrogen, 

A11029) diluted 1:250 in FACS buffer. The cells were then incubated for 30 min, washed, 

resuspended in 200 μl FACS buffer and analyzed by FACSort (Becton Dickinson). All the 

incubations and washing steps were performed at 4 °C. Events (75,000) were acquired using 

CELLQuest software (version 3.3; Becton Dickinson), and the data from the live-cell gate 

were analyzed by FlowJo software (version 6.4.1; Tree Star).

Isothermal titration calorimetry

Wild-type and mutant DBL3x with His-tags were dialyzed extensively against filtered (0.22 

μm) 100 mM Na-HEPES buffer, pH 7.5, and were diluted to 30 μM in the same buffer. 

Lyophilized bovine tracheal CSA (reported molecular weight of 50,000 Da) was weighed 

and dissolved at 30 μM in the same Na-HEPES buffer. The 100 mM Na-HEPES, pH 7.5, 

buffer was diluted from a 1 M solution of Na-HEPES (Hampton Research, HR2−733) that 

had been titrated to pH 7.5 by the addition of 0.5 M HCl. The buffer therefore contained 100 

mM Na+, 100 mM HEPES− (sulfonic acid), 50 mM Cl− and about 50 mM HEPES+ 

(titratable amino group). All ITC experiments, crystallizations and crystal soakings used the 

identical 100 mM Na-HEPES buffer.
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We carried out calorimetric titrations using these solutions in a MicroCal VP-ITC 

microcalorimeter. The sample cell of the calorimeter was filled completely with the protein 

solution to a volume of 1.8 ml, and the system was allowed to equilibrate at 30 °C. Aliquots 

(10 μl) of the ligand solution were injected into the protein solution at 5-min intervals. Raw 

ITC data were integrated using the MicroCal Origin software, and background heats from 

titrations of CSA into buffer were subtracted to give corrected heats. Because of the 

heterogeneity of the CSA ligand, the parameters n, K and ΔH could not be reliably derived 

from the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Views of the overall structure of the DBL3x domain. (a) DBL3x is composed of subdomain 

1 (yellow), subdomain 2 (blue) and subdomain 3 (red). Subdomain 2 has four helices (H1–

H4) and subdomain 3 has two long helices (H5 and H6). Disulfide bonds (green) link 

cysteine residues within each subdomain. (b) After a reorientation of 90°, this view of the 

‘top’ of the molecule reveals the thin dimension of the DBL3x domain.

Singh et al. Page 13

Nat Struct Mol Biol. Author manuscript; available in PMC 2009 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The CSA electron density. (a) View of the CSA electron density near helices H5 and H6. 

Residues with side chains within 5Å of the density are identified. A sulfate group (sulfur, 

yellow; oxygen, red) has been placed in the density and is coordinated by the side chains of 

Lys1324, Arg1467 and Lys1504. The 2Fo – Fc map (dark blue) is contoured at 0.9 σ and the 

Fo – Fc map (cyan) is contoured at 2.5 σ. For clarity, Lys1327 is not shown. (b) Stereo view 

showing the CSA density, a sulfate group and the side chains of nearby residues. The 

DBL3x model without ligands was used to calculate phases for these maps.
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Figure 3. 
The lysine residues of DBL3x are important for binding to CSA. (a) DBL3x binds to CHO 

cells that express CSA on their surface in a flow cytometry assay (‘DBL3x’). The 

preincubation of DBL3x with bovine tracheal CSA (‘DBL3x + CSA’) or with a CSA 

hexasaccharide derived from bovine tracheal CSA (‘DBL3x + Hexa’) reduces DBL3x 

binding to the cells to the control level observed with the anti-DBL3x antibody alone (gray 

shaded peak). Preincubation with CSC had no effect on DBL3x binding to the cells (not 

shown). (b) DBL3x dimethylated on each of its lysine residues (‘Methylated DBL3x’) does 

not bind to the CSA-expressing cells, yielding a peak similar to that of the anti-DBL3x 

antibody alone (gray shaded peak). Immunoblotting control experiments showed that 

DBL3x methylation did not block the binding of the anti-DBL3x antibody. (c) Both the 

DBL3x mutant with Lys1507 replaced by alanine (purple peak) and the DBL3x mutant with 

both Lys1507 and Lys1510 replaced by alanine (green peak) show reduced binding to CHO 

cells expressing CSA compared with wild-type DBL3x (magenta peak).
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Figure 4. 
The electrostatic potential surface in the vicinity of the CSA binding site. (a) Ribbon 

diagram of DBL3x overlayed on a semitransparent electrostatic potential surface. Side 

chains of lysines and arginines responsible for the positively charged region are shown in 

red. Subdomain 1 (yellow), subdomain 2 (blue) and subdomain 3 (red) are shown. For 

clarity, Lys1327 is not shown. (b) Positively charged areas (blue) are located on the sides of 

the binding area for the CSA oligosaccharide, shown in same orientation as in a. Lysines 

and arginines with side chains within 5Å of the carbohydrate density are labeled (+, yellow). 

Below the CSA binding site is a region of negatively charged residues (red at arrow), which 

could prevent CSA from occupying the deeper portions of the ‘valley’ between subdomains 

2 and 3. (c) View of a CSA hexasaccharide model39 (PDB 1C4S) placed along the extra 

electron density seen in the crystals. The hexasaccharide shown here is approximately 30Å 

in length and similar to the length of the observed electron density. Lys1327 is shown.
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Table 1

Data collection and refinement statistics

Native DBL3x Complexed with CSA

Data collection

Space group P212121 P212121

Cell dimensions

    a, b, c (Å) 40.67, 84.20, 86.49 42.52, 86.76, 101.57

Resolution (Å) 40−1.9 (2.01−1.90)* 20−2.8 (2.97−2.80)

Rsym 7.7 (90.5) 6.9 (43.5)

I / σI 16.6 (2.4) 12.5 (2.85)

Completeness (%) 99.1 (94.8) 98.5 (98.0)

Redundancy 9.2 (7.6) 3.7 (3.6)

Refinement

Resolution (Å) 20−1.9 20−2.8

No. reflections 23884 9717

Rwork / Rfree 0.22 / 0.25 0.30 / 0.35

No. atoms

    Protein 2368 2244

    Ligand - 5 (SO4)

    Water 98 -

B-factors

    Protein 40.8 65.0

    Water 40.3 -

R.m.s. deviations

    Bond lengths (Å) 0.007 0.009

    Bond angles (°) 1.1 1.4

*
Values in parentheses are for highest-resolution shell.
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