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Healthy persons hold a very complex system for controlling energy homeostasis. The
system functions on the interconnected way between the nutritional, endocrine, neural,
and epigenetic regulation, which includes the microRNAs (miRNAs). Currently, it is well
accepted that experiences of early life stress (ELS) carry modification of the central
control of feeding behavior, one of the factors controlling energy homeostasis. Recently,
studies give us a clue on the modulation of eating behavior, which is one of the main
factors associated with the development of obesity. This clue connected the neural
control through the serotonin (5HT) and dopamine (DA) systems with the fine regulation
of miRNAs. The first pieces of evidence highlight the presence of the miR-16 in the
regulation of the serotonin transporter (SERT) as well as the receptors 1a (5HT1A) and
2a (5HT2A). On the other hand, miR-504 is related to the dopamine receptor D2 (DRD2).
As our knowledge advance, we expected to discover other important pathways for the
regulation of the energy homeostasis. As both neurotransmission systems and miRNAs
seem to be sensible to ELS, the aim of this review is to bring new insight about the
involvement of miRNAs with a central role in the control of eating behavior focusing on
the influences of ELS and regulation of neurotransmission systems.
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maternal separation; NAcc, nucleus accumbens; NPY, neuropeptide Y; PLC, prelimbic cortex; PND, postnatal day; POMC,
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INTRODUCTION

Almost over one-third of the world’s population is overweight
or obese (Chooi et al., 2019). This condition negatively affects
the life quality, productivity, and costs with public health. One
of the main aspects of this body weight regulation is feeding
behavior (Remmers and Delemarre-van de Waal, 2011) which
involves neural networks such as the serotonergic (5HT) and
dopaminergic (DA) systems (Meguid et al., 2000). Several studies
show that the disruption of those systems is strongly associated
with increased food intake and/or preference for palatable food,
which are important factors contributing for the onset of obesity
(van Galen et al., 2018). Gene expression of both 5HT and DA
systems can be influenced by miRNAs (Launay et al., 2011; Shi
et al., 2014), and in this case, they would be the key regulatory
molecules in the comprehension of the pathophysiology of the
feeding behavior.

MiRNAs are small non-coding RNAs with an average
length of approximately 22 nucleotides (Bartel, 2004). They
regulate post-transcriptional gene expression by binding to
the 3′UTR of mRNAs, some miRNAs also regulate the
expression of another or several other miRNAs (Truscott
et al., 2016), and even themselves (Zisoulis et al., 2012).
Generally, miRNA specifically inhibit protein synthesis either
by repressing translation or by inducing deadenylation and
degradation of target mRNA (Bartel, 2004) but were also
reported to activate translation (Huntzinger and Izaurralde,
2011). Each miRNA has the capacity to target hundreds of
diverse transcripts, and a single messenger can be modulated
by several miRNAs, this represents a highly coordinated system
and fine-tuned regulation of protein expression (Krol et al., 2010;
O’Carroll and Schaefer, 2013).

On the other hand, a healthy environment during the
beginning of life is crucial for a proper development in
mammals (Resnick et al., 1979; Morgane et al., 1993 2002).
Maternal nutritional and emotional factors are critical during
periconceptional and perinatal periods (Morgane et al., 1993;
Chen and Baram, 2016). Early life stress (ELS) experiences
can lead to long-term neurobehavioral complications. Both
pre-clinical and clinical studies identify the influence of ELS
on the development of several psychiatric disorders, including
perturbation of feeding behavior, eating disorders and obesity
(Chen and Baram, 2016; Entringer et al., 2016). Interestingly,
the miRNAs are also sensible to ELS through several models, as
showed on Table 1. In this context, this review brings a potential
role of the miRNAs in the onset of obesity through modulation of
5HT and DA in response to ELS.

