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Summary

Genome-scale, constraint-based models (GEM) and
their derivatives are commonly used to model and
gain insights into microbial metabolism. Often, how-
ever, their accuracy and predictive power are limited
and enable only approximate designs. To improve
their usefulness for strain and bioprocess design, we
studied here their capacity to accurately predict meta-
bolic changes in response to operational conditions
in a bioreactor, as well as intracellular, active reac-
tions. We used flux balance analysis (FBA) and
dynamic FBA (dFBA) to predict growth dynamics of
the model organism Saccharomyces cerevisiae under
different industrially relevant conditions. We com-
pared simulations with the latest developed GEM for
this organism (Yeast8) and its enzyme-constrained
version (ecYeast8) herein described with experimental
data and found that ecYeast8 outperforms Yeast8 in
all the simulations. EcYeast8 was able to predict well-
known traits of yeast metabolism including the onset
of the Crabtree effect, the order of substrate con-
sumption during mixed carbon cultivation and pro-
duction of a target metabolite. We showed how the
combination of ecGEM and dFBA links reactor

operation and genetic modifications to flux predic-
tions, enabling the prediction of yields and productivi-
ties of different strains and (dynamic) production
processes. Additionally, we present flux sampling as
a tool to analyse flux predictions of ecGEM, of major
importance for strain design applications. We showed
that constraining protein availability substantially
improves accuracy of the description of the metabolic
state of the cell under dynamic conditions. This there-
fore enables more realistic and faithful designs of
industrially relevant cell-based processes and, thus,
the usefulness of such models.

Introduction

One of the goals of biotechnology is the design of cell
factories to produce metabolites of industrial interest.
Metabolic engineering introduces heterologous pathways
and rewires cell metabolism to increase product yield,
titre and productivity (Chen and Nielsen, 2019). How-
ever, although the production capacity of microorgan-
isms is affected by many external factors such as
oxygen and carbon availability, these interactions are
often underestimated during the strain design process.
The lack of a strong link between initial strain design
and industrial deployment causes the so called ‘Valley of
Death’, where only one in 5000–10 000 innovations
make the long route from initial finding to market imple-
mentation (Zhou et al., 2015; de Lorenzo and Couto,
2019; Kampers et al., 2021). Models of microbial meta-
bolism are increasingly used to aid the design and steer-
ing of bioprocesses in an attempt to navigate the ‘Valley
of Death’. We studied the capacity of these models to
provide accurate predictions of intracellular active fluxes,
key to guide metabolic engineering strategies. Besides,
we tested their ability to link strain and bio-process
design (i.e. how modifications in the reactor environment
impact predictions on cell metabolism).
Genome-scale metabolic models (GEM) are mathe-

matical representations of cell metabolism able to estab-
lish genotype–phenotype relationships linking genes and
enzymes with metabolic reactions. These models are
based on annotated genomes and can be expanded to
include resource allocation constraints such as maximum
membrane surface area or cell volume (Grigaitis et al.,
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2021). S�anchez et al. (2017) introduced the GEM with
Enzymatic Constraints using Kinetic and Omics frame-
work to generate enzyme constrained models (ecGEM)
by adding additional constraints linked to the limited
enzyme production capacity of the cell. In these models,
protein abundance and enzyme turnover values (kcat)
limit the flux of the corresponding reactions. The ecGEM
of Saccharomyces cerevisiae enables a more extensive
and accurate simulation of microbial physiology including
overflow metabolism, stress responses and consumption
rates of different carbon sources.
Flux balance analysis (FBA) is the most common

method to simulate genome-scale metabolism. It uses
linear programming to optimise an objective function and
has extensively been used to predict cellular growth,
product secretion patterns and to develop overproduction
strains (Lewis et al., 2012; Lopes and Rocha, 2017; Choi
et al., 2019; Gu et al., 2019). FBA assumes time-
invariant extracellular conditions consistent with chemo-
stat operation. Still, industrial-scale production is often
achieved with batch and/or fed-batch cultures were
extracellular conditions vary in time. Therefore, dynamic
FBA (dFBA) extends FBA by introducing kinetic equa-
tions for extracellular metabolites and biomass. dFBA
has been applied to simulate E. coli industrial fermenta-
tions, compare ethanol production of different S. cere-
visiae strains during fed-batch growth and identify
industrially relevant bottlenecks for ethanol production
from xylose (Hjersted et al., 2007; Meadows et al., 2009;
Hohenschuh et al., 2020). Whereas, FBA only captures
one of the multiple solutions that leads to the optimiza-
tion of the desired objective, sampling algorithms provide
distributions of feasible flux solutions that represent the
whole feasible flux space. Besides, the establishment of
an objective function, which may introduce bias on the
predictions, is not required (Herrmann et al., 2019).
We used FBA and dFBA to predict growth dynamics

