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We have explored both the benefits and detriments of providing electrical input through a
cochlear implant in one ear to the auditory system of young children. A cochlear implant
delivers electrical pulses to stimulate the auditory nerve, providing children who are deaf
with access to sound.The goals of implantation are to restrict reorganization of the deprived
immature auditory brain and promote development of hearing and spoken language. It
is clear that limiting the duration of deprivation is a key factor. Additional considerations
are the onset, etiology, and use of residual hearing as each of these can have unique
effects on auditory development in the pre-implant period. New findings show that many
children receiving unilateral cochlear implants are developing mature-like brainstem and
thalamo-cortical responses to sound with long term use despite these sources of variability;
however, there remain considerable abnormalities in cortical function. The most apparent,
determined by implanting the other ear and measuring responses to acute stimulation, is a
loss of normal cortical response from the deprived ear. Recent data reveal that this can be
avoided in children by early implantation of both ears simultaneously or with limited delay.
We conclude that auditory development requires input early in development and from both
ears.
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INTRODUCTION
A cochlear implant is an auditory prosthesis which is surgi-
cally implanted into the cochlea (inner ear), and allows children
who are deaf to develop oral speech and language. Because
the brain is most susceptible to changes in early life, pro-
viding access to sound at a young age is essential to pro-
mote auditory development (Papsin and Gordon, 2007; Kral
and O’Donoghue, 2010). The implant cannot restore normal
hearing. It provides only a crude representation of acoustic
sounds, eliminates important cochlear processing, and may
not be able to completely reverse the effects of deafness. In
addition, cochlear implants were traditionally provided unilat-
erally (i.e., in only one ear) in children, leaving the opposite
pathways deprived of input and susceptible to degeneration
and reorganization (O’Neil et al., 2010; Gordon et al., 2013;
Kral et al., 2013). Yet, despite these disadvantages, many chil-
dren achieve excellent listening and oral communication abil-
ities. In the present review, we share findings from studies
exploring whether cochlear implantation can limit reorganiza-
tion of the deprived immature auditory brain and promote
appropriate and normal-like development along the auditory
pathways.

THE AUDITORY SYSTEM REORGANIZES WHEN BILATERALLY
DEPRIVED
Prior to cochlear implantation, the absence of auditory input to
the auditory system leaves the brain vulnerable to reorganization

(Nishimura et al., 1999; Bavelier et al., 2000, 2006; Finney et al.,
2001; Lee et al., 2001; Bavelier and Neville, 2002; Merabet and
Pascual-Leone, 2010). Secondary and association auditory areas,
including parts of the planum temporale, all of which respond
to multi-sensory input including hearing, vision and touch
(Pandya and Yeterian, 1985; Giard and Peronnet, 1999; Calvert
et al., 2001; Calvert and Thesen, 2004), become recruited by the
visual (Finney et al., 2001; Lee et al., 2001, 2007b; Lomber et al.,
2010; Meredith and Lomber, 2011) and somatosensory (Levä-
nen et al., 1998; Levänen and Hamdorf, 2001; Auer et al., 2007;
Meredith and Lomber, 2011) systems to perform non-auditory
functions. As a consequence of early auditory deprivation, pro-
cessing of visual peripheral localization by the posterior audi-
tory field (Lomber et al., 2010), visual motion detection by the
dorsal zone of the auditory cortex (Lomber et al., 2010), and
somatosensory sensation by the anterior auditory field (Mered-
ith and Lomber, 2011) become enhanced in individuals who
are deaf. These changes appear to result from a direct compe-
tition for resources in areas which receive multi-sensory input.
If governed by principals of Hebbian processing (Hebb, 1949;
Abbott and Nelson, 2000; Song et al., 2000), neurons in these
areas might preferentially form viable connections with non-
auditory inputs to the detriment of inputs carrying auditory
information. We must be concerned by the reorganization of
the deaf auditory cortex because, depending on how quickly
these processes occur, they may be impossible to reverse and
could impair outcomes after cochlear implantation. It is also
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becoming clear that these changes do not occur uniformly in
children who are deaf and may be related to the heterogene-
ity in the onset and cause of pediatric deafness (Gordon et al.,
2011a,c).

Limiting the period of bilateral deafness in early life is essen-
tial to drive maturation in the auditory pathways (O’Donoghue,
1999; Kral et al., 2001; Ponton and Eggermont, 2001; Sharma
et al., 2005; Papsin and Gordon, 2007; Gordon et al., 2008a, 2010;
Nikolopoulos et al., 2009), and promote optimal hearing and
speech and language development (Beadle et al., 2005; Harrison
et al., 2005; Nicholas and Geers, 2007; Geers and Sedey, 2011).
Many studies investigating auditory development after cochlear
implantation focus on children who are deaf in infancy, but do
not examine the larger heterogeneity in etiology, onset and/or
degree of deafness. These factors may each have unique effects
on auditory activity in the brain prior to implantation. For
example, biallelic mutations of the Gap Junction Beta-2 (GJB-
2) gene causes deficits in the cochlea at likely very early stages
of development with possible consequences for auditory func-
tion after implantation (Propst et al., 2006). The GJB-2 gene
normally codes for the connexin-26 protein, which creates gap
junctions in the cochlea necessary for the appropriate release and
maintenance of electrochemical gradients. This in turn, gener-
ates action potentials and stimulates the auditory nerve (Kelley
et al., 1998; Cohn and Kelley, 1999; Gualandi et al., 2002). Elec-
trophysiological recordings of auditory evoked cortical activity
at initial cochlear implant activation in children with severe
GJB-2 mutations revealed that responses from the cortex were
more homogenous in this cohort compared to those children
who did not have such a mutation. Auditory evoked cortical
responses in children with GJB-2 mutations were characteris-
tic of earlier stages of cortical development, perhaps reflecting
restricted spontaneous activity in the auditory system and more
limited access to sound prior to implantation compared to their
peers who did not have a GJB-2 related deafness (Gordon et al.,
2011c). This was further supported by poorer hearing sensi-
tivity in the low frequencies in the GJB-2 group (Propst et al.,
2006).