SEROTONIN: ROLE ON FEEDING
BEHAVIOR, INFLUENCES OF ELS, AND
MIRNA REGULATION

The 5HT system includes receptors, transporters and enzymes
involved in the metabolism of serotonin (5-Hydroxytryptamine),
and it regulates several functions in the organism as locomotors
activity, body temperature, wake-sleep cycle, and feeding

behavior (Lam et al., 2010; Olivier, 2015). Regarding the control
of eating behavior, serotonin has a well-established anorectic
role through promotion of satiety. In the arcuate nucleus of
the hypothalamus, serotonin acts in different ways; it acts
on 5HT1B, promoting inhibition of neurons that produce
neuropeptide Y (NPY) and the cocaine and amphetamine-
related transcript (CART), which are orexigenic. It also acts
on 5HT2C, promoting activation of neurons that produce
pro-opiomelanocortin (POMC) and the peptide related to the
agouti gene (AgRP), which are anorexigenic, thus promoting
satiety signaling (Heisler et al., 2006). In addition, recent
studies also refer that serotonin has a role in the hedonic
regulation of eating behavior. Receptors such as 5HT6 in
areas of the mesocorticolimbic circuit have been associated
with motivational feeding behavior (da Silva et al., 2017).
The impairments of the homeostasis of the serotonergic
system are associated with disorders of eating behavior, usually
associated with increased food intake, either by homeostatic
or hedonic changes. In particular, the serotonergic system
appears extremely sensitive to environmental changes during
the development of the organism, and several studies have
shown that ELS impairs the function of the 5HT system
(de Lima et al., 2020).

Models of ELS in animals are usually associated with
deprivation of the mother–infant relationship, such as in
maternal separation (MS) and early weaning (EW) models
(Kikusui and Mori, 2009; Harrison and Baune, 2014). Previous
studies from our laboratory show that the MS disrupts the 5HT
system. In middle aged females, it increases the 5HT1B gene
expression in the hypothalamus, associated with decreased
food intake (de Souza et al., 2020a), and in adult males,
we observed a decreased action of fluoxetine on food intake
(de Souza et al., 2020b). In addition, MS promotes decreased
5HT concentration in hypothalamus and amygdala of young
animals, associated with increased palatable food intake (de
Lima et al., 2020). Together, these data suggest that MS alter
the serotonergic system function, contributing to disorders of
feeding behavior. On the other hand, we have been able to
associate the EW with changes in gene expression of several
components of the 5HT system in male and female rats, such
as SERT, 5HT1B, and 5HT2C in hypothalamus and brainstem.
Based on the patterns of expression in the brainstem and
response to fenfluramine, we suggested a hypofunction of
the serotonergic system in the EW animals (Tavares et al.,
2019, 2020a,b). All these changes in the 5-HT system were
accompanied by alterations on feeding behavior, which indicate
that the 5HT system control of feeding behavior can be
modulated by ELS, which can be directly linked to the
onset of obesity.

Recently, studies have deepened about these compensatory
changes and epigenetic modifications have been extensively
investigated. In this respect, miRNAs have been shown to be
important regulators y/o mediators of gene expression. In the
case of depression, it is currently accepted that several miRNAs
modulate the activity of the serotonergic system, but little is
known about these regulators in the context of eating behavior.
As far as we know, miR-16 is able to bind the SERT messenger
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TABLE 1 | Influences of ELS on miRNA activity.

ELS model Subjects Region Outcome Authors

Pre-clinical studies

MS Rat Hippocampus Increased miR-16 Bai et al., 2012

MS Mice Cortical neurons Impaired response of miR-212 to the learning
process on a cocaine conditioned place
preference test

Viola et al., 2016

MS + CUS Rat NAcc Increased miR-504 Zhang et al., 2013

MS Rat mPFC Increased REST4 Uchida et al., 2010

Morphine + Apnea + MS Mice Hippocampus Decreased miR-204-5p, miR-455-3p,
miR-448-5p, and miR-574-3p