of S. cerevisiae under industrially relevant conditions
and compared simulations using Yeast8 (GEM) and
ecYeast8 (ecGEM) with experimental data. We chal-
lenged the models to predict changes in cell metabolism
(substrate uptake, growth and product secretions) in
response to the operation of the reactor, constituting one
of the few examples of combination of ecGEM and
dFBA. For the first time, we used flux sampling of
ecYeast8 to evaluate central carbon metabolic fluxes at
a range of growth rates representative of chemostat, fed-
batch and batch growth of S. cerevisiae. We tested how
flux sampling can be used to study central metabolic
fluxes, of major importance for strain design applications.
We provide a set of scripts to easily implement dFBA on
traditional and ecGEM as well as a validation dataset
containing fermentation-related data of S. cerevisiae
cells growing in chemostat, batch and fed-batch

reactors. We show how the combination of ecGEM,
dFBA and flux sampling enables more realistic and faith-
ful designs of industrially relevant cell-based processes
and, thus, increases the usefulness of such models.

Results

Chemostat simulations

S. cerevisiae cells grown in continuous cultures change
their metabolism depending on the dilution rate. At low
growth rates, they present a completely aerobic metabo-
lism whereas ethanol production is observed at growth
rates higher than the critical dilution rate (Dcrit), process
known as the Crabtree effect. Data from chemostat
growth of S. cerevisiae strains CBS8066, DS28911 and
H1022 was obtained from literature (Rieger et al., 1983;
Postma et al., 1988; Van Hoek et al., 1998). In these
experiments, S. cerevisiae was grown at different dilution
rates (D) with different glucose concentrations in the
feed. For each dilution rate, we constrained the growth
rate of Yeast8 and ecYeast8 and used mass balances
to calculate the cell, glucose and by-product concentra-
tions in the reactors at steady state.
Figure 1A show predictions of biomass concentrations

by Yeast8 and ecYeast8. Whereas, Yeast8 predicts con-
stant biomass concentration, ecYeast8 simulates a
decrease in biomass concentration after a specific dilution
rate, the critical dilution rate, Dcrit. The decrease in bio-
mass concentration is also observed in the experimental
data, which shows different critical dilution rates for differ-
ent strains (Van Dijken et al., 2000). The model predicts a
critical dilution rate of 0.27 h�1, in agreement with that
reported for strains DS28911 and H1022 (0.28 h�1 and
0.21 h�1) (Rieger et al., 1983; Van Hoek et al., 1998).
Strain CBS8066 has a higher protein content than H1022
and shows a higher critical dilution rate (0.38 h�1)
(Postma et al., 1988; Verduyn et al., 1990). This higher
growth rate was simulated increasing protein availability in
the model (26.8% increase of the upper bound of the pro-
tein pool reaction) showing that tuning protein availability
results in different Dcrit, suitable to predict chemostat
growth of different S. cerevisiae strains.
Figure 1 also shows the maximum growth rate pre-

dicted by the model with the default bound for the pro-
tein pool reaction is 0.30 h�1 (0.38 h�1 when this bound
is increased) while all strains are able to grow at dilution
rates as high as 0.4 h�1. However, when cells are grown
experimentally at dilution rates higher than 0.3 h�1, the
dilution rate has to increase in small steps to avoid wash
out, indicating cells need time to adapt to high growth
rates (Rieger et al., 1983). This adaptation is related with
an increase in protein content and therefore, chemostat
predictions at high growth rates would improve with a
growth rate dependent protein availability constraint.
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Interestingly, decreasing maintenance requirements in the
model did not affect maximum growth rates predictions,
suggesting that the protein availability constraint implicitly
accounts for protein synthesis costs and reduces the
impact of the maintenance reaction in the simulations.
According to simulations with Yeast8, specific glucose

uptake is proportional to the dilution rate. However,
experimental data and simulations with ecYeast8 show a
sharp increase in glucose uptake after Dcrit (Fig. 1B).
Higher glucose uptake rates and lower biomass concen-
trations result in a decrease on the biomass yield on glu-
cose after Dcrit, which is only predicted by simulations
using ecYeast8 (Fig. 1C). Similar to the glucose uptake
rate predictions by Yeast8, oxygen uptake rates and
CO2 production rates are predicted to be proportional to
the growth rate (Fig. 1D and E). However, after Dcrit cells
show a partially fermentative metabolism that results in a
decrease of the oxygen uptake rate and an increase on
the CO2 production rate. Besides, ecYeast8 predicts
byproduct formation at growth rates higher than the criti-
cal dilution rate. It predicts secretion of acetaldehyde
and acetate and accurately predicts ethanol flux at differ-
ent glucose uptake rates (Fig. 1F). None of these
changes are predicted by Yeast8.