The degree of residual hearing is another important predic-
tive factor for cochlear implant outcomes. Traditional candidacy
criteria for cochlear implantation in children include a diag-
nosis of permanent severe-to-profound hearing loss bilaterally
with little or limited access to acoustic input through hearing
aids (Osberger et al., 2002). We recently reported that children
who had better hearing at 250 Hz used their hearing aids for
longer durations prior to receiving a cochlear implant (Hopyan
et al., 2012). Of interest, these children performed significantly
better on tests of music perception with their implants, par-
ticularly when detecting differences in rhythm, compared to
children who did not have acoustical access to these low fre-
quencies prior to implantation (Hopyan et al., 2012). Thus, there
are advantages of acoustical input for auditory development
which can be capitalized upon after cochlear implantation. In
general, we are learning that the cause, onset and degree of
deafness in any one child will be important to understand in
order to ensure that he/she makes the best possible use of his/her
device.

UNILATERAL COCHLEAR IMPLANTATION RESTORES
HEARING AND PROMOTES AUDITORY DEVELOPMENT
The cochlear implant was made available to children in North
America in the early 1990s and works by stimulating the auditory
pathways with electrical pulses. The implant contains an array of
electrodes which is surgically placed in the scala tympani of the
cochlea. These electrodes each deliver electrical pulses to stimu-
late the auditory nerve. External equipment is worn which takes in
acoustic sound through the microphone, extracts frequency and
intensity information in a speech processor and sends instructions
to an internal device through an FM transmitting coil. The inter-
nal receiver-stimulator sends this information to the electrodes
which are organized to mimic the normal cochlea; high frequency
sounds are allocated to basal electrodes with lower frequencies
being allocated to progressively more apical electrodes. In this
way, the child receives an electrical representation of the acoustic
world and learns to understand sounds including speech.

Auditory brainstem development, measured by decreasing
latencies of evoked potential peaks, is largely complete by the first
year of cochlear implant use in children with early onset deafness
(Gordon et al., 2003, 2006), indicating increasing efficiency of neu-
ral conduction and improved neural synchrony with exposure to
sound (Gordon et al., 2003). Similar changes have been reported
from the auditory brainstems of normal hearing children over a
similar time-course (Salamy and McKean, 1976; Starr et al., 1977;
Jerger and Hall, 1980; Salamy, 1984; Hecox and Burkard, 2006).
Data from Gordon et al. (2006) is shown in Figure 1A; on the left is
an example of an electrically evoked auditory brainstem response.
The stimulus artifact is shown at time 0 ms followed by waves
eII, eIII and eV, and on the right, the latency values of wave eV
are plotted at initial device activation and over the first year fol-
lowing cochlear implant use in 44 children who had early onset
deafness and were implanted unilaterally (Gordon et al., 2006).
Recently, we recorded these same responses in two children who
were in the original study once they had over a decade of unilat-
eral cochlear implant experience. Their responses are shown in
Figures 1B,C (Jiwani et al., 2011). In both cases, wave eV latency
clearly decreases over the first year of cochlear implant use, with
no further changes thereafter. This suggests that activity in audi-
tory brainstem is largely complete by the first year (Gordon et al.,
2006).

Further studies concentrated on the development of cortical
auditory activity in children with time after cochlear implantation.
Cochlear implants provided to children who are congenitally deaf
within 3.5 years of bilateral deafness promote age-appropriate cor-
tical responses over the first 3–6 months of implant use (Sharma
et al., 2002a). After this initial period, these responses change
at a rate which is similar to normal (Eggermont et al., 1997;
Eggermont and Ponton, 2003). We recently assessed changes in
cortical responses after longer term unilateral cochlear implant
use in children who were implanted early (Jiwani et al., 2013a).
Grand mean cortical evoked responses from 79 unilateral cochlear
implant users (red waveforms) are plotted in Figure 2 along
with the grand mean responses from 58 normal hearing peers
(black waveforms) for different intervals of hearing experience.
Figures 2A–C show grand mean cortical evoked waveforms from
children who have between 0 and 7 years (40 cochlear implant
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FIGURE 1 | (A) Example of an electrically evoked auditory brainstem
response waveform is shown on the left. The onset of the cochlear implant
artifact is shown at time 0 ms, followed by peaks eII, eIII and eV. Data from
Gordon et al. (2006) are plotted on the right and show the mean wave eV
latency values of 44 children recorded at initial activation of the implant, and
at months 2, 6 and 12 following unilateral cochlear implantation. (B,C) on the
right show the changes in the brainstem responses of two children who were

in the original study (Gordon et al., 2006), recorded from initial activation of
the device to different intervals over the first year of cochlear implantation
use. New responses recorded after 10 years of unilateral cochlear implant
experience are also shown (Jiwani et al., 2011), further confirming that little
change in the eV latency occurs beyond the first year of implant use. The
wave eV latencies at each time-point are represented on the right for each
child.
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FIGURE 2 | Grand mean cortical evoked responses from 79 cochlear
implant users (red waveform; Jiwani et al., 2013a) are plotted for
children who have (A) under 7 years of hearing experience
(4.3 ± 1.7 years; n = 40), (B) between 7 and 12 years of hearing
experience (9.4 ± 1.6 years; n = 21), and (C) those who have more

than 12 years of hearing experience (13.8 ± 0.9 years; n = 18). Mean
responses for each range of hearing experience are compared to a
normal and mature cortical waveform (black waveform; Jiwani et al.,
2013a), recorded from normal hearing peers who are matched for
hearing age (n = 58).

users; 11 normal hearing), 7 to 12 years (21 cochlear implant users;
18 normal hearing) and over 12 years (18 cochlear implant users;
29 normal hearing) of hearing experience, respectively. Cochlear
implant users represented in these Figures had limited durations
of bilateral deafness prior to implantation (2.03 ± 1.36 years) with
typical heterogeneity in their etiologies of deafness.

