
Automatic Detection of Whole Night Snoring Events
Using Non-Contact Microphone
Eliran Dafna1, Ariel Tarasiuk2, Yaniv Zigel1*

1 Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer–Sheva, Israel, 2 Sleep-Wake Disorders Unit, Soroka University Medical Center, and

Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel

Abstract

Objective: Although awareness of sleep disorders is increasing, limited information is available on whole night detection of
snoring. Our study aimed to develop and validate a robust, high performance, and sensitive whole-night snore detector
based on non-contact technology.

Design: Sounds during polysomnography (PSG) were recorded using a directional condenser microphone placed 1 m
above the bed. An AdaBoost classifier was trained and validated on manually labeled snoring and non-snoring acoustic
events.

Patients: Sixty-seven subjects (age 52.5613.5 years, BMI 30.864.7 kg/m2, m/f 40/27) referred for PSG for obstructive sleep
apnea diagnoses were prospectively and consecutively recruited. Twenty-five subjects were used for the design study; the
validation study was blindly performed on the remaining forty-two subjects.

Measurements and Results: To train the proposed sound detector, .76,600 acoustic episodes collected in the design study
were manually classified by three scorers into snore and non-snore episodes (e.g., bedding noise, coughing, environmental).
A feature selection process was applied to select the most discriminative features extracted from time and spectral domains.
The average snore/non-snore detection rate (accuracy) for the design group was 98.4% based on a ten-fold cross-validation
technique. When tested on the validation group, the average detection rate was 98.2% with sensitivity of 98.0% (snore as a
snore) and specificity of 98.3% (noise as noise).

Conclusions: Audio-based features extracted from time and spectral domains can accurately discriminate between snore
and non-snore acoustic events. This audio analysis approach enables detection and analysis of snoring sounds from a full
night in order to produce quantified measures for objective follow-up of patients.
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Introduction

Partial or complete collapse of the upper airway during sleep

has different effects on the human body, ranging from noisy

breathing (simple snoring) [1] to obstructive sleep apnea (OSA),

which can lead to considerable cardiovascular morbidity [2,3].

Snoring is the most common symptom of sleep-disordered

breathing. By age 60, snoring adversely affects 60% of men and

40% of women [4]. It is caused by the vibration of soft tissue in the

upper airways involving anatomical structures such as the soft

palate, uvula, and pharynx [5,6].

The most common method for evaluating snoring history uses

self-report questionnaires [4,7,8]. The estimated prevalence of self-

reported snoring in the general population extends over a wide

range from 16% to 89% [9–13]. This prevalence depends on

awareness, age, culture, and partner complaints [4,7,14]. Early

work has shown a poor correlation between measured loudness of

snoring and subjective appreciation by different observers. It was

concluded that to a large extent snoring is ‘‘in the ear of the

beholder’’ [4]. Thus, reliable snoring reporting cannot be made

based solely on a patient’s (or partner’s) history of noisy respiration

during sleep [8,11,15], or with sleep laboratory technician reports

[4]. An additional limitation of questionnaires is that a large

portion of the subjects respond that they ‘‘do not know’’ if they

snore [10]. To overcome these limitations, some clinicians ask the

patient to supply an audio recording of their snoring, for example,

prior to snore reduction surgery or to avoid operating on a

‘‘snorer’’ when in fact the problem lies with the bed partner being

disturbed by essentially normal nocturnal breathing noise [1].

One of the main goals of sleep medicine today is to improve

accessibility to sleep-disordered breathing diagnosis and treatment.

The gold standard for evaluating sleep-disordered breathing is the

multichannel polysomnography (PSG) study [16]. PSG on snorers,

with no additional complaints suggestive of sleep-disordered

breathing, will be normal in up to 80% of studies [7,15].

However, due to difficulties associated with PSG, such as its long
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waiting list and costs, there is an urgent need for simple and

reliable technology for snore detection and analysis. Audio signal

analysis of snore sounds can be deployed in different tasks, such as

assessment of the outcome of surgical treatment [17,18]. Recently

several papers have proposed OSA detection systems [19] and

apnea-hypopnea index (AHI) estimation based on whole-night

audio recording of snoring [20,21]. Furthermore, in order to

reliably evaluate the severity and variability of an individual’s

snore, the recording of an entire night is required. Hence,

developing an automatic snore detection method to analyze full-

night recordings in a timely and accurate manner would be

advantageous.

A limited number of studies have addressed this issue of

automatic detection and classification of snore signals, and even

less is known about snore detection using ambient (non-contact)

microphone technology. Several snore/non-snore classification

methods have been suggested using different techniques to analyze

snore sound events. These include pitch and formants, features

regarding spectrum modeling such as Mel-frequency cepstral

coefficients (MFCC), linear predictive coding (LPC) [22], and

standard acoustic measures such as sound intensity [13]. Most of

these studies were conducted without separate groups of subjects

for their design and validation studies. Duckitt et al. [23] recorded

sound with an ambient microphone from 6 subjects that was

segmented into snoring episodes, breathing, duvet noise, and

silence periods using hidden Markov models and spectral-based

features. Cavusoglu et al. [24] proposed a method for snore

detection involving 15 subjects for both design and validation

study using a linear regression fed by sub-band spectral energy

distributions processed by principal component analysis. Karuna-

jeewa et al. [25] proposed a method for classifying snores and

breathing sounds using the mean and covariance of four features

extracted from time and spectral domains. Azarbarzin et al. [26]

proposed an unsupervised snore sound extractor based on a fuzzy

C-means clustering algorithm and achieved higher accuracy using

a tracheal microphone, due to a higher signal-to-noise ratio (SNR)

[27].