Batch and fed-batch simulations

During batch fermentations, glucose is present in excess
and cells grow at their maximum growth rate. Yeast8 and
ecYeast8 were used to simulate batch growth of S. cere-
visiae and the results were compared to experimental data
(Hanly et al., 2012). Glucose uptake rate was constrained
in both models as a function of the glucose concentration
in the reactor according to Michaelis-Menten kinetics. Whilst
glucose uptake was the only constraint imposed to Yeast8,
ecYeast8 was also limited by the availability of proteins.
Simulations using Yeast8 predict no ethanol produc-

tion, faster glucose consumption and higher cell concen-
trations than the experimental measurements (Fig. 2). In
these simulations, glucose uptake kinetics determines
how fast glucose is consumed and all fluxes are dis-
tributed to optimise biomass production, which results in
exponential growth, no by-product formation as well as
glucose depletion and growth arrest after 5 h. Contrarily,
simulations using ecYeast8 accurately predict glucose
and biomass concentrations until glucose depletion. This
model also predicts the production of ethanol and its
consumption after glucose depletion. During these simu-
lations the growth rate is limited by protein availability,

Fig. 1. Chemostat simulations with Yeast8 (- -) and ecYeast8 (-) compared with experimental data. (A) Biomass concentration (cx), (B) Specific
glucose uptake rate (qs), (C) Yield of biomass on glucose (Yxs), (D) Specific oxygen uptake rate (OUR) and (D) Specific CO2 production rate
(CPR) at different dilution rates (D). (F) Specific ethanol production rate (qe) at different specific glucose uptake rates (qs). Experimental data of
strains CBS8066, DS28911, H1022 and CEN.PK 113.7D where obtained from (Rieger et al., 1983; Postma et al., 1988; Van Hoek et al., 1998;
Canelas et al., 2011), respectively. Note that in figures B–F all dashed lines overlap and continuous orange, green and red lines overlap with
the continuous purple line.
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and only at glucose concentrations approaching km
(0.28 mmol l�1), the Michaelis-Menten equation for glu-
cose uptake becomes the limiting factor. The protein
availability constraint results in ethanol production by
ecYeast8 and a realistic yield of biomass on glucose,
overestimated by Yeast8. Although ethanol consumption
was allowed during the entire simulation, it was only pre-
dicted after glucose depletion (in agreement with experi-
mental data). However, during this phase ecYeast8
simulates higher biomass concentration and faster etha-
nol consumption than the experimental measurements.
In fed-batch reactors, batch growth is followed by a

feeding phase in which media with substrate enters the
reactor. During this phase, cellular growth is determined
by the available glucose. We performed fed-batch culti-
vation of S. cerevisiae CEN PK-113-7D and used oxy-
gen uptake and CO2 production rates (OUR, CPR) as
an indication of cell metabolism. This process was simu-
lated using dFBA and model predictions were compared
to experimental data. Yeast8 showed higher OUR and
CPR as a result of a higher growth rate during the batch
phase which resulted in depletion of glucose before the
start of the feeding phase. Simulations with ecYeast8
resulted in accurate prediction of OUR, CPR and bio-
mass concentration in the reactor (Fig. S1).

Batch growth on multiple carbon sources

Yeast8 and ecYeast8 were used to simulate batch growth
of S. cerevisiae in a mixture of carbon sources using dFBA.
Dynesen et al. (1998) combined sucrose, a disaccharide of

glucose and fructose, with glucose, fructose or mannose in
order to study growth and catabolite repression of S. cere-
visiae DGI342. Simulations using Yeast8 and ecYeast8
were compared with this experimental data.
Yeast8 predicts simultaneous consumption of all car-

bon sources and unrealistically high uptake rates result-
ing in substrate depletion after 6 h (Fig. 3A–C). In order
to obtain better predictions, uptake reactions should be
constrained using specific Michaelis-Menten kinetic
equations for each carbon source. Contrarily, ecYeast8
simulations show a good agreement with experimental
data as the order of substrate consumption in this model
is determined by the relative protein cost for substrate
consumption as well as the biomass yield on the differ-
ent carbon sources (Table 1 and Fig. 3D–F).
When sucrose and glucose are the substrates, the model

predicts three phases characterised by the use of different
carbon sources. First, all the available free glucose is con-
sumed, as it is the substrate with the lowest protein cost
(Table 1). In the second phase sucrose is hydrolysed,
sucrose-derived glucose is consumed and fructose accu-
mulates. The highest protein cost of sucrose is caused by
the simultaneous consumption of glucose and fructose.
However, during dFBA simulation, the accumulation of glu-
cose and fructose in the reactor is allowed and the only
additional cost of sucrose consumption is caused by the
need to hydrolyse the disaccharide by the invertase
enzyme. After hydrolysis, ecYeast8 predicts glucose con-
sumption and fructose accumulation due to the lower pro-
tein cost of glucose degradation (Table 1). The third phase
is characterised by fructose consumption, with a higher