As shown in Figure 2A, responses from children with up to
7 years of hearing experience with an implant or with normal
bilateral hearing are dominated by a large and broad positive
amplitude peak, labeled P1/P2. Comparison of peak latencies
(t(47.3) = −1.63; p > 0.05) and amplitudes (t(42.1) = −0.64;
p > 0.05) reveal no significant differences between the two groups.
This positive-peaked response is believed to reflect either excita-
tory auditory activity from the thalamus to deep layers of the
auditory cortex (Liegeois-Chauvel et al., 1994), or auditory driven
activity from association auditory areas to the reticular activating
system in the non-lemniscal auditory pathways (Kraus et al., 1992;
Ponton et al., 2000; Ponton and Eggermont, 2001). As thalamo-
cortical and cortico-cortical connections develop around 9 to
12 years of age in superficial layers of the auditory cortex, a
small negative amplitude peak, labeled N1, develops in the cor-
tical evoked response and bifurcates the large P1/P2 response into
three peaks: P1, N1 and P2. Similar developmental changes to
the cortical response are observed in early implanted cochlear
implant users who have equal durations of hearing experience.
Indeed, as shown in Figure 2B, with 7 to 12 years of audi-
tory experience (9.38 ± 1.57 years in cochlear implant users;
9.92 ± 1.57 years in normal hearing individuals), the cortical
response in both groups begins to develop into a polyphasic
waveform. The grand mean response from all 21 unilaterally
implanted children begins to bifurcate into a 3-peaked cortical
response at this stage of implant use (Figure 2B). Differences

in the wavepeak latencies (P1: t(10) = −0.88, p > 0.05; N1:
t(10.18) = −1.3, p > 0.05; P2: t(10.77) = 1.43, p > 0.05) and
peak-to-peak amplitudes (P1-N1: t(6.87) = 1.75, p > 0.05; N1-
P2: t(10.67) = 2.2, p > 0.05) between both groups were not
significant. This response continues to develop with time. As
auditory pathways mature in the auditory cortex, peaks P1-
N1-P2-N2 become clearly present (Figure 2C) when auditory
experience exceeds 12 years in all 18 cochlear implant users
(13.81 ± 0.92 years of unilateral implant experience) and 29 nor-
mal hearing peers (15.30 ± 1.81 years of age and hearing) (Jiwani
et al., 2013a).

The data from individuals with normal hearing shown in
Figure 2 is consistent with findings by Ponton, Eggermont and
colleagues who suggested that peak N1 normally emerges around
9 to 12 years of age reflecting maturation of thalamo-cortical and
cortico-cortical loops in superficial layers of the auditory cortex
(Ponton et al., 2000; Eggermont and Ponton, 2003). These path-
ways mediate the transfer of primary auditory and multi-sensory
input from the thalamus to various regions of the ipsilateral and
contralateral auditory cortices (Winer et al., 2001, 2005; Razak
et al., 2009), and the transmission of information from the audi-
tory cortex to primary and secondary sensory areas in both
hemispheres (Read et al., 2002; Lee and Winer, 2005; Klinge et al.,
2010). The developmental trajectory of the electrically evoked cor-
tical waveform suggests that similar development is taking place
in children using cochlear implant (Jiwani et al., 2013a), perhaps
establishing: (1) appropriate relay of auditory input from the
ear to the cortex, via the thalamus; (2) communication between
the two cortical hemispheres; and/or (3) connectivity between
different sensory areas (Jiwani et al., 2013a). These normal-like
developmental changes to the auditory cortex may underlie the
impressive improvements in auditory function observed with
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cochlear implant use over time (Beadle et al., 2005; Nicholas and
Geers, 2007; Geers and Sedey, 2011).

DIFFERENCES FROM NORMAL PERSIST IN AUDITORY
PROCESSING DESPITE LONG DURATIONS OF UNILATERAL
COCHLEAR IMPLANT USE
Although early implantation of young children results in normal-
like cortical response peaks, as shown in Figure 2C, the waveform
has at least one abnormality. Specifically, the amplitude of the
P2 peak in cochlear implant users is larger than in normal hear-
ing peers (t(14.51) = 2.49, p < 0.05) (Jiwani et al., 2013a). The
importance of this recent finding is that it suggests that devi-
ations from normal cortical processing remain in these young
people despite long-term unilateral implant use. Enhanced P2

peak amplitudes in normal hearing adults are known to reflect
increases in selective attention (Picton and Hillyard, 1974; Hocher-
man et al., 1976; Rif et al., 1991; García-Larrea et al., 1992; Posner
and Dehaene, 1994; Grady et al., 1997; Fujiwara et al., 1998;
Tremblay et al., 2009) and increases in multi-sensory integra-
tion during auditory processing (Hari, 1990; García-Larrea et al.,
1992; Levänen et al., 1998; Webster and Colrain, 2000; Moller
and Rollins, 2002; Crowley and Colrain, 2004; Johnson and
Zatorre, 2005). These processes cause a reduction in the primary
network which becomes supplemented by the frontal and pari-
etal areas through increased neural recruitment and synchrony
(Tremblay et al., 2001, 2009; Tremblay and Kraus, 2002; Tremblay,
2007) from the non-primary and association auditory path-
ways (Hocherman et al., 1976; Kraus and McGee, 1993; Kraus
et al., 1994; Grady et al., 1997; Busse et al., 2005). It is there-
fore possible that the larger than normal amplitude of peak
P2 observed in children with long-term cochlear implant expe-
rience reflects increased cognitive demands for attention and
multi-sensory system integration during hearing (Jiwani et al.,
2013a). This may reflect compensatory mechanisms to off-
set: (1) the reorganization in the auditory brain potentially
occurring during the period of deafness prior to implanta-
tion; (2) the abnormal auditory input provided by the cochlear
implant; and/or, (3) the absence of sound to the un-implanted
ear which may lead to reorganization in the deprived path-
ways.