McAdams et al., 2015

CUMS Rat Basolateral amygdala Increased rno-miR-124a Xu et al., 2017

Increased maternal care Rat Hypothalamus increased rno-miR-488, rno-miR-144, and
rno-miR-542-5p and decreased rno-miR-421
and rno-miR-376b-5p

Vogel Ciernia et al., 2018

Protein malnutrition Mice Hypothalamus increased mmu-miR-187-3p,
mmu-miR-369-3p and mmu-miR-132-3p

Berardino et al., 2019

Unpredictable maternal
separation combined with
maternal stress

Mice Sperm Changes in miRNA transmitted to F2 generation Gapp et al., 2014

Prenatal stress Rat Hippocampus Decreased hsa-miR-125b-1-3p Cattane et al., 2019

Clinical studies

Childhood maltreatment both sexes Leukocytes Methylation changes in CpGs close to region
coding miR-124-3

Prados et al., 2015

Childhood abuse Men aged 45 years
old

Whole blood Methylation changes in promoter region of 39
miRNAs

Suderman et al., 2014

Child abuse European adults of
both sexes

Buccal mucosa cells Association between the polymorphism rs3125
of 5HT2A and brooding. This region is
predicted to be targeted by miR-1270,
miR-1304, miR-202, miR-539 and miR-620

Eszlari et al., 2019

Childhood trauma Adult of both sexes Blood cells Decreased hsa-miR-125b-1-3p Cattane et al., 2019

Childhood trauma Adult both sexes Human hippocampus
progenitor cells

Decreased hsa-miR-125b-1-3p Cattane et al., 2019

ELS, early life stress; MS, maternal separation; CUS, chronic unpredictable stress; CUMS, chronic unpredictable mild-life stress; NAc, nucleus accumbens; mPFC, medial
pre-frontal cortex; CpGs, methylated cytosines followed by guanine nucleotide sites.

(Table 2) and silence its expression in humans and animals
(Baudry et al., 2010; Moya et al., 2013; Song et al., 2015; Shao
et al., 2018). The relationship between miR-16 and SERT is
even modulated by pharmacological antidepressant treatment
and also alternative treatments as the electroacupuncture; besides
different responses according to the affected brain area, these
treatments improve the level of depressive behaviors, suggesting
a highly specific regulation (Baudry et al., 2010; Zhao et al.,
2019). SERT appears to be a key piece of regulation, as different
miRNAs can modify its expression, as the mmu-miR-135 (Issler
et al., 2014), rno-miR-18a-5p, rno-miR-34a-5p, rno-miR-135a-
5p, rno-miR-195-5p, rno-miR-320-3p, rno-miR-674-3p, and rno-
miR-872-5p (Zurawek et al., 2017). This relationship between
miR-16 and SERT is interesting, since SERT activity is directly
related to serotonergic signaling. SERT recaptures the remaining
amount of serotonin from the synaptic clefts, and an increase
in its activity may mean a decrease in serotonergic signaling.
In depression, has been shown that decreased levels of miR-16
and elevated levels of SERT are associated with the pathology
by promoting a reduction in serotonergic signaling. Drugs that
block SERT activity and increase serotonin levels are used to

treat this depressive behavior. Interestingly, the same drugs are
used to treat obesity (Halford et al., 2012) as they also promote
a reduction in food intake. This evidence gives a primary role to
miR-16 that may also be a candidate to modulate SERT activity in
the context of eating disorders.

In addition to SERT, miRNAs modulate the activity of other
components of the serotonergic system (Table 2), such as 5HT1B,
5HT1A, 5HT4, 5HT2C, and 5HT7. The 5HT1B receptor is
advised as a target of the miR-96 (Jensen et al., 2009). 5HT1A
seems to be targeted by miR-16, miR-135 (Liu et al., 2017), and
has-miR-26a-2 (Xie et al., 2019). The 5HT4 receptor acquire
decreased expression in response to miR-103, has-miR-15b and
a mix containing hsa-miR-103, has-miR-15b and hsa-miR-16
(Wohlfarth et al., 2017). In addition, miR-34 appears to bind
the receptor 5HT2C (Andolina et al., 2016), hsa-miR-16 appears
to reduce 5HT2A expression (Yang et al., 2017), and miR-
29a decreases the expression of 5HT7 (Volpicelli et al., 2019).
The impairment of the activity of these receptors is associated
with disrupted food intake either by homeostatic or hedonic
mechanisms. 5HT1A, 5HT1B, and 5HT2C are strongly associated
with satiety signaling, and several studies report that their
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TABLE 2 | Components of the serotonergic and dopaminergic systems and their
regulatory-associated miRNAs.