Fig. 2. dFBA simulation of batch growth of S. cerevisiae H1022 with Yeast8 (- -) and ecYeast8 (-) compared with experimental data (symbols)
(Hanly et al., 2012).
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protein cost compared to glucose caused by a higher flux
through the glucose-6-phosphate (G6P) isomerase. Accord-
ing to ecYeast8, this enzyme converts G6P to frucotse-6-
phosphate (F6P) during growth on glucose and catalyses
the reversible reaction during fructose growth with a higher
flux. The fact that these three phases are also observed
experimentally suggests that carbon catabolite repression
(CCR) of sucrose, fructose and ethanol exerted by glucose
is essential to achieve maximum growth rate when consid-
ering the limitation of protein content in the cells (Fig. 3D).
When the carbon sources are sucrose and fructose,

the model repeats phases two and three. First, sucrose
is hydrolysed, the sucrose-derived glucose is consumed
and fructose accumulates. Then, only after glucose deple-
tion, the model consumes the available fructose (Fig. 3E).

Simulations with sucrose and mannose show similar
results. First, the model predicts consumption of
sucrose-derived glucose and fructose accumulation.
Fructose consumption only starts after glucose depletion.
Mannose consumption starts at a low rate at the end of
the fructose consumption phase and continues then at a
higher rate due to the higher protein cost required for its
degradation. This cost is caused by the need to convert
mannose to F6P, reactions catalysed by mannokinase
and mannose-6-phosphate isomerase (Fig. 3F).
Although the model does not predict initial consump-

tion of fructose in simulations with fructose and sucrose,
or initial glucose accumulation and simultaneous con-
sumption of glucose, fructose and mannose in sucrose
and mannose simulations, the protein availability con-
straint is enough to accurately predict sucrose hydrolysis
as well as fructose and mannose consumption rates.
Besides, the combination of ecYeast8 and dFBA
improved predictions by explicitly modelling the inhibitory
effect of glucose, fructose, sucrose and mannose on the
uptake rates of the other carbon sources (Fig. S2).

Simulation of Δpdc lactate producing S. cerevisiae

Yeast8 and ecYeast8 were modified to simulate a S.
cerevisiae strain without pyruvate decarboxylase (PDC)
activity, laboratory evolved to tolerate high glucose

Fig. 3. Two-carbon sources S. cerevisiae DGI342 batch simulations using Yeast 8 (A–C) and ecYeast8 (D–F) compared to experimental data
(symbols) (Dynesen et al., 1998). Coloured areas represent different substrate consumption phases predicted by the model: glucose consump-
tion (orange), sucrose hydrolysis and glucose consumption (green), fructose consumption (red) and mannose consumption (purple). Note that
in A–C, there is simultaneous consumption of all the carbon sources and the coloured areas overlap.

Table 1. Relative protein cost for consumption of different sub-
strates and biomass yield per C-mol.

Substrate Relative protein cost Biomass yield (gDW/C-mol)

Glucose 1 0.43
Fructose 1.25 0.3
Mannose 1.27 0.3
Sucrose 2.18 0.2

The relative protein cost is calculated as the flux through the protein
pool reaction required to consume 1 mmol of substrate divided by
the same flux required for consumption of 1 mmol of glucose.
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concentrations and engineered to produce lactate (van
Maris et al., 2008). dFBA simulations with Yeast8 and
ecYeast8 were in agreement with experimental data
(Fig. 4A). According to van Maris et al. (2008) during the
first 24 h of the fermentation oxygen was supplied in
excess to the reactor and cells were only limited by glu-
cose availability. After 24 h, cells suffered oxygen limita-
tion, which was simulated constraining the oxygen uptake
reaction. The oxygen limitation continued after 75 h when
additional 100 g of glucose were added to the reactor.
During laboratory evolution fastest growers were selected,

obtaining a final strain with a maximum growth rate of
0.13 h�1 (van Maris et al., 2008). Although the concept of
laboratory evolution is in agreement with the use of biomass
growth as objective function during FBA, Yeast8 and
ecYeast8 predicted higher maximum growth rates, which
suggests that the obtained strains could be further evolved.
Therefore, the upper bound of the biomass reactions had to
be constrained to match the experimental value.
During the glucose limitation phase both models,

Yeast8 and ecYeast8, were limited by glucose availabil-
ity determined by a Michaelis-Menten equation. Besides
ecYeast8 was limited by the protein pool constraint
which resulted in prediction of a lower glucose uptake
rate by this model (Fig. 4B). In this period, oxygen
uptake rates predicted by Yeast8 where unreasonably
high and lactate production was not predicted (Fig. 4B
and C). Contrarily, the limitation in protein availability of
ecYeast8 resulted in realistic predictions of oxygen
uptake and lactate production rates. After 24 h, the limi-
tation in oxygen uptake resulted in a 99.88% decrease
in oxygen uptake by Yeast8 (from 34 mmol gDW

�1 h�1

to 0.04 mmol gDW
�1 h�1) and 93% decrease in

ecYeast8 (from 0.58 to 0.04 mmol gDW
�1 h�1) (Fig. 4).