Cochlear implant users compensate for the abnormal input
they receive through the device (Doucet et al., 2006; Giraud and
Lee, 2007; Lee et al., 2007a,b; Hopyan-Misakyan et al., 2009; Strel-
nikov et al., 2010; Hopyan et al., 2011; Kral and Sharma, 2011;
Lazard et al., 2011, 2012; Hopyan et al., 2012; Sandmann et al.,
2012). We found that children using cochlear implants depend
on visual cues more heavily than normal to listen for complex
information embedded in speech (Hopyan-Misakyan et al., 2009).
Emotion perception was tested using 2 subtests of the standardized
Diagnostic Analysis of Nonverbal Behavior-2 (DANVA-2) in 18
cochlear implant users who received one implant by 2.9 ±0.9 years,
had 7.2 ± 1.3 years of cochlear implant experience at the time of
the test, and had good speech perception skills. In the first test,
children listened to the spoken sentence: “I’m going out of the
room now and I’ll be back later” (24 trials), and had to decide
which 1 of 4 emotions (happy, sad, angry or fearful) was con-
veyed by the voice. In the second test, children watched pictures

of other children’s faces, each depicting one of the same four emo-
tions, and had to decide which emotion was conveyed by the
photographs. Performance accuracy was assessed for each task,
and compared to 18 normal hearing controls who were matched
for age (10.3 ± 1.5 years of age) (Hopyan-Misakyan et al., 2009).

Children using cochlear implants showed significantly poorer
than normal performance on the emotion identification task in
the auditory subtest (F(1,34) = 43.7, p > 0.01). This deficit does
not reflect a general failure to identify emotions, however, since
they performed as well as their peers with normal hearing when
the emotions were presented in the visual modality (F(1,34) = 0.1,
p > 0.05) (Hopyan-Misakyan et al., 2009). The inability of these
children to perceive emotions in speech might reflect abnormal
development of cortical representation of emotional prosody in
speech without normal hearing (Nishimura et al., 1999; Lee et al.,
2001, 2007b; Doucet et al., 2006; Meredith and Lomber, 2011;
Sandmann, 2012; Sandmann et al., 2012).

In sum, unilateral cochlear implantation promotes the devel-
opment of normal-like activity in the auditory pathways over
the long-term, but functional abnormalities persist. These could
reflect: (1) deleterious or irreversible changes to neural reorganiza-
tion which occurred during the period of auditory deprivation in
early life, (2) abnormal representation of sound through electrical
pulses stimulation of the auditory system, and/or (3) abnormal
cortical development driven by the absence of auditory input to
the deprived pathways from the opposite un-implanted ear. We
have been studying effects of the latter issue in children.

BINAURAL HEARING IS NOT AVAILABLE TO TRADITIONAL
UNILATERAL COCHLEAR IMPLANT USERS
Hearing through only one cochlear implant eliminates access to
binaural hearing, which is the ability of the auditory system to pro-
cess and integrate auditory input from both ears. Binaural hearing
is especially important for children because they are rarely in one
place and listening to a single speaker at a time. Children need to
attend to and discriminate between several sound sources when
playing and learning. The noise, reverberation and distance, pre-
dominant in most situations including typical classrooms, make
it challenging for children to listen and learn when binaural cues
are not accessible. For children who are deaf in both ears, binau-
ral hearing might be achieved with bilateral cochlear implantation
(i.e., cochlear implants in both ears) (van Hoesel and Tyler, 2003;
Litovsky et al., 2004, 2006; Brown and Balkany, 2007; Steffens et al.,
2008b; Basura et al., 2009; Eapen and Buchman, 2009; Gordon
et al., 2010, 2011b; Salloum et al., 2010; Chadha et al., 2011). Bilat-
eral cochlear implantation is now being increasingly provided to
children either in the same surgery (simultaneously) or in two
different surgeries following a period of unilateral implant use
(sequentially).

Bilateral cochlear implants attempt to restore binaural hearing
by providing information to both ears. Normally, the auditory sys-
tem compares, processes and integrates subtle differences between
level and timing of sounds reaching each ear. In this way, bin-
aural hearing allows: (1) the identification/localization of sound
sources in space (Batteau, 1967; Lorenzi et al., 1999; Van Deun
et al., 2009b; Grothe et al., 2010); (2) increased perception of loud-
ness through binaural summation (Bocca, 1955; Blegvad, 1975);
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and (3) improved hearing in quiet and in noisy environments
through the head shadow and squelch effects (Hawley et al., 2004;
Van Wanrooij and Van Opstal, 2004). Binaural hearing also makes
communication less tiring which enables listening and commu-
nication to be a more pleasant experience. Although restoring
binaural hearing is the goal of bilateral implantation, this has not
been completely realized in either adults or children (van Hoesel
and Tyler,2003; Seeber and Fastl,2008; Grieco-Calub and Litovsky,
2010; Salloum et al., 2010).