The need for an agreed upon approach to extract and analyze

whole-night snoring sounds is of major importance to the field of

sleep-disordered breathing. Snore sounds vary significantly; in

some cases the snore sound may be soft, but in others it can be

very loud [1,4,28–34]. Our study aimed to develop and validate a

novel robust snore detection system (algorithm) using a non-

contact technology. This detector is based on signal enhancement

and features extracted from different domains as they have

complementary information about snore/non-snore discrimina-

tion. The snore detection algorithm is based on three major steps:

1) Signal enhancement and segmentation, 2) Feature extraction

that included specially designed novel features for characterizing

snore events; the final features were selected using a comprehen-

sive feature selection technique that automatically revealed the

most prominent features, and 3) Detection of snore events using an

AdaBoost classifier [35] that was trained using thousands of snore

and non-snore events. The novelty of our proposed method is its

automatic detection of every snore event from the whole-night

audio recording using non-contact technology. Moreover, this

approach includes comprehensive sets of features involving time

and spectral domains, which were selected using a feature selection

algorithm. In addition, we propose an objective score for

quantifying snore intensity.

Methods

This article has online Methods Supporting File S1.

Setting
A university affiliated sleep–wake disorder center and biomed-

ical signal processing laboratory. The Institutional Review

Committee of the Soroka University Medical Center approved

the study: protocol number 10621. Informed consent was obtained

from all subjects.

Subjects
We prospectively recruited 67 consecutive adults (aged 19 to 87

years, 27/40 women/men) referred to the Sleep–Wake Unit at

Soroka University Medical Center in Beer Sheva, Israel for

routine polysomnographic (PSG) sleep-disordered breathing diag-

nosis, starting in February 2008. We selected the first 25 subjects

(patients) for the system design (training) study. The remaining 42

subjects (beginning in May 2009) were included in the blind

validation study.

PSG study
Prior to nocturnal in-laboratory PSG, all subjects completed a

validated self-administered sleep questionnaire [3,36–38]. The

Epworth Sleepiness Scale (ESS) was used to evaluate daytime

sleepiness [39]. Overnight PSG was performed according to

previously described methods [3,40]. Subjects reported to the

laboratory at 20:30 and were discharged at 06:00 the following

morning. They were encouraged to maintain their usual daily

routine and to avoid any caffeine and/or alcohol intake on the day

of the study. Shift workers did not perform the PSG study in the

week following their shift duty. The PSG study included

electroencephalography, electrooculography, and electromyogra-

phy applied over the submental muscles and bilateral anterior

tibialis muscles for detection of periodic limb movements,

electrocardiography, respiratory activity (abdomen and chest

efforts belt), oxygen saturation, and snore level intensity (Quest

Technology 2700, Orlando, FL, USA). PSG scoring was done by a

trained technician and underwent a second scoring by one of the

investigators (AT). Apneas and hypopneas were scored according

to the American Academy of Sleep Medicine criteria [16].

The experimental system
We have developed a system for snore detection that utilizes a

non-contact microphone for audio signal recordings taken from a

full night at a sleep laboratory. The acquired audio signals were

further used to develop the snore detection algorithm. A digital

audio recorder (Edirol R-4 Pro, Bellingham, WA, USA) with a

directional microphone (RØDE, NTG-1, Silverwater, NSW,

Australia) placed at a distance of 1 meter above head level was

used for audio recording. An additional audio recorder (handy

Olympus LS-5) was placed on the dresser beside the patient’s head

in the laboratory and used to validate the system in a non-

laboratory setting. The audio signals were stored along with the

PSG signals for later analysis. Each audio signal was synchronized

with the PSG study at 15 ms resolution. The synchronization was

performed via a cross-correlation technique between the PSG

snore intensity level channel and the digital audio signal (after

energy extraction). The main purpose was to synchronize all PSG

channels to the digital audio signal, including hypnogram and

respiratory effort channels, to support and assist the manual

labeling of snore events. Fig. 1 shows the block diagram of the

proposed snore detection algorithm for the design and validation

phases of the study. In the snore detection algorithm, an adaptive

noise reduction algorithm was applied for signal enhancement in a

pre-processing stage. For system design, snore and non-snore

events (see below) were manually labeled and used to train an

Snoring Events Detection
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AdaBoost classifier (see below) fed by acoustic features from time

and spectral domains. Using a feature selection algorithm on the

design group, the best features were selected and used in the

validation phase as well.

The Snore Detection Algorithm
Pre-processing (Fig. 1). For design and validation phases,

the acquired audio signals recorded in the sleep lab were digitized

at a sampling frequency of 44.1 kHz, PCM, and 16 bits per

sample, which is the minimum sampling rate of the audio

recorder. All audio signals were down-sampled to 16 kHz, and

each audio signal underwent an adaptive noise suppression

(spectral subtraction) process based on the Wiener-filter. This

process relies on automatically tracking background noise

segments in order to estimate their spectra and subtracting them

from the audio signal [41]. In this study, a noise spectral template

was subtracted from each audio frame (40 ms). This template was

initially estimated from the lowest energy frame of the first 10 sec

of the audio signal and was updated during the adaptive noise

suppression process. Each frame’s frequency component was

suppressed by a specific value (suppression factor) derived from the

noise spectral template, and it was limited to the range [0,

225 dB] in order to prevent a major distortion when low SNR

was present (see a detailed description in the online supporting File

S1).