After the introduction of this limitation, there were not
significant differences in flux predictions by both models.
Besides lactate production, simulations by ecYeast8

resulted in succinate and glycerol production at

concentrations similar to experimental measurements
(van Maris et al., 2008). Simulations with Yeast8 only
resulted in glycerol and succinate production once oxy-
gen uptake was limited and additional by-products such
as citrate or arginine were exported by the model.
Although both models performed well when the

observed oxygen imitation was included in the model, the
protein availability constraint was enough to predict lac-
tate production in oxygen excess conditions suggesting
the potential of combining enzyme constrained models
and dFBA for cell factory simulations (Fig. 4). The dis-
agreement between model predictions and experimental
data observed during the second half of the simulations is
probably caused by growth inhibition due to product toxic-
ity. The dFBA framework would allow to include this inhi-
bition linking the upper bound of the biomass reaction to
the reactor concentration of the toxic compound.

Flux sampling as tool to explore S. cerevisiae
metabolism at different growth rates

When modelling cell metabolism, FBA only provides one
of the multiple flux distributions that results in the opti-
mization of the chosen objective function. Flux sampling
algorithms solve this problem by providing possible flux
distributions of metabolic reactions that satisfy mass bal-
ance constraints (Herrmann et al., 2019). Due to the better
performance of ecYeast8 when simulating consumption
and production of metabolites in different reactor settings,
we tested how flux sampling can be applied to study intra-
cellular fluxes.
During simulations with ecYeast8, all the

glyceraldehyde-3-phosphate was produced through the
pentose phosphate pathway (PPP). To ensure experi-
mentally observed flux through phospho-fructo kinase and
fructose bisphosphate aldolase, the reversible transal-
dolase reaction was blocked before sampling (Frick and
Wittmann, 2005). Also, the reduction of tricarboxylic acid

Fig. 4. Batch growth simulation of Δpdc, lactate producing S. cerevisiae using EcYeast8 (-) and Yeast8 (- -) compared to experimental data
(van Maris et al., 2008).
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cycle (TCA) intermediates in the cytoplasm was avoided
to favour the production of NADH in the cytoplasm (Per-
eira et al., 2016). Last, the model was re-scaled to avoid
stoichiometric coefficients below solver tolerance that
caused numerical instability. For each simulation the
obtained flux distributions represents the metabolism of S.
cerevisiae cells growing in a chemostat with a specific
dilution rate at steady state. The simulation at maximum
growth rate represents the metabolism of cells growing
exponentially in a batch reactor. Sampling results can be
found in https://gitlab.com/saramorenopaz/ecmodels-
predict-growth-dynamics-s.-cerevisiae.git.
In general, we observed good agreement between

predicted fluxes and experimental measurements. As
example, the flux through TCA reactions decrease with
growth rate and, at maximum growth rate, sampling
results show the operation of the TCA cycle as two differ-
ent branches (zero flux through a-ketoglutarate dehydro-
genase (KGD), succinyl-CoA synthetase and fumarase;
Frick and Wittmann, 2005; Heyland et al., 2009; Gombert
et al., 2001). At these high growth rates, relative flux to
the PPP decreases and is directed towards glycolysis
and ethanol formation (Fig. 5A). As expected, the variabil-
ity of the fluxes decreases at increasing growth rates as a
result of a more limited solution space. At higher growth
rates, protein availability becomes limiting and alternative
pathways are no longer feasible.
As test case on the use of flux sampling to study

metabolism, we focussed on the predicted flux distribu-
tions in the pyruvate node and compared them to experi-
mental data (Fig. 5B and C) (Frick and Wittmann, 2005).
Pyruvate kinase (PK) is the main source of cytoplasmic
pyruvate and, in agreement with literature, the model
predicts constant relative flux at growth rates below the
critical dilution rate and increasing relative flux at higher
growth rates. Whilst flux predictions of PK and PDC fol-
low the same trend as experimental data, pyruvate car-
boxylase (PC) shows the opposite behaviour (Fig. 5B).
Frick and Wittmann propose that at high growth rates
pyruvate conversion to acetyl-CoA (by PDC, ALD and
ACS) and subsequent transport to mitochondria satu-
rates. The extra pyruvate is then converted to oxaloac-
etate by PC, which is transported to the mitochondria
and converted back to pyruvate by the malic enzyme
(ME). In this way the mitochondrial pyruvate pool,
required for acetyl-CoA and amino acid synthesis, is
replenished (Maaheimo et al., 2001; Frick and Wittmann,
2005). However, the model predicts a relative flux
increase through PDC, no saturation in the cytoplasmic
conversion of pyruvate to acetyl CoA and, as a result,
fails to predict the experimentally observed flux increase
through PC (Fig. 5C). Although model predictions show
a decrease in relative pyruvate transport to the mito-
chondria, transport is enough to cover mitochondrial