Children who are deaf in both ears hear speech better with
bilateral cochlear implants than unilateral implants (Litovsky et al.,
2004; Brown and Balkany, 2007; Ching et al., 2007; Galvin et al.,
2007; Peters et al., 2007; Seeber and Fastl, 2008; Steffens et al.,
2008a; Basura et al., 2009; Eapen and Buchman, 2009; Gordon
and Papsin, 2009; Van Deun et al., 2009a; Salloum et al., 2010;
Chadha et al., 2011), but do not hear binaural cues normally
(Grieco-Calub and Litovsky, 2010; Salloum et al., 2010). Out-
comes improve when both implants are provided with limited
delays and at young ages (van Hoesel and Tyler, 2003; Gor-
don and Papsin, 2009; Van Deun et al., 2009a; Gordon et al.,
2010; Chadha et al., 2011). As the duration of inter-implant
delay decreases, the two ears develop more symmetric speech
perception abilities and children show increasing advantages
of bilateral over unilateral implantation (Gordon and Papsin,
2009). Significant improvements on standardized speech per-
ception tests are seen as early as 6 months following bilateral
cochlear implant stimulation in children who receive their sec-
ond implant simultaneously or within short delays (Gordon
and Papsin, 2009). Furthermore, children implanted with both
cochlear implants simultaneously derive significantly more ben-
efit from spatial separation of noise compared to children who
have longer delays between implants (Chadha et al., 2011). Sound
localization improves in children who are provided access to
sound early and in both ears (Van Deun et al., 2009a). By con-
trast, children who receive both cochlear implants sequentially
after long inter-implant delays (>2 years) have persistent asym-
metries in auditory function and compromised bilateral benefits
for speech perception, even after 36 months of bilateral cochlear
implant use (Gordon and Papsin, 2009). Sequentially implanted
children also seem to depend more on their first implanted ear
than their second for speech perception, and show less bilat-
eral improvement (relative to unilateral implant use) on speech
outcomes than children implanted simultaneously or with lim-
ited delay (Gordon and Papsin, 2009). These children localize
sound inaccurately and rely heavily on level cues to do so (Grieco-
Calub and Litovsky, 2010). The negative effect of inter-implant
delay might be explained by underlying changes to the develop-
ing auditory pathways before and after unilateral and bilateral
implantation.

EVIDENCE OF A SHORT SENSITIVE PERIOD FOR BILATERAL
INPUT IN HUMAN AUDITORY DEVELOPMENT
Data presented in Figures 1 and 2 show that unilateral stimu-
lation promotes development of the auditory pathways (Jiwani
et al., 2013a), thus limiting effects of deafness. At the same time,
this development might occur at the expense of pathways from the
opposite and deprived ear. This might be explained by the absence

of inhibition which would normally have come from input from
the opposite ear during binaural hearing (Grothe et al., 2010).
Without this inhibition, ascending projections from the stimu-
lated ear may be abnormally strengthened in children who are
deaf and use unilateral cochlear implants.

We studied bilateral auditory function in children who had
different durations of unilateral exposure. We hypothesized that
the stage of unilaterally driven brainstem development would
be an important factor to consider. Perhaps changes occurring
in the brainstem at earlier stages of unilaterally driven develop-
ment would have less long lasting consequences on the bilateral
pathways than after the unilaterally stimulated brainstem reached
maturity. Development in the auditory brainstem is largely com-
plete by 1 year of unilateral implant use (Gordon et al., 2006).
Thus, children with >2 years of unilateral experience were cate-
gorized as having mature auditory brainstem function and long
unilateral use. Children with <1 year of unilateral experience
were considered to have short-term use with continuing auditory
brainstem development. Auditory development in these children
was compared to that of children who were deaf and had not
yet used cochlear implants (i.e., limited to no auditory brainstem
development). All children were implanted bilaterally, allowing
us to assess auditory brainstem function evoked by stimulation
from each ear. All children receiving bilateral implants sequen-
tially showed brainstem responses which were faster when evoked
by the experienced ear compared to the newly implanted ear
at initial bilateral implant use (Gordon et al., 2008b). This was
expected and confirmed earlier findings that the first implant
promoted improved neural conduction through the brainstem.
Repeated tests completed after 1.7 ± 1.65 year of bilateral implant
use indicated that mismatches in response latencies persisted in
a group of children receiving the second implant after a long
delay (>2 years) (Gordon et al., 2012). Increased response laten-
cies in response to sound from the second implanted side could
reflect decreased axonal myelination, longer neural conduction
times, slower or weaker synapses or more asynchronous neural
activity – all signs of more limited brainstem development. Abnor-
mal mismatches between brainstem response latencies were never
present in children receiving bilateral implants simultaneously
and resolved with bilateral implant use in children who received
both implants after a short inter-implant delay (<1 year) (Gordon
et al., 2007, 2008b, 2011b, 2012). Thus, allowing the brainstem
to develop unilaterally for >2 years compromises the later pro-
motion of symmetrically functioning bilateral auditory brainstem
pathways.

Mismatched bilateral auditory development in sequentially
implanted children was not restricted to the brainstem. Effects of
asymmetric activity in the pathways from the first stimulated ear
were also found in the auditory cortex. Consistent with the brain-
stem findings, cortical abnormalities were not resolved by chronic
bilateral implant use (3.57 ± 0.74 years) when unilateral expe-
rience exceeded 1.5 years in children who were implanted early
(1.87 ± 1.25 years of age). These findings were recently reported
by Gordon et al. (2013) and are shown in Figure 3 (re-printed from
that paper). We used a unique and validated“Time Restricted Arti-
fact and Coherent Suppression” (TRACS) beamformer method
(Wong and Gordon, 2009) to suppress the electrical artifact from
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FIGURE 3 | Re-printed with permission from Gordon et al. (2013). “(A) Per
cent cortical lateralization (mean ± 1 standard error) is plotted for each
participant group. Greater than normal contralateral lateralization to right/CI-1
stimuli was found in long delay and unilateral cochlear implant users (p < 0.05
and <0.0001, respectively) but not in short delay and simultaneous groups
(p > 0.05). The long delay group showed a decrease in contralateral
lateralization/increase in ipsilateral lateralization relative to those with normal
hearing in response to left/CI-2 stimulation. This did not occur in the short
delay and simultaneous groups. (B) Grand mean virtual sensor data for left