Components miRNAs Authors

Serotonin or 5-Hydroxytryptamine (5HT) system

SERT
(SLC6A4/5HTT)

miR-16, miR-135,
miR-18a-5p, miR-34a-5p,
miR-135a-5p, miR-195-5p,
miR-320-3p, miR-674-3p,
and miR-872-5p.

Baudry et al., 2010; Launay
et al., 2011; Moya et al., 2013;
Issler et al., 2014; Song et al.,
2015; Zurawek et al., 2017;
Shao et al., 2018; Zhao et al.,
2019

5HT1A miR-16, miR-135, and
miR-26a-2.

Liu et al., 2017; Xie et al., 2019

5HT1B miR-96 Jensen et al., 2009

5HT2A miR-16 Yang et al., 2017

5HT2C miR-34 Andolina et al., 2016

5HT4 miR-103, miR-15b, and a
mix containing miR-103,
miR-15b, and miR-16

Wohlfarth et al., 2017

5HT7 miR-29a Volpicelli et al., 2019

Dopamine (DA) system

DRD1 miR-504, miR-105,
miR-15a, miR-15b, miR-16
and miR-142-3p

Tobón et al., 2012, 2015;
Zhang et al., 2013; Zhao et al.,
2017; Wu et al., 2020

DRD2 miR-143, miR-200a,
miR-504, has-miR-9 and
miR-326

Zhang et al., 2013, 2015; Shi
et al., 2014; Gangisetty et al.,
2017; Wu et al., 2018;
Mavrikaki et al., 2019; Wang
et al., 2019

DRD3 let-7d Bahi and Dreyer, 2018

DAT miR-137 and miR-491 Jia et al., 2016

SERT, solute carrier family 6 member 4 (SLC6A4/5HTT), serotonin transporter;
5HT1A, 5-Hydroxytryptamine receptor 1A; 5HT1B, 5-Hydroxytryptamine receptor
1B; 5HT2C, 5-Hydroxytryptamine receptor 2C; 5HT4, 5-Hydroxytryptamine
receptor 4; 5HT7, 5-Hydroxytryptamine receptor 7; DRD1, dopamine receptor
D1; DRD2, dopamine receptor D2; DRD3, dopamine receptor D3; DAT, dopamine
transporter, solute carrier family 6 member 3 (SLC6A3).

disruption promotes increased food intake. On the other hand,
5HT4 is associated with hedonic modulation of food intake
and obesity. Thus, the modulation of these receptors through
miRNAs can also be associated with the onset of eating disorders
leading to obesity.

DOPAMINE: ROLE ON FEEDING
BEHAVIOR, INFLUENCES OF ELS, AND
MIRNA REGULATION

The dopaminergic system, as well as the serotoninergic system,
comprises a set of neurotransmitter, enzymes, receptors, and
dopamine transporter (DAT). On the other hand, neurons that
synthesize dopamine can be found in the brainstem and can
be divided into three groups, which forms the Nigro Striatal
system, the mesocorticolimbic system, and the mesocortical
system (Ogawa and Watabe-Uchida, 2018). The principal role
on feeding behavior is taken by the mesocorticolimbic system
(Wise, 1989; Berridge and Kringelbach, 2008). Dopaminergic
neurons are known to be involved in emotion-based behavior

including motivation and reward (Phillips et al., 2008). Therefore,
in the context of the feeding behavior, this system is mainly
related to the hedonic component of feeding, but evidences also
point out that dopamine is a key component on hypothalamic
regulation of the homeostatic eating behavior (Meguid et al.,
2000; Ikeda et al., 2018).