pyruvate requirements and the experimentally observed
flux increase through ME is not predicted by the model
(Fig. 5C). In fact, free movement of metabolites across
compartments is allowed in ecYeast8 as transporters are
not part of the protein pool. Therefore, inaccurate flux
predictions are expected when transport of metabolites
across compartments is the limiting factor.

Discussion

EcModels add an additional layer of information to tradi-
tional GEMs based on the limited capacity of the cells to
synthesise proteins, which results in more accurate pre-
dictions of extracellular fluxes during chemostat, batch
and fed-batch growth of different S. cerevisiae strains. In
chemostat simulations, ecYeast8 corrects the inability of
Yeast8 to predict the critical dilution rate and subsequent
decrease in biomass concentration and ethanol produc-
tion. Similarly, during batch simulations ecYeast8 cor-
rects the inability of Yeast8 to predict the Crabtree effect
as well as the order and rate of consumption of several
carbon sources.
de Groot et al. (2019) show that GEM predict overflow

metabolism when two growth-limiting constraints are hit
regardless of their biological interpretation. Therefore,
Yeast8 can be modified to predict overflow metabolism by
adding a second constraint such as a maximum oxygen
uptake rate (Famili et al., 2003). However, ecYeast8 not
only predicts respiro-fermentative metabolism at growth
rates higher than the critical dilution rate but, when com-
bined with dFBA, it also accurately describes ethanol pro-
duction and consumption during exponential growth, the
preferred consumption order of different carbon sources
as well as product production rates (Figs 2–4). In tradi-
tional GEM, the flux through reactions required for growth
is not constrained, so the model adjusts these fluxes to
obtain the desired growth rate, which results in inaccurate
description of metabolism. EcYeast8 breaks the linear
dependency between fluxes and growth rate and shows
accurate intracellular flux predictions (Fig. 5). Simulating
this behaviour with Yeast8 is only possible upon an itera-
tive, case-dependent design of condition-specific con-
straints (Plaza and Bogaerts, 2019).
The parameter with the largest influence on the simu-

lations is the upper bound of the protein exchange reac-
tion, which represents enzyme availability. This
parameter determines the maximum growth rate in batch
reactors, the critical dilution rate in continuous cultures
and the uptake rates of substrates. In the absence of
proteomic data S�anchez et al. (2017) assume constant
protein availability for a given strain and process and
provide two different values depending on the simulation
of chemostat or batch growth. We showed that increas-
ing this parameter was required to simulate batch growth
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on different carbon sources and that it should be adjusted
to accurately simulate chemostat growth of strains with
different protein content (Verduyn et al., 1990). Interest-
ingly, the effect of the protein availability constraint implic-
itly accounts for protein synthesis costs reducing the
impact of the maintenance requirements during the simu-
lations. Therefore, the constraint in protein availability can
be understood in terms of the limited space in the cell,
but also in terms of limited energy available for protein
synthesis. Besides, simulations with different carbon
sources suggested that the order of substrate consump-
tion can be partially explained by the associated protein
cost required for its consumption. When considering the
limitation of protein content in the cells, CCR is essential
to achieve the maximum growth rate.
Dynamic FBA is a valuable tool to predict the dynamic

behaviour of engineered strains in a bioreactor (Hjersted

et al., 2007; Meadows et al., 2009; Hohenschuh et al.,
2020). Whilst FBA allows the comparison of yields
between engineered strains, dFBA simulates dynamic
processes allowing the comparison of final titters and
productivities, which depend on the strain and the bio-
process. We showed here how the combination of
ecYeast8 with dFBA improved predicted metabolic
changes in response to the operation of a reactor with-
out additional constraints. We used simulations on mix-
ture of carbon sources to show how predictions can be
further improved incorporating regulation-related con-
straints to the dFBA framework (Fig. S2). We showed
the potential of this method to aid the design of bio-
processes including the prediction of the metabolism of
engineered cells in a reactor and changes in cell meta-
bolism due to changes in operational conditions such as
co-feeds. This framework can be extended to include