Event detection and segmentation (Fig. 1). Audio events

(snore and non-snore events) were automatically detected and

segmented using an adaptive energy threshold. These audio events

were segments with higher energy compared to the remaining

(diminished) background noise in the audio signal. A detailed

block diagram of the event detection and segmentation module is

presented in the online supplement (Fig. S1 in File S1). Initially,

the full-night audio signal was divided into one-minute sections,

and for every section, an energy vector was calculated using energy

frames (frame size: 60 ms with 75% overlap). A section-related

energy threshold (adaptive threshold) eth was calculated using a

histogram of the energy vector histenergy(e). Since the prevalence of

the (remaining) background noise frames was greater relative to

the audio events (snore/non-snore), the energy value related to the

peak of the histogram emax, was located on the low energy scale:

emax~ arg max
e
fhistenergy(e)g: ð1Þ

The energy threshold (eth.emax) was set to the energy value

corresponding to one-tenth of the peak amplitude:

histenergy(eth)~0:1|histenergy(emax) ð2Þ

A five-order median filter was applied to the threshold values

(vector) to smooth outliers. Event detection – Energetic audio events

were detected as a group of consecutive energy frames that

surpassed the section-related threshold. Event segmentation – In order

to find the exact event boundaries (edges), the time edges of each

audio event were calculated using an estimated slope technique.

An illustration of the segmentation process is shown in Fig. 2. This

technique included the estimation of a slope from ten consecutive

energy frames (150 ms window) – a linear regression fitting line

was calculated from the consecutive energy frames in order to

estimate its slope. This process was repeated and progressed

outside the event boundaries one frame at a time for as long as the

slope did not change its sign. Next, a fragmentation test was applied.

In case the detected audio events were too close to each other

(,200 ms), they were suspected to be one fragmented event (such

as split snores). This fragmentation test involved a spectral

similarity measure for the 100 ms adjacent windows of the

suspected events (the ending part from the first event and the

initiating part from the following event). In case of similarity, the

events were merged to form one event. Finally, an event duration test

was applied – only 200 ms to 3500 ms events were used in this

study since we noticed that the duration of .99% of the manually

labeled events fell in this range. Fig. 3 shows snore statistics based

on manual labeling of snoring events. For more information and

Figure 1. Block diagram of the study protocol. Upper panel – design phase (n = 25). Lower panel – validation phase (n = 42).
doi:10.1371/journal.pone.0084139.g001

Snoring Events Detection

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e84139



demonstration of the event detection process see Fig. S1 and S2 in

File S1.

Manual labeling of events (Fig. 1). This stage was essential

for designing and evaluating the snore detection algorithm.

Therefore, an ad hoc graphical user interface (GUI) for manual

event classification based on visual and acoustic perception of the

event itself and its surrounding context was designed. In this GUI,

audio signals were presented in the time and frequency domains

accompanying the synchronized PSG’s respiratory effort signals.

Using these signals, we were able to label each audio event as an

Figure 2. Audio event (snore/non-snore) segmentation. A) The initial segmentation edges of the audio event. B) The modified segmentation
edges when applying the segmentation procedure. The green solid line represents the slope fitting of ten consecutive frames from both sides of the
event. This process is repeated and progressed outside the event boundaries one frame at the time for as long as the fitted slope did not change its
sign (6).
doi:10.1371/journal.pone.0084139.g002

Figure 3. Snore characteristics. A) Snore duration, B) Snore intensity. Data was collected during design phase (n = 25). 99.9% of snoring event
durations were in the range of 200 to 3500 ms. 99.2% of the snore intensity was in the range of 25 dB to 75 dB.
doi:10.1371/journal.pone.0084139.g003

Snoring Events Detection
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inspiratory sound (snore) or non-inspiratory sound (exhale sound

or noise). Fig. 4 shows an example of signals from a 57-year-old

man; note that the prominent audio events (Fig. 4B) were

inspiratory episodes.

Three research assistants (including one of the authors, ED)

performed manual annotation of the audio signals in order to train

and evaluate the snore detection system. All assistants were guided

by a sleep expert (AT) in the annotation protocol in order to make

sure that the definition of snore/non-snore was clear.

Two classes of audio events were defined in the annotation

protocol: snoring and non-snoring. Snoring was defined as a

breathing sound that occurred during an inspiration (that was

visualized by the PSG’s respiratory belt movements in the GUI)

with an intensity .20 dB (the minimum sound detection

sensitivity of our audio recording setup). Nevertheless, breathing

sounds may occur during inspiratory and/or expiratory episodes.

However, in the current study, the inspiratory sounds were chosen

as snores since we found that 97.562.2% (mean 6 SD) of noisy

breathing cycles during sleep were composed of an inspiratory

sound that was much louder than the expiratory sound. Moreover,

often expiratory sounds were not observed at all (Fig. 4). Non-

snore events were defined as events that did not follow the snore

definition, such as bedding noise, coughing, talking, and other

environmental noises.

According to the manual snore/noise annotation protocol,

agreement measurements (Cohen’s kappa [42]) between the three

scorers were calculated. k12 = 97.4%, k13 = 97.9%, and

k23 = 97.0% are the agreement scores between scorers 1 and 2,

scorers 1 and 3, and scorers 2 and 3, respectively. Discrepancies

were resolved by additional revision by the scorers. The majority

of these proved to be human error (.98% – accidently pressing

the wrong classification button), and the rest (,2%) were resolved

by a majority vote of the three scorers.

Feature extraction (Fig. 1). We established a pool of 127

features relevant for distinguishing snore events from non-snore

events. Table 1 summarizes these feature categories based on time-

and spectral-related domains using intra/inter-event properties. A

detailed description of the entire set of features is available in the

online supporting File S1.

A brief description of the feature categories:

I. The time-domain set – constructed from features that

quantify parameters regarding the event’s timing and their

location relative to adjacent events. Twenty-five features,

separated into three sub-categories, are included in this set:

a) The periodicity features seek a snoring pattern (repeated

events) calculated via autocorrelation, R, of an energy signal

interval (with a pre-defined duration), which includes the

event surroundings (Fig. 5). The first peak of the estimated

autocorrelation function within the range of 1 sec to 10 sec

was selected because it holds information about the basic

rhythm period (i.e., location of the peak tp) and its power (its

amplitude relative to the zero-lag autocorrelation R0). The

rhythm period feature was calculated as tp and the period’s

intensity feature RI was calculated as the product of the first peak

amplitude value R(tp) and the initial correlation area Area.