and right hemispheric sources of P1 (normal hearing) and P1ci (cochlear
implant users for stimulation from right/CI-1 and left/CI-2). Large peaks in
responses to CI-1 (right) stimulation can be seen in the long delay and
unilateral group data. (C) Left and right hemispheric dipole moments
(mean ± 1 SE) for P1/P1ci in each group in response to right/CI-1 and left/CI-2
stimulation. In response to CI-1 (right) stimulation, there is a marked increase
in left hemispheric dipole moments in participant groups with >2 years of
unilateral hearing experience (long delay and unilateral; p < 0.05).” (Gordon
et al., 2013; Brain, Figure 7, p. 11)
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the cochlear implant device and spatially localize areas of cortical
activity in hemispheres ipsilateral and contralateral to stimula-
tion. Like many imaging methods, the brain was divided into
thousands of 3-dimensional coordinate spaces (voxels). Responses
were recorded at 64-cephalic surface electrodes and the contribu-
tion of the dipole centered in each voxel to the measured field was
assessed by the adaptive spatial filter of the TRACS beamformer.
Dipole moments for a given voxel were calculated across latency
(virtual sensor) and peak values were used for analyses.

Cortical responses were evoked by unilateral electrical pulse
trains delivered from one implant electrode in seven children with
normal hearing, eight children who were implanted unilaterally
in the right ear (2.32 ± 1.61 years) and had 7.21 ± 2.48 years of
hearing experience and 26 children who used bilateral cochlear
implants for 3.42 ± 0.59 years. Of the bilateral implant users,
10 children received both cochlear implants simultaneously and
16 were sequentially implanted (right ear implanted first with no
hearing aid in the left ear). Bilateral deafness prior to implanta-
tion was limited (1.74 ± 0.90 years) in all children. The children in
this study had less than 12 years of hearing experience, and there-
fore all produced a cortical evoked response which was dominated
by an immature large amplitude positive peak, similar to the one
shown in Figure 2A. The differences between the dipoles from the
left and right auditory cortices were normalized as a percent lat-
eralization [% lateralization = (dipole right − dipole left)/(dipole
right + dipole left) × 100].

A larger than normal variability in the lateralization of cortical
dipoles was found in children receiving bilateral cochlear implants
sequentially. A factor analysis of multiple demographic variables
identified the duration of unilateral implant use as the factor which
best accounted for the spread of cortical responses. We thus fur-
ther analyzed the cortical lateralization data for effects of duration
of unilateral implant use occurring prior to bilateral implanta-
tion. When responses were evoked by the first (i.e., right) implant,
there was an increase in lateralization of activity to the contralat-
eral left auditory cortex with unilateral implant use. This became
significantly larger than the percent of cortical lateralization in the
simultaneously implanted group at 1.48 years of unilateral implant
use. Consistent results were obtained in data evoked by the second
(i.e., left) implant but, in this case, cortical lateralization changed
from the normally expected contralateral direction to ipsilateral
lateralization with unilateral implant use. This abnormal switch
to larger activity in the ipsilateral auditory cortex became signif-
icantly different from responses in the simultaneously implanted
group by 1.37 years of unilateral implant use. These analyses indi-
cated that children with longer than approximately 1.5 years of
unilateral implant use had experienced an abnormal strengthen-
ing of pathways from their first implanted right ear through the
auditory brainstem (Gordon et al., 2008b, 2012) to their left con-
tralateral cortex. This was not resolved by several years of bilateral
implant use and was associated with poorer speech perception in
the second than first implanted ear (Gordon et al., 2013).

The importance of restricting unilateral implant use to less than
1.5 years is further evident in Figure 3 (reprinted from Gordon
et al., 2013). Here, the grand mean lateralization of cortical activity
are shown (Figure 3A), as well as the grand mean dipole moments
identified from the virtual sensors in each hemisphere (Figure 3B).

The group of 16 sequentially implanted children have been divided
into two groups based on the cut off of 1.5 years of unilateral
implant use. The Short Delay group includes seven children who
had 0.86 ± 0.1 years of unilateral implant experience at the time of
testing. The other nine children, the Long Delay group, had more
than 2 years of unilateral implant use (3.44 ± 1.27 years). The
single positive peaked response is clear in all of the group aver-
aged waveforms shown in Figure 3B. The maximum dipoles were
marked and analyzed in each child. The left plot of Figure 3C
shows that dipoles evoked by stimulation from the first/right
implanted ear resulted in significantly higher dipoles in the left
auditory cortex (blue bars) of children who had >1.5 years of
unilateral implant use (Unilateral and Long Delay groups) than
other groups of children (F(4,36) = 3.52, p < 0.05). The simi-
lar findings for these two groups confirm that unilaterally driven
strengthening of projections to the contralateral left auditory
cortex was not reversed by the addition of a second cochlear
implant. This was true despite the children in the Long Delay
group having had several years of bilateral implant experience
at the time of the test. The right plot in Figure 3C shows mean
dipoles for each auditory cortex in response to left/second cochlear
implant stimulation. The Long Delay group shows significantly
higher dipole moments in the left auditory cortex than the other
groups of children (F(3,29) = 5.31, p < 0.01). Thus, regardless
of which ear was stimulated, the left auditory cortex (contralat-
eral to the first/right implanted ear) was the more active side of
the brain in children who had used one implant for >1.5 years.
One explanation for this finding is that the specialized process-
ing of language in left auditory cortex (Zatorre and Belin, 2001;
Zatorre et al., 2002; Tervaniemi and Hugdahl, 2003; Firszt et al.,
2006) is abnormally increased in unilateral cochlear implant users.
It is not clear, however, how such a network would have been
recruited by the simple non-speech stimuli used in the present
experiment. An alternate explanation is that unilateral stimu-
lation allowed abnormal strengthening of pathways from that
ear.