Fig. 5. Comparison of flux sampling results with ecYeast8 (median � MAD) and 13C flux analysis data (symbols) (Frick and Wittmann, 2005).
(A) Fluxes relative to the glucose uptake at different growth rates of the glycolytic enzyme fructose bis-phosphate aldolase, the PPP enzyme
glucose-6-phoaphate dehydrogenase (ZWF), the tricarboxilic acid cycle enzymes citrate synthase (CS) and a-KGD. (B) Fluxes relative to the
glucose uptake of enzymes involved in the pyruvate node (pyruvate kinase, PK; pyruvate decarboxylse, PDC; pyruvate carboxylase, PC) and
relative transport flux of pyruvate to mitochondria (mito). (C) Representation of the pyruvate node (GLC, glucose; PEP, phosphoenol pyruvate;
PYR, pyruvate; OAA, oxaloacetate; ACTL, acetaldehyde; ETH, ethanol; ACT, acetate; ACoA, acetyl coenzyme A; ALD, acetaldehyde dehydro-
genase; ACS, acetyl CoA synthase; ME, malic enzyme). In A and B lines represent the median flux value obtained from 10 000 samples and
shaded areas represent the median absolute deviation.
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other important process parameters such as temperature
(Li et al., 2021).
Accurate predictions of intracellular metabolic fluxes is

a desired feature for models aiming to find and compare
metabolic engineering strategies to improve production
of a target metabolite. To the best of our knowledge, this
study is the first report on how to combine flux sampling
and ecModels to study intracellular flux predictions,
avoiding the necessity to fix an objective function and
allowing the coverage of the whole solution space (Her-
rmann et al., 2019). While previous studies focussed on
the prediction of intracellular fluxes at maximum growth
rate, we have compared flux predictions covering S.
cerevisiae full range of growth rates (Pereira et al.,
2016). Despite of the substantially improved predictive
power of the model, the protein availability constraint
was not enough to yield accurate predictions of all intra-
cellular fluxes due to the highly dimensional solution
space and the absence of regulatory information in the
model (Fig. 5B). Using proteomic data instead of a sin-
gle constraint on the protein content of the cells, consid-
ering space limitation in cell membranes or the creation
of ensemble models is expected to further improve flux
predictions when these models are applied to strain
design, reducing the prediction of incorrect knock-out
and overexpression targets (Zhuang et al., 2011;
S�anchez et al., 2017; Medlock et al., 2020).
In conclusion, we introduced flux sampling as a tool to

analyse intracellular flux predictions of ecModels, of
major importance for model guided strain design. As
parameters in the reactor as well as genetic modifica-
tions affect flux predictions, the successful combination
of ecModels and dFBA allows the comparison of yields
and productivities among different strains and (dynamic)
production processes. This model and simulation frame-
work therefore provides the means for more accurate
and realistic designs of cell-based processes increasing
their usefulness for industrial applications.

Experimental procedures

Yeast8 and ecYeast8 models were obtained from Lu
et al. (2019) and, unless stated differently, default values
for upper and lower bounds of reactions were used dur-
ing the simulations. Kcat values in ecYeast8 were
rescaled and additional constraints were imposed (see
Appendix S1). Model simulations were performed using
Python 3.6, COBRApy (version 0.18.1) and glpk as sol-
ver (Ebrahim et al., 2013). For details on experimental
data used in this study see Appendix S2 and Table 2.
Functions developed for chemostat, batch and fed-batch
simulations as well as an example on their use are avail-
able at https://gitlab.com/saramorenopaz/ecmodels-
predict-growth-dynamics-s.-cerevisiae.git.

Glucose limited chemostat simulations

During chemostat simulations metabolic fluxes were cal-
culated setting the bounds of the biomass reaction
(r_2111) equal to the dilution rate (D, h�1) and minimis-
ing glucose consumption as objective for FBA optimiza-
tion (maximise r_1714 for Yeast8 and minimise
r_1714_REV for ecYeast8) (Schuetz et al., 2007). The
dilution rate was varied from 0.05 h�1 to 0.42 h�1 in
intervals of 0.02 h�1 and feeds with glucose concentra-
tions of 5 g l�1, 7.5 g l�1, 10 g l�1, 15 g l�1 and
30 g l�1 were simulated. In all cases, the simulated cul-
tures were glucose-limited, there was negligible glucose
accumulation in the media, and the glucose mass bal-
ance was used to calculate the cell concentration in the
reactor. If by-product secretion was predicted during sim-
ulations, their concentration was calculated using mass
balances. A detailed explanation of the equations used
is shown in Appendix S1.

Batch and fed-batch simulations

In batch and fed-batch simulations the growth reaction
(r_2111) was set as objective to maximise (Schuetz
et al., 2007). Following S�anchez et al., the upper bound
of the protein pool reaction was increased by 25%
(S�anchez et al., 2017). When ethanol was present in the
reactor, its uptake was allowed un-constraining reactions
r_1761 (Yeast8) or r_1761_REV (ecYeast8).
During the simulation of batch and the batch phase of

fed-batch reactors, the glucose exchange reaction
(r_1714 or r_1714_REV) was constrained based on the
glucose concentration in the reactor using a Michaelis-
Menten kinetic equation (qglc,max = 10 mmol gDW

�1 h�1,
km,glc = 0.28 mmol l�1 (Barford, 1990)). The glucose

Table 2. Summary of experimental data used in this study.