Figure 4. Example of snoring pattern during 30 sec epoch. A) Air flow, B) Audio signal, C) Energy signal, D) Spectrogram. Dashed vertical lines
highlight one inspiratory event. Note that snore events are predominantly apparent during the inspiratory phase of the respiratory cycle. Data was
collected from a 57-year-old man (BMI = 31, AHI = 16, during sleep stage 2).
doi:10.1371/journal.pone.0084139.g004
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RI~R(tp)|Area ð3Þ

where Area is actually the normalized square area between the R(t)

curve and the at+1 linear line from R(0) to R(tp) calculated as:

Area~
1

tp

Xtp

t~0

(atz1{R(t))2 ð4Þ

where a is the estimated linear slope. The more periodic the

energy pattern, the greater the period’s intensity feature (Fig. 5).

Another important feature is relative energy prior to event EP, which

was calculated as:

Ep~
Xmi

m~mi{10Fr

em

,Xmf

m~mi

em ð5Þ

where em represents the energy signal at frame index m, and mi and

mf represent the initial and final frame index of the tested event,

respectively. Fr represents the frame rate (10Fr is the 10 sec

interval prior to the tested event). This feature uses additional

statistical information about snoring template/rhythm. During

snoring episodes, the energy signal interval that comes prior to the

tested snore event includes a certain number of snores corre-

sponding to the breathing period; normalizing the total energy of

this interval [the nominator of Eq. (5)] with the total energy of the

tested event [the denominator of Eq. (5)], yields a value that is an

estimation of the number of similar events in this prior interval,

resulting in a relatively low value and a narrow dynamic range of

EP (4.662.0). In noisy environments (non-snores), EP usually

receives high values (27.0620.0).

b) The duration features include parameters such as the

whole event’s duration (in seconds) and its 95% energy duration (in

seconds). In some cases (especially in OSA snores), the

difference between these two can be significant.

c) The energy features involve two major sub-sets: event-

based and frame-based features. Event-based energy features

are those regarding an event’s total energy such as the event’s

intensity and SNR on the dB scale. Frame-based energy

features include those that quantify and parameterize the

shape and the formation of the event’s energy over time.

II. The spectral-domain set – consists of features extracted

from the signal frequencies’ components. This set includes

102 features spread among three sub-categories: parameter-

ization of the models describing the signal spectrum, bio-

characteristic frequencies regarding vocal tract parameteri-

zation (modeling), and the dynamics of the frequencies’

components: a) The Spectral parameterization consists of several

spectral models such as linear prediction coding (LPC), Mel-

frequency cepstral coefficients (MFCC) [22], and sub-band

frequency distribution. For each model, we also included the

first four statistical moments (1-mean, 2-variance, 3-skewness,

and 4-kurtosis). b) Bio-characteristic frequencies include features

Table 1. The entire (127) feature categories.

Feature categories Number of features Selected features

I. Time-related features 25 10

a) Periodicity features (Inter-events) 10 6

b) Duration and sample scattering (Intra-events) 4 1

c) Energy features (Intra-events) 11 3

II. Spectral-related features 102 24

a) Spectral parameterization (Intra-events) 68 16

b) Bio-characteristic frequencies (Intra-events) 10 4

c) Dynamic frequencies features (Intra-events) 24 4

The entire set of features is divided into time- and spectral-related domains. Note that in parentheses are the inter/intra characteristics of the feature category. A
detailed description of the entire set of features is available in the online supporting File S1.
doi:10.1371/journal.pone.0084139.t001

Figure 5. Demonstration of the major periodicity features. A)
Audio signal containing snore pattern. B) The energy signal – achieved
by a logistic transformation over the standard energy signal to
emphasize the rhythm pattern. C) Smoothed autocorrelation R(t) of
the segment. In this example, the rhythm period was equal to t0 = 4.1
seconds with intensity of y0 = 0.8. Note that the tested event is aligned
at t = 0 and t = 12 seconds for each side being tested. The shaded area
in C represents the period’s intensity feature. A more periodic energy
pattern will result in a greater area and, hence, a greater period
intensity value. The features were calculated for each tested event
(between dashed vertical lines) by exploring the event’s surroundings.
doi:10.1371/journal.pone.0084139.g005
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that estimate the vocal tract formation such as formants, pitch,

and pitch-related features [43,44]. c) Dynamic frequencies aim to

measure changes in event frequency components. Usually, a

snore’s spectrum is more stationary in comparison to other

noises (when spectral subtraction has already been per-

formed).

Feature selection. A feature selection algorithm [45] was

applied (Fig. 1). This was performed in order to reduce the

complexity of the snore detection algorithm, to improve its

performance, and to avoid over-fitting. A forward feature selection

(FS) was conducted on the complete set of 127 features. The

criterion that was chosen for the feature selection algorithm was

the detection accuracy (snore as snore and non-snore as non-snore)

that was accomplished using the AdaBoost classifier decision (see

below) compared with the manual labeling of the events. We used

the 10-fold cross-validation method [45] on the design dataset in

order to determine the optimal number of features and the

Figure 6. Individual decision score threshold for snore/non-snore events from two subjects. A) Example of subject with scores slightly
shifted to the left (i.e., prone to noise detection). B) Example of subject with scores slightly shifted to the right (i.e., prone to snore detection). To avoid
a false decision, the search of the minimum point was limited to a narrow region around zero. When only one type of event is present or no
significant ‘‘valley’’ was found, a zero threshold was selected. Columns represent the histograms of the overall event scores. Bold lines represent a
smoothed five-order moving average low-pass filter. The dashed line represents the default decision threshold, and STH, represents the calculated
score threshold.
doi:10.1371/journal.pone.0084139.g006
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corresponding feature subset, and the resubstitution method in

order to estimate the upper bound of the system’s accuracy

(detection rate). The optimal selected features were used in the

validation phase of the study.