The DA system is sensible to ELS and its disruption is
associated with several psychiatric disorders, such as eating
disorders and obesity (Naef et al., 2015). Our previous
study showed that DRD1 and DRD2 gene expression were
increased in the brainstem of adult rats, accompanied by
higher palatable food intake after MS (de Souza et al., 2018).
The MS also modulates the DA system in other brain areas,
such as PLC, NAcc, and striatum, changing the density of
immunoreactive fibers of TH, and the mRNA expression of
DRD2, DRD1, and DRD5 (Majcher-Maślanka et al., 2017). On
the other hand, EW increases DRD1 mRNA expression in
the hypothalamus and brainstem and DRD2 in the brainstem
of middle-aged male rats (Tavares et al., 2020b). In all of
these studies, disrupted patterns on feeding behavior are
observed, indicating that alterations in the dopaminergic system
can be one of the underlying mechanisms that lead to
behavioral disorders.

Increased evidence points out that several components of the
dopaminergic system are influenced by some miRNAs (Table 2).
DRD1 appears to be regulated by miR-504 (Zhang et al., 2013),
rno-miR-105 (Zhao et al., 2017), and for the cluster of hsa-miR-
15a-5p, hsa-miR-15b-5p, and hsa-miR-16-5p, and mmu-miR-
142-3p (Tobón et al., 2012, 2015). The expression of the DRD2
is modified by miR-143-3p (Wang et al., 2019), miR-200a (Wu
et al., 2018), miR-504 (Zhang et al., 2013), hsa-miR-9, and hsa-
miR-326 (Shi et al., 2014; Zhang et al., 2015; Gangisetty et al.,
2017; Mavrikaki et al., 2019). Both receptors, DRD1 and DRD2,
are associated with control of food intake, either homeostatic
or hedonic, in several areas of the brain (Wise, 1989; Ikeda
et al., 2018) which indicates that its modulation through miRNAs
can modulate the food intake. In addition, overexpression of
let-7d is negatively correlated with the expression of DRD3 in
the hippocampus of mice (Bahi and Dreyer, 2018). The activity
of the DRD3 is controversy in the context of food intake, but
some evidences associate it with eating disorders and decreased
food intake (Thomsen et al., 2017; González et al., 2019). The
expression of DAT, the major controller of dopamine levels in
the synaptic clefts, is post-transcriptionally regulated on cell
culture of dopaminergic neurons by miR-137 and miR-491 (Jia
et al., 2016). This transporter acts like SERT, reuptaking the
dopamine from the synaptic cleft, so its function is extremely
necessary to normal DA signalization, even in the context of
eating behavior. On the other hand, the reduction of Dicer, a
miRNA-processing ribonuclease III, in the ventral midbrain of
DA neurons promotes changes in the miRNAs profile and altered
the survival capacity of these dopaminergic neurons (Chmielarz
et al., 2017). Together, these evidences extended the susceptibility
of the DA system to the regulation of miRNAs, which can lead
to modulation of eating behavior and may be associated with
eating disorders.
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PERSPECTIVES: ROLE OF THE MIRNAS
ON THE ONSET OF OBESITY THROUGH
5HT AND DA SYSTEMS’ DISRUPTION IN
THE CONTEXT OF ELS

In addition to knowing that components of the 5HT and
DA neurotransmission systems are susceptible to ELS, some
evidence also shows that miRNAs have their expression and
activity influenced by ELS, which is summarized in Table 1.
Both, pre-clinical and clinical studies affirm that childhood
trauma could be associated with the modulation of miRNA,
as the case of the miR-16 and miR-504 which have their
control of the serotonin and dopamine impaired by stress,
with consequences such as depression, anhedonia, and body
weight gain. However, more studies are needed to understand
the full picture, specifically in the context of the control
of the feeding behavior, which is directly involved in the
development of obesity.