Further evidence that the cortical changes were due to unilat-
erally driven strengthening was found by assessing activity in the
ipsilateral/right auditory cortex. We assessed which ear preferen-
tially activated the hemisphere contralateral to the ear deprived
during the period of unilateral implant use (i.e., the right auditory
cortex). The right auditory cortex was expected to respond more
strongly to input from the left than right ear because the majority
of neurons from one ear normally cross to the contralateral brain-
stem and ascend ipsilaterally from there. This was confirmed in
the group of children with normal hearing and children with lim-
ited unilateral implant use prior to bilateral implantation (short
delay and simultaneous). By contrast, this pattern was reversed in
children in the Long Delay group. This meant that this group of
children had experienced a strengthening of pathways from their
hearing ear to both the ipsilateral (right) cortex, as shown by the
reversal of aural preference, as well as the contralateral (left) cor-
tex as shown by the data in Figure 3. The same reversal of aural
preference in the cortex ipsilateral to the hearing ear has recently
been reported in congenitally deaf white cats (Kral et al., 2013).

The abnormal strengthening of pathways from the unilater-
ally hearing ear to the immature brain seems to initially occur at
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the level of the brainstem. This is supported by evidence of mis-
matched brainstem latencies observed from children with long
(>2 years) unilateral hearing experience (Gordon et al., 2012).
The shorter wave eV latencies evoked from the more experienced
ear suggest an increasing efficiency of activity from this side and
a weakening of pathways from the opposite ear, as reflected by
slower peak latencies on the second implanted side. This could
result from a lack of inhibitory processes in the brainstem which
are normally present during binaural hearing (Grothe et al., 2010).
Listening from one side would allow auditory input from the first
right implanted side to be projected to the cortex with abnormally
high excitation during development thus strengthening pathways
to the contralateral cortex. It appears that if this is allowed to
occur until the brainstem is largely developed (i.e., >1 year of
unilateral implant use), it establishes asymmetric activity in the
auditory pathways which is not easily reversed by providing a sec-
ond implant in the deprived ear. Limiting the period of unilateral
hearing in children by providing bilateral cochlear implants with
little or no delay appears to protect the bilateral pathways from this
abnormal development. These findings thus suggest that there is
a sensitive period of 1.5 years for binaural auditory development
in children.

LONG-TERM UNILATERAL IMPLANT USE IN OLDER
CHILDREN CAUSES LASTING ASYMMETRY IN THE
BILATERAL AUDITORY PATHWAYS
We make the case above that unilateral implant use in children who
have been deaf since infancy should be limited to less than 1.5 years
to promote normal-like symmetrical development of the auditory
pathways from both ears. However, providing bilateral implants
within this time frame may not always be possible. For example,
many adolescents/young adults who were implanted as babies and
have already had many years of unilateral hearing experience are
now seeking a cochlear implant for their opposite ear in hopes
of deriving benefits of bilateral implantation. These children are
different in several ways from our previous research cohorts of
sequentially implanted children. They have had very long periods
of unilateral cochlear implant use concurrently with long dura-
tions of deprivation in their non-implanted ear, and they are no
longer children. We thus expect unique cortical development in
this new group of bilateral implant users, relative to our previous
study groups.

Figure 4 shows the cortical responses recorded at a midline
cephalic location on the head (Cz) and evoked by cochlear implant
stimulation from each ear on the first day of activation of the
second implant in a child who had 15.95 years of hearing experi-
ence on the right side and was deprived of auditory input in the
left ear. These measures were repeated after 1 month of bilat-
eral implant use and then again after 9 months (Jiwani et al.,
2013b,c). Responses from the latter two time points are shown
in Figures 4B,C, respectively. The red waveform shows the grand
mean response recorded from the side with long-term unilateral
cochlear implant experience, and the blue is the cortical wave-
form evoked by stimulation of the newly implanted side (naïve
side). The two responses are very different from one another at
all time points. Consistent with previous findings, the cortical
responses from the experienced side (red waveform) in Figure 4

were dominated by a mature-like morphology, comprised of the
obligatory peaks P1-N1-P2-N2, similar to those expected in same
aged peers with normal hearing (Jiwani et al., 2013a). By contrast,
responses recorded from the newly implanted ear (blue waveform)
were characterized by different peaks occurring with much larger
amplitudes than the responses from the side with long-term hear-
ing experience; a large negative peak (N (ci)), followed by a large
positive peak (P(ci)) can be seen (Jiwani et al., 2013b,c). Little
changes to either response occurred over the first months of bilat-
eral implant use. Slight decreases in the latencies and amplitudes of
the peaks evoked by the newly implanted ear were found after one
month (Figure 4B), with almost no change in latency, amplitude
or waveform morphology thereafter. This is shown by the response
recorded at 9 months following activation of the second implant in
Figure 4C (Jiwani et al., 2013c).

The lack of cortical development evoked by stimulation of the
second implanted side is in contrast to the rapid developmen-
tal change expected to occur at early stages of unilateral cochlear
implant use in young children (Sharma et al., 2002a; Sharma and
Dorman, 2006), and, rather, more similar to the limited change
reported in older children implanted after long durations of bilat-
eral deafness (Sharma et al., 2002b; Gordon et al., 2005, 2008a).
This might reflect immaturity or abnormalities in auditory devel-
opment from the second implanted side, driven by either long
duration of auditory deprivation or by maturation of the auditory
cortex from unilateral cochlear implant use. Providing a second
implant to children after this period has passed may prevent
the naïve cortical pathways from developing after an important
period in cortical auditory development has been missed. The
findings from our previous study (Gordon et al., 2013) (discussed
above and shown in Figure 3) suggest that there is an early sen-
sitive period for bilateral brainstem development (exceeded after
1.5 years of unilateral implant use) and a later cortical maturation
promoted by unilateral use of over 10 years (Jiwani et al., 2013a),
as shown by the data in Figure 4 (Jiwani et al., 2013b,c). Together,
these results suggest that there are multiple sensitive periods in the
developing auditory system.