Classifier parameters estimation. An AdaBoost classifier

[35] was used. Generally, a k-order AdaBoost classifier involves

binary discrimination of k-weak learners, meaning k simple rules

(thresholds) in a d-dimensional feature space (in our case d = 34)

based on the true labeling of the events. Classification decision

(pattern matching) was made using a decision score that is

calculated via weighted summation of the k-weak learners. In the

design phase, the classifier parameters were estimated (Fig. 1) to

discriminate between two classes: snore and non-snore events. In

order to estimate the classifier’s parameters, the aforementioned

manually labeled events were used. As mentioned above, the

AdaBoost decision was also used for the feature selection criterion.

For this purpose, the order was set to k = 100, which was found to

be efficient yielding reliable results and a reasonable time-

consuming feature selection process. For the purpose of snore

detection (the overall system), the optimal order was found to be

k = 300. This order was determined using the selected features

(d = 34) yielding the best results for the design dataset and avoiding

over-fitting.

Pattern matching (Fig.1). The classification decision was

made using a decision score, S, calculated via weighted summation

of the k-weak learners. Hence, the tested events were given a

detection score, measuring their similarity to the (trained) snore/

non-snore properties. During the design phase, snores were

assigned the value ‘‘+1’’ and non-snores ‘‘-1,’’ producing a linear

estimation within that range, i.e., a snore event is likely to have a

more positive score than a non-snore event. During the validation

phase, a detection score was calculated for each detected audio

event (for each of the 42 subjects).

Individual decision score threshold (Fig. 1). Since snoring

properties can vary between subjects, we found that applying an

individual decision score threshold improved system performance.

Accordingly, for each subject, a score threshold (STH) was

calculated using the scores of the subject’s detected events. This

score histogram was considered to behave as a bi-modal

distribution since it is composed of snore and non-snore scores.

The threshold was determined as the score value (index) of the

minimum (‘‘valley’’) point in the histogram (Fig. 6).

Data and Statistical Analyses
Audio signal processing and statistical analyses were performed

using MATLAB (R-2010b, The MathWorks, Inc., Natick, MA,

USA). Both the system design study (n = 25) and the validation

study (n = 42) had similar data handling protocols. Statistical

power (a = 0.05) was calculated for the validation set based on

event score values extracted from the system design data set. A

sample size of 40 subjects was calculated to provide a statistical

power of 0.88 in order to achieve a system accuracy rate of .97%.

Therefore, 42 subjects were recruited for the validation study.

PSG, demographic, and audio data were compared between

design and validation study groups using unpaired student t-tests

or x2 tests. The relationship between the subjective impression of

subjects (questionnaires) and the objective measure of snoring was

assessed with the help of Spearman correlations. The snore/non-

snore classification performances of the design study involved

resubstitution and ten-fold cross-validation methods. The snore/

non-snore classification performances of the validation study

involved a hold-out method, in which the system training was

performed using the design dataset, and system validation was

performed on the validation dataset. Detection performances were

calculated using sensitivity, specificity, and accuracy:

Sensitivity~
NTP

NTPzNFN

ð6Þ

where NTP represents the number of detected snores as snores (true

positive), and NFN is the number of events corresponding to the

false detection of snores as non-snores (false negative).

Specificity~
NTN

NTNzNFP

ð7Þ

where NTN represents the number of detected non-snores as non-

snores (true negative), and NFP is the number of events

corresponding to the false detection of non-snores as snores (false

positive).

Accuracy~
NTPzNTN

NTPzNTNzNFPzNFN

ð8Þ

By observing the intensity of patients’ snores, we arbitrarily

divided the intensity into three levels: ,40 dB, $40 dB #55 dB,

and .55 dB, according to the distribution of the snoring intensity.

This data can be presented using histogram bars and, hence,

provides useful information about an individual’s snore intensity.

Moreover, a snore intensity score was calculated for each subject,

namely objective snore intensity (OSI). This score was calculated as the

mean of a whole-night’s snore intensity (in dBs) of an individual

subject based on his/her detected snores. Finally, performances for

different working points were obtained from a receiver-operating

curve (ROC) and the area under this curve (AUC). Data are

presented as mean 6 SD.

Results

No significant differences were found between system design

(n = 25, m/f 14/11) and validation (n = 42, m/f 26/16) groups in

subjects’ demographic characteristics, age, BMI, snoring, ESS, or

AHI (Table 2). During the PSG study, an average of

7.561.1 hours of audio signals were recorded from each subject

with no significant differences between the design and validation

studies. A total of 180.3 hours and 324.2 hours were analyzed in

these studies, respectively, and a total of 39,025 and 68,367 snore

events were identified from the audio signals in them, respectively.

Additionally, a total of 37,712 and 136,849 non-snore events were

identified in each study, respectively. The non-snore events

consisted of: 1) biological sources such as breathing (exhale),

talking, murmurs, groaning, moaning, and coughing; and 2) other

sources such as bedding noises, noise from electric devices, and

slamming doors.

Preprocessing
Background noise removal proved to be beneficial in enhancing

the signal and emphasizing faint and hidden acoustic events. On

average, the enhancement of each acoustic event was improved by

+6 dB, supporting earlier studies [41,46]. While the time and

spectra domains seemed to be dramatically improved in the entire

audio signal, some small distortion was registered (can be detected

by ear) on the lower SNR events. Nevertheless, the enhancement

contribution was unquestionable throughout the entire process

described in Fig. 1.

The event detection process proved to be very sensitive,

followed by a high detection rate. Compared with manually
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marked detectable events, the positive detection rate (PD) was

100%, and the positive predictive value (PPV) of 23% was

achieved – meaning false-alarm detection was four times that of

true detection. Nevertheless, the high false alarm events were

easily eliminated by the duration test (200 ms to 3500 ms) and the

snore/non-snore classifier itself.