Conversely, both clinical and pre-clinical studies demonstrate
that ELS is able to alter SERT activity (Wankerl et al., 2014; Van
Der Knaap et al., 2015; Tavares et al., 2019, 2020a). Interestingly,
differences in SERT activity are observed in obesity, both in
humans and animals (Giannaccini et al., 2013; Borgers et al.,
2014; Zha et al., 2017). For example, the density of SERT is
reduced in obese humans (Giannaccini et al., 2013; Borgers
et al., 2014) and increased in rats with abdominal obesity
who were exposed to a diet rich in simple carbohydrates
(Spadaro et al., 2015). In addition to being involved in the
pathophysiology of obesity and being sensitive to ELS, several
lines of evidence in the literature show that SERT is a target
for miR-16 and propose an important role in regulating its
activity (Baudry et al., 2010). On the other hand, animal
studies demonstrate that the 5HT1A receptor is also modulated
by ELS (Bravo et al., 2014; Razoux et al., 2017) and has
increased density in the hippocampus and hypothalamus of rats
chronically submitted to a Westernized diet (Yu et al., 2018).
Interestingly, 5HT1A is also the target of miR-16, which has its
expression modulated by ELS (Bai et al., 2012). The receptor
5HT2A is, as well, modulated by ELS in animals and humans
(Rentesi et al., 2013; Parade et al., 2017) and involved with the
pathophysiology of obesity (Rosmond et al., 2002; Huang et al.,
2004). Interestingly, the 5HT2A is also targeted by the miR-16
(Yang et al., 2017). From these observations, we believe that miR-
16 is an excellent candidate for moderating changes in SERT,
5HT1A, and 5HT2A due to ELS, in the context of the altered
eating behavior.

Regarding the dopaminergic system, the DRD1 and DRD2
actively participate in the regulation of food intake, especially
with regard to palatable foods, as these are related to the food
reward system (Meguid et al., 2000; Berridge et al., 2009; Volkow
et al., 2011). Changes in this reward system are linked to eating
behavior disorders, with changes in the activity of DRD1 and
DRD2 being observed in humans and animals (Guo et al., 2014;
Rivera et al., 2015; Gaiser et al., 2016; de Souza et al., 2018;
Romanova et al., 2018; Tavares et al., 2020b). In addition, both

receptors are modulated by ELS (de Souza et al., 2018; Tavares
et al., 2020b). Interestingly, we observed that miR-504 targets
both DRD1 and DRD2, with their expression being altered by ELS
(Zhang et al., 2015). Additionally, DRD1 has also been identified
as a target for miR-16 (Wu et al., 2020). Thus, we believe that
miR-504 and miR-16 modulate DRD1 and DRD2, in the context
of eating disorders associated with ELS.

In summary, according to the evidence reported, we
can infer that the serotonergic and dopaminergic systems
undergo regulation of their activity through post-transcriptional
modulation by miRNAs. Both systems participate in the
physiological and pathological processes of eating behavior,
which leads us to believe that miRNAs may be behind
several changes in eating behavior as observed in several
disorders such as obesity. Several studies point out that
the genesis of these disorders is largely associated with
experiences of stress early in life. Neonatal stress is already
well described as a modulator of the serotonergic and
dopaminergic systems associated with disorders of eating
behavior, as well as a modulator of expression and activity of
miRNAs. In addition, we know that miRNAs participate in the
pathological processes of several psychiatric disorders. Thus,
we establish here a relationship between neonatal stress and
the modulation of the serotonergic and dopaminergic systems,
through post-transcriptional regulation by miRNAs, as a possible
pathophysiological mechanism behind eating behavior disorders.
Future studies are needed to investigate this relationship and
provide further support for the scientific community in the
search for understanding and treatment of pathologies of
eating behavior.
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