BILATERAL IMPLANTATION WITHIN A SENSITIVE PERIOD
IMPROVES PERCEPTION OF BINAURAL TIMING CUES
As reviewed above, several lines of investigation suggest that the
potential for promoting binaural hearing in children who are deaf
will be best realized by limiting the period of bilateral deafness
and providing bilateral implants with little delay. We have been
studying the perception of binaural level and timing cues in chil-
dren who received bilateral cochlear implants because these cues
are important for binaural hearing. Interaural level and timing
cues arise because sounds coming from one side of the head reach
the closer ear at higher intensities and/or faster than the other ear.
Level and timing differences are coded in the auditory brainstem
by the degree of inhibition (Grothe et al., 2010).

We found that 19 children receiving one implant at
2.1 ± 1.1 years of age and the second after 4.9 ± 2.8 years of
unilateral implant use can hear changes in interaural level dif-
ferences but have particularly poor abilities to detect interaural
timing cues even after several years of bilateral cochlear implant
use (Salloum et al., 2010). Poor detection of binaural timing
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FIGURE 4 | Example of cortical evoked responses from an adolescent

in the Jiwani et al. (2013b,c) study cohorts. She received a right
unilateral cochlear implant (red waveform) within limited durations of
bilateral deafness (3 years of age) and used it unilaterally to hear for
15.95 years. She then received a second implant in the opposite and

deprived left side (naïve side; blue waveform). Cortical responses
evoked from both implants are shown at: (A) the first day of activation
of the second implanted ear (Jiwani et al., 2013b), (B) one month after
bilateral implantation (Jiwani et al., 2013c) and (C) 9 months following
bilateral cochlear implant experience (Jiwani et al., 2013c).

cues by sequentially implanted children was surprising given evi-
dence from a similar group showing that the auditory brainstem
integrates input from both implants as measured by the elec-
trophysiological binaural interaction component (Gordon et al.,
2012). This measure is a calculated difference between the sum
of the left and right evoked auditory brainstem responses and
the bilaterally evoked brainstem response. Peaks in the differ-
ence response reflect inhibition occurring with binaural processing
(Dobie and Berlin, 1979; Dobie and Norton, 1980; Brantberg et al.,
1999). Using this difference measure, we found that tonotopic
organization is maintained in the bilateral brainstem of children
who are deaf and that the pathways continue to code interau-
ral level cues despite development driven from one ear before
the other. There are consequences of the mismatches in develop-
ment resulting from unilateral implant use. Although the auditory
brainstem codes interaural timing differences, this does not occur
normally (Gordon et al., 2008b). A miscalculation of binaural
brainstem interactions results from the mismatch in neural con-
duction (measured by shorter peak latencies responses from the
more experienced ear). More recent findings show that a sound
arriving first to the more experienced ear by 1ms, for example,
reduces the binaural interaural component more than when it
arrives first by the same amount to the second implanted ear
(Gordon, et al., in preparation). Nonetheless, coding of interau-
ral timing remains (albeit abnormally calibrated); thus abnormal
brainstem processing cannot account for the profound difficul-
ties these children have detecting timing differences sent by their
bilateral implants. This suggests a deficit for interaural timing pro-
cessing in more central areas of the auditory system which likely
occurred during the period before bilateral implantation. In sup-
port, the numbers of cortical neurons specialized to respond to
interaural timing cues are reduced in congenitally deaf white cats
(Tillein et al., 2010) as are numbers of neurons in auditory cor-
tices responsible for sound localization (Malhotra et al., 2008). In
more recent work, we are asking whether binaural timing cues are
better heard by children who received bilateral cochlear implants
simultaneously. Preliminary findings suggest good potential for

development of binaural hearing in children who have limited
durations of bilateral and unilateral deafness, but is compromised
in children with long unilateral cochlear implants experience
(>1.5 years).

CONCLUSION
We have reviewed evidence showing that access to sound within
limited durations of bilateral deafness in early life promotes
normal-like development of activity along the auditory path-
ways in children who have many years of hearing experience
with a unilateral cochlear implant. At the same time, however,
the unilaterally driven stimulation leaves the opposite pathways
deprived of input and susceptible to reorganization. We find that
providing bilateral cochlear implants to children after a period
of unilateral deafness of longer than 1.5 years drives abnormal
mismatches in activity at the level of the brainstem and cor-
tex. This is characterized by abnormal strengthening of activity
to both the contralateral and ipsilateral auditory cortices from
the first implanted ear. These abnormalities in auditory devel-
opment are associated with more asymmetric speech perception,
poorer hearing in noise, abnormal sound localization, and an
inability to identify inter-aural timing cues. These skills are impor-
tant for normal integration and processing of auditory input. We
therefore suggest that binaural hearing is compromised in chil-
dren who receive bilateral cochlear implants after a period of
unilateral implant use exceeding 1.5 years. With that in mind,
cochlear implants should be provided to children early as well
as bilaterally within very limited or no delays between implants
(i.e., simultaneously). Our current studies are now examining
how much residual hearing is needed in the un-implanted ear
to provide a potential protective effect against unilaterally driven
reorganization and whether bimodal hearing (acoustic and elec-
trical input) can be used to restore binaural hearing. Further,
we are asking whether the sensitive period for bilateral input
can be “reopened” by attempting to strengthen pathways from
the second implanted ear to restore symmetric bilateral pathways
and binaural hearing. Our findings suggest that both bilateral
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and unilateral deprivation should be limited to promote opti-
mal binaural hearing in children who use cochlear implants,
and enable them to function better and more naturally in chal-
lenging listening situations such as the playground or classroom
environments.
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