Feature selection
We used the proposed AdaBoost-based method for the snore/

non-snore detection algorithm. Fig. 7 shows the performance of

the forward feature selection process conducted for the design

study. The optimal performances were achieved using 34 features

extracted from the complete set of 127 features (Table 1).

The 34 selected features contained representatives from two

feature domains: time and frequency. The three most significant

selected features (descending priority) derived from the forward

feature selection process were: (1) Relative energy prior to event (EP), (2)

Rhythm intensity of 612 seconds (RI), and (3) The first formant frequency.

Note that the first three significant features were extracted from

the two domains explored (time and spectra). The most

discriminative feature that was selected is EP. The second

complementary feature was the rhythm intensity related to the

612 sec surrounding the events. The information from this feature

emphasizes the first feature in the absence of a rhythmic pattern

such as snoring episodes. Even though OSA patients disrupt this

rhythm during apneic events, they still have some consecutive

snores prior to such an event. For detailed selected features, see

online supporting information Tables S1 and S2 in File S1.

Performance evaluation
Using the chosen features, an evaluation test was conducted on

the validation dataset. During the validation phase, score threshold

(STH) was calculated for each of the subjects. Each subject’s scores

(for snore and non-snore events) were shifted using this threshold

value, allowing a global alignment of the scores from all the

subjects. Hence, the evaluation of the overall performance of the

system is feasible. Fig. 8A shows an event’s likelihood score

distribution (pdf) corresponding to their true labels (snores and

non-snores). The corresponding ROC curve is presented in Fig. 8B

and C. The overall detection rate (accuracy) was 98.2% with

sensitivity of 98.1% (detecting snores as snores), and specificity of

98.2% (detecting noise as noise) with a confusion matrix as shown

in Table 3. In addition, we measured performance as a function of

the event’s SNR, with the assumption that in using only relatively

high SNR events (as in most previous studies), the performance of

the system will be superior. In our study, the overall performance

was calculated using very low SNR events as well in order to detect

all snore events, even the very soft ones. The results are shown in

Fig. 8C and D. Fig. 9 presents the distribution of snore intensity

(5 dB resolution) for the validation dataset (manual and automatic

snore detection). In this examination, we investigated the patient’s

snore intensity distribution throughout the night. The error bars

represent the diversity of the participating subjects. By comparing

the distribution of manual (open bars) vs. automatic (closed bars)

detection of snore intensity, no significant bias was observed in

each of the intensity sub-bands.

Fig. 10 shows an example of full-night recording. Data was

collected from a 63-year-old woman (BMI = 31, AHI = 14). Snore

intensity using the dB scale was measured for each of the detected

snores. The snore index was defined as the running number of

detected snore events per hour, estimated from 30 sec intervals (for

each epoch). Snore intensity and snore index were aligned with the

hypnogram, which was calculated using PSG analysis. Note that

the snore index dropped considerably during wakefulness and

periods of AHI.

Fig. 11 shows three examples of sound intensity histograms from

three subjects during the validation phase of the study. The sound

intensity of all audio events, i.e., snore and non-snore intensity,

prior to snore detection (closed bars) had a similar distribution

between subjects. Similar distribution characteristics were found

Table 2. Subject Characteristics.

System Design (n = 25) System Validation (n = 42) p

Gender (M/F) 14/11 26/16 0.633

Age (yr) 53.1611.7 (29–82) 52.2614.5 (23–81) 0.793

AHI (events/hr) 18.9618.0 (2.0–64.9) 20.3616.2 (0.5–74.4) 0.743

BMI (kg/m2) 31.163.3 (26.7–38) 30.665.3 (16.8–39.3) 0.672

ESS (score) 10.366.4 (0–19) 13.766.5 (0–23) 0.573

Total labeled snoring events (61000) (M/F) 23.0/16.0 46.3/22.0 0.366

Labeled snoring index (events/hr) 395.26241.3 412.96256.2 0.780

Total labeled noise events (61000) (M/F) 23.4/14.3 87.0/50.1 0.880

AHI – apnea hypopnea index, BMI – body mass index, ESS – Epworth sleepiness scale. All values are mean 6 SD (range).
doi:10.1371/journal.pone.0084139.t002

Figure 7. Criterion curve of the feature selection algorithm. The
inner window is a zoom in at the maximal value. Thirty-four features
were selected. The dashed-dotted line (red) represents the resubstitu-
tion (Res) method performances, and the solid line (blue) represents the
10-fold CV performances (CV).
doi:10.1371/journal.pone.0084139.g007
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for all 42 subjects included in the validation phase. However,

observing the intensity of the automatically detected snoring events

(open bars) reveals significant differences of snoring intensity

among subjects. Fig. 11A shows a case where 92% of the snoring

events of this subject were below 40 dB, suggesting a light snorer.

On the other hand, Fig. 11C shows a case where .86% of the

snoring events were above 55 dB, suggesting a loud snorer.

Spearman correlation revealed no correlation between objective

snore intensity and subjective self-reported snore intensity

(R = 0.14 with p = 0.46). Fifteen subjects (35%) reported that they

‘‘don’t know’’ if they snore or not. Of these subjects, we found that

fourteen (93%) objectively snored (OSI.40 dB).

Figure 8. Performance of the snore detection algorithm: A) An event’s likelihood score distribution (pdf – of true snores and non-snore events).
B) ROC curve – detection rate True positive (TP) vs. false positive (FP) snores; area under the ROC curve = 0.998. The dashed line
represents the ‘‘random guess’’ performance. C) The overall detection rate is based on different signal-to-noise ratio (SNR) thresholds of events. D)
SNR distribution of overall events.
doi:10.1371/journal.pone.0084139.g008

Figure 9. Snore intensity distribution of the validation dataset
(n = 45). Open and closed bars display the distribution of snoring
intensity on manually segmented events and automatically segmented
events, respectively. Note that no consistent bias was found between
manually and automatically segmented snore events. Error bars are
standard error.
doi:10.1371/journal.pone.0084139.g009

Table 3. Classification results.