Reactor
operation Carbon source Strain Reference

Chemostat Glucose CBS8066 Postma et al. (1988)
Chemostat Glucose DS28911 Van Hoek et al. (1998)
Chemostat Glucose H1022 Rieger et al. (1983)
Chemostat Glucose CEN.PK

113.7D
Canelas et al. (2011)

Batch Glucose H1022 Hanly et al. (2012)
Fed-batch Glucose CEN.PK

113.7D
This study

Batch Sucrose +
Glucose

DGI342 Dynesen et al. (1998)

Batch Sucrose +
Fructose

DGI342 Dynesen et al. (1998)

Batch Sucrose +
Mannose

DGI342 Dynesen et al. (1998)

Batch Glucose GCSI-La Van Maris et al. (2008)

a. CEN.PK 113.7D pdc1(�6.-2)::loxP pdc5(�6.-2)::loxP pdc6(�6.-
2)::lox P ura3-52 YEpLpILDH.
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mass balance was used to calculate the remaining glu-
cose in the reactor. During the feeding phase of fed-
batch reactors, the glucose mass balance was used to
calculate the glucose uptake rate and constrain the glu-
cose exchange reaction. During this phase glucose is
the limiting factor and its concentration in the reactor is
negligible. After FBA optimization, the predicted meta-
bolic fluxes were used to calculate new cell and by-
products concentrations in the reactor using integrated
mass balances. See Appendix S1 for a detailed explana-
tion of the equations used.
In simulations of batch growth on combinations of

sucrose and glucose, sucrose and fructose and sucrose
and mannose, the uptake of glucose, fructose, man-
nose and sucrose was allowed if these metabolites
were present in the reactor by setting a negative lower
bound (Yeast8) or a positive upper bound (ecYeast8) to
their exchange reactions (r_1714 and r_1714_REV,
r_1709 and r_1709_REV, r_1715 and r_1715_REV,
r_2058 and r_2058_REV respectively). This upper
bound was calculated using a Michaelis-Menten equa-
tion for glucose. For the rest of substrates a lower
bound of �10 mmol gDW�1 h�1 was used in simula-
tions with Yeast8 and the upper bound of these reac-
tions was unconstrained in ecYeast8. Additional
simulations with ecYeast8 were performed including
specific constraints based on inhibition of substrate
uptake by some of the carbon sources (see
Appendix S1).

Simulation of Δpdc lactate producing S. cerevisiae

Yeast8 and ecYeast8 were modified to simulate a
strain without a PCD activity and expressing the lactate
dehydrogenase gene from Lactobacillus plantarum
(van Maris et al., 2008). In both models the growth
reaction (r_2111) upper bound was constrained to
0.13 h�1 to simulate the maximum growth rate
observed experimentally (van Maris et al., 2008). dFBA
was used to simulate cells growing in a 1 l reactor
operated as a batch with 100 g l�1 of initial glucose
and a 100 g glucose pulse 75 h after inoculation. Oxy-
gen limitation was experimentally observed from 24 h
after inoculation until the end of the process and was
simulated constraining the oxygen exchange reaction
(r_1992 in Yeast8 and r_1992_REV in ecYeast8)
assuming no oxygen accumulation (van Maris et al.,
2008). During simulations with ecYeast8 the export of
products different than biomass, lactate, succinate and
glycerol was avoided constraining their secretion reac-
tions (van Maris et al., 2008). Export of metabolites
was unconstrained in simulations with Yeast8 to avoid
infeasible solutions. See Appendix S1 for details on the
simulations.

Sampling of intracellular fluxes

The Artificial Centering Hit-and-Run (ACHR) Sampler
from cobrapy was used to sample the solution space.
Before sampling, bounds of the biomass reaction were
constrained to the desired growth rate, glucose uptake
was set as objective to minimise and the flux through
this reaction was constrained to the minimal flux � 10%.
In all cases, the modified model was used and 10 000
samples were taken. Samples which contained fluxes
that violated lower and/or upper bounds or the steady
state assumption were discarded using achr.validate
(Ebrahim et al., 2013). Samples were taken at a range
of growth rates (0.01, 0.05, 0.1, 0.15, 0.20, 0.23, 0.24,
0.25, 0.26, 0.27, 0.28, 0.29 and 0.3 h�1). To analyse
intracellular fluxes the median � the median absolute
deviation (MAD) of the valid samples is considered as
the predicted flux through a given reaction. Sampling
data is presented in https://gitlab.com/saramorenopaz/
ecmodels-predict-growth-dynamics-s.-cerevisiae.git.
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