Classified as Snore Noise

True label

Snore 98.1% 1.9%

Noise 1.8% 98.2%

doi:10.1371/journal.pone.0084139.t003
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Discussion

Our study proposes a robust snore detection system based on

audio signals recorded using a non-contact microphone technol-

ogy with overall accuracy rate of 98.2%. The novelty of our

proposed system is its automatic detection of a variety of snore

events from a whole-night audio recording. Our approach to snore

detection includes comprehensive sets of features that were

selected using the feature selection algorithm.

Subjects
Sixty-seven typical subjects referred to PSG evaluation of sleep

disorders were included in this study. No significant differences in

subjects’ demographic characteristics, age, BMI, AHI, and ESS

were found between groups (Table 2). We included subjects

referred to in-laboratory PSG evaluation including a wide range of

age, BMI, and AHI distribution, and both genders. Further studies

Figure 10. Example of whole-night snore index and snore intensity. Upper panel – sleep stages throughout the night and apnea/hypopnea
events (A+H) based on the PSG test. Middle panel – automatically detected and calculated snoring index (events/hr) per 30 second epoch. Lower
panel – snore intensity (dB). Arrows indicate lights off and lights on, respectively. Data was collected from a 63-year-old woman (BMI = 31, AHI = 14).
For this subject only, a snoring index .240 events/hr is displayed.
doi:10.1371/journal.pone.0084139.g010

Figure 11. Example of sound intensity distribution for three subjects (arbitrarily selected) during the validation phase of the study.
Closed bars are the sound intensity of all the audio events (snore and non-snore events) between ‘‘lights off’’ and ‘‘lights on.’’ Open bars are the
sound intensity of the detected snoring events. Data are presented as a percentage. In this example, subjects A, B, and C have objective snore
intensity (OSI) of 37 dB, 46 dB, and 59 dB, respectively.
doi:10.1371/journal.pone.0084139.g011
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are needed to confirm our findings in the general population and

in at-home settings.

In this study, we included 107,392 snore events, acoustically

ranging from very soft to very loud (20–80 dB). The majority of

these snoring events (97.5%) occurred predominantly during

inspiration with minimal snoring energy during expiration (Fig. 4),

similar to prior studies that concluded that expiratory snoring is

relatively rare [31,47]. Most studies [1,4,28,31–33] have defined

snores as acoustic events with sound intensity exceeding a certain

amplitude value. Other studies have defined them as acoustic

events that contain an oscillatory component [30] and even as any

sound perceived as such by the observer holding the microphone

[29]. Moreover, some studies have explored only selected snores

(usually loud events) and did not analyze the whole sleep [48].

Since there is no unified approach to exactly define a snore, and it

is more ‘‘in the ear of the beholder’’ [4], we included every noisy

inhalation sound made during sleep that was .20 dB, i.e., the

minimum sensitivity of our recording device.

We noted that the ratio of noise events to snore events was

higher in the validation group compared to the design group

(Table 2). This finding may be explained by the fact that the

validation dataset contains a longer recording time (,30 minutes),

predominantly prior to lights off. Since total sleep time (and sleep

efficiency) was statistically similar between the design and

validation datasets (design: 343648 minutes, validation:

349642.0 minutes, p = 0.594), this extra recording time contained

more noise events, which were mainly generated by patients and

technicians prior to lights off. Nevertheless, the vast majority of the

additional noise events were successfully detected by our system

(.98%). This strengthens our hypothesis that snore events can be

successfully detected even in a noisier environment since the

training process (in the design phase) included a large variety of

noise and snore events.

Snore recording
We used a non-contact microphone to record snoring. This

approach was challenging since it was essential to improve SNR in

order to expose the acoustic signals that were of interest. To

achieve this, we used an adaptive spectral subtraction technique

that subtracted the estimated adjacent background noise. The

spectral subtraction technique improved signal SNR with a

minimal distortion effect on sound intensity. Our findings are

supported by Karunajeew et al. [25], who explored the effect of

signal enhancement using spectral subtraction prior to a snore

detection system on a sample of 12 patients (8 and 4 were included

in the design and validation studies, respectively) undergoing PSG.

Karunajeew et al. showed that the detection rate could be

improved from 90.7% to 96.7%. This technique of signal

enhancement is very acceptable in the speech enhancement field,

but has not been fully explored in nocturnal sound analysis.

Recently, this process was found to be beneficial in cases where the

speech signal was contaminated with loud background noise. Lee

et al. [48] removed estimated background noise from an entire

audio signal using a fixed filter. Their estimation was based on the

spectrum from the initial ten minutes of the recording (empty

room). This approach was better than most fixed noise reduction

techniques (such as linear time invariant filter), but it did not follow

the background noise properly through the night. To overcome

the SNR challenge, some studies used a contact microphone, e.g.,

the tracheal microphone [19,26,27,49]; however, data were easily

affected by a variety of noises such as cardiac and respiratory

sounds and movements. Other studies used a microphone

embedded in a face mask [50]. In our case, we developed an

adaptive and sensitive event detection algorithm based on energy

measurement. This algorithm has proven to be significant when

whole-night snoring event detection is necessary. A previous study

[48] using an adaptive energy-related threshold supports our

findings.

Acoustic features
In this study, we established and explored a large and

comprehensive set of features that are the most relevant for snore

detection using a feature selection technique. In order to fully

explore this variety of features, we have used concepts from speech

and audio signal processing areas [22,43] and implemented

features from time and spectral domains (Table 1 and Table S1 in

File S1). In addition, for the purposes of this study, we developed a

novel and unique set of features that are specifically suitable for

measuring breathing patterns (snores) during sleep. It is worth

noting that the most influential feature set was the novel

periodicity set (Table 1, Fig.5), a set of features found to be highly

discriminative in classifying snore and non-snore events. The best

selected individual feature (EP) belongs to this periodicity set and

yielded an accuracy rate of 83.6% when tested alone on the

validation dataset. However, detection of snoring events solely by

this feature will not provide the desired performance. Therefore,

complementary information from both time and spectral domains

contributes considerably to improve our system’s performance.

Other studies have explored relatively few features based solely on

spectra distribution [24,26] or on an event’s energy and duration

[48]. Karunajeewa et al. [25] did use the two domains’ (time and

spectra) energy signals with a combination of zero crossing rate,

autocorrelation at 1 ms lag, and the first LPC coefficient; their

results show the potential of information taken from both domains

based on a small database. Some studies have tried to reduce the

dimensionality of feature space using principle component analysis

(PCA) [24,26] or Fisher’s linear discriminant (FLD) [51].

Projecting the features from high dimensionality into a low

dimension feature space indeed reduce the complexity of threshold

decision making but ignore complicated and tangled patterns (of

events). Hence, these kinds of approaches can be problematic since

some of the inherent discrimination information between the

classes can disappear. One of our study innovations was applying a

feature selection algorithm (Table S1 in File S1) in order to

evaluate a large set of features. This feature selection approach

aimed to retain the discrimination ability between classes while

significantly reducing the number of features.

For the design phase, we used the AdaBoost classifier. In

preliminary studies [52], we also explored the effect of different

classifiers such as a Gaussian mixtures model (GMM). The

AdaBoost classifier was chosen because it was found to produce

the best results. According to Fig. 7, the difference between the

resubstitution and the ten-fold techniques in the optimal feature

dimension (d = 34) was not greater than 1%, implying that there is

no over-fitting even in a hyper-dimensional feature subset.

Body posture during sleep may affect the acoustic characteristics

of snores, such as snoring intensity. Since body posture can change

several times during sleep, we extracted a variety of features,

exploring different normalization processes, and then applied the

feature selection approach in order to objectively find the most

robust features. Thirty-four features were selected (Table S2 in File

S1). Among them, only 3 were energy-related. These features are

not affected by the absolute event energy per se; i.e., two of the

energy features (Tc4 and Tc6) are versions of a normalized energy,

and the third feature (Tc8) is related to the event energy shape

(skewness). Further study should investigate the effect of sleep

position on snore detection.
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System performance
Comparing our snore detection performance with other studies,

our results (accuracy.98%) are superior, especially when they are

statistically proven based on a large dataset containing a variety of

sleep disorder breathing (SDB) severity and recorded using an

ambient microphone. Azarbarzin et al. [26] achieved an accuracy

rate of 93.1% when using an ambient microphone. Karunajeewa

et al. [25] published a high accuracy rate of 96.8% when testing

four subjects. Cavusoglu et al. [24] produced an accuracy rate of

90.2% when recording using an ambient microphone placed

15 cm from the patient’s head. Duckitt et al. [23] achieved 82–

87% when trained and tested on a total of 6 snorers. We

confirmed the robustness of our detector by using an additional

audio recording device (handy Olympus LS-5) placed on the dresser

beside the patient’s head in the laboratory. Similar accuracy rates

of 98.4% and 97.8% were found for the Edirol R-4 Pro (n = 30) and

Olympus LS-5 (n = 12, p = 0.14), respectively. Further studies are

required to explore the usefulness of this snore detection in at-

home settings.

Although expiratory sounds are relatively rare (see above), they

were not excluded from our study. The snore/non-snore detection

results include all the automatically detected sound events,

including expiratory sounds. By analyzing the false-detected events

(,2%), we noticed that the majority of the misclassified events

were between inspiratory and expiratory snores. Further studies

are required to explore these types of expiratory sounds.

Objective measure of snoring
This study provides a novel and useful tool to objectively

quantify a whole night’s snoring events. Early work has concluded

that to a large extent snoring is a subjective evaluation [4] when in

fact the problem lies with the bed partner being disturbed by

essentially normal nocturnal breathing noise [1]. This study shows

a poor correlation between self-reported snore intensity and the

objective measurement of snoring. This could be related either to

the fact that subjects ‘‘do not know’’ or to biased bed partner

reporting. Fig. 10 demonstrates a clear whole-night objective

visualization tool for a snoring pattern that may aid clinicians in

their clinical evaluations of snoring by presenting the subject’s

snoring index (snoring events per hour of sleep) and intensity (in

dB). An innovative parameter for objectively scoring snore

intensity was developed in this study. The OSI score was

calculated using the detected snores, for the first time allowing

very accurate and objective scores regarding the controversial self-

reporting questionnaires. This simple tool can provide objective

numeric and graphic reports of the automatically detected snoring

events (Fig. 11, open bars). Another application for snore detection

is to diagnose SDB syndromes [20,27,30,48], the effectiveness of

palatal surgeries regarding snores, OSA [18], and even exploration

of breathing patterns during sleep time [33].

Summary

One of the main goals of medicine today is to improve early

diagnosis and treatment. Clearly, incidence of snoring is very

frequent, and it is a common symptom of sleep-disordered

breathing and other disorders of the upper airways [4]. The

‘‘flood’’ of subjects presenting with snoring symptoms is a major

challenge to decision makers and is governed by prevalence and

level of awareness of snoring morbidity [14]. Here, we have

proposed a snore detection system that can provide an objective

quantitative measure for whole-night snore patterns. Further

studies are needed both to reinforce our findings by recruiting

subjects from primary care clinics and by validating this snore

analysis method as a potential screening tool in an at-home

environment.
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