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CD36 regulates lipopolysaccharide-
induced signaling pathways and 
mediates the internalization of 
Escherichia coli in cooperation 
with TLR4 in goat mammary gland 
epithelial cells
Duoyao Cao, Jun Luo, Dekun Chen, Huifen Xu, Huaiping Shi, Xiaoqi Jing & Wenjuan Zang

The scavenger receptor CD36 is involved in pathogen recognition, phagocytosis, and pathogen-
induced signaling. This study investigated the relationship between CD36 and TLR4 in modifying 
lipopolysaccharide (LPS)-induced signaling pathways and mediating Escherichia coli (E. coli) 
endocytosis in primary goat mammary epithelial cells (pGMECs). The manipulation of CD36 expression 
significantly influenced TLR4 and nuclear factor kappa B (NF-κB) mRNA expression in pGMECs 
stimulated with LPS for 12 h. NF-κB and activator protein-1 (AP-1) activity was regulated by the 
manipulation of CD36 expression in LPS-induced pGMECs. However, CD36-mediated AP-1 activation 
occurred primarily through c-Jun N-terminal kinase (c-JNK). Adaptor proteins and proinflammatory 
cytokines were also involved in these signaling pathways and acted by regulating CD36 expression 
in LPS-stimulated cells. Moreover, CD36 cooperated with TLR4 in TLR4-mediated phagocytosis 
following E. coli simulation, but this complex was not induced by LPS treatment. Our study is the first 
to illuminate CD36 as a scavenger receptor in ruminants. Additionally, this study indicates that CD36 
plays a vital role in the LPS-induced activation of downstream signaling cascades and mediates E. coli 
phagocytosis via TLR4 in pGMECs, which offers a novel treatment strategy for mastitis.

Escherichia coli (E. coli) is one of the most severe pathogens in epidemiology and is the most common bacteria to 
cause mastitis in dairy herds. Mastitis is a worldwide disease that not only inflicts economic damage on the dairy 
industry but also threatens consumer health1,2. In mastitis, mammary epithelial cells (MECs) become infected 
with E. coli. During the infection, the cells engulf the pathogens and secrete cytokines to activate immune cells, 
such as phagocytes and granulocytes3. In response to E. coli, MECs produce a variety of cytokines and initiate a 
proinflammatory response themselves primarily through toll-like receptor 4 (TLR4)4. After the onset of an E. coli 
infection, TLR4 assembles the TLR4/MD-2/LPS complex on the surface of the cell and initiates a downstream 
signaling pathway to induce the production of proinflammatory mediators to eliminate the bacteria5. LPS induces 
the co-clustering of TLR4 with CD14 and with chemokine receptor 46, Fcγ  receptors7, and scavenger receptors 
(SRs)8. Some of these proteins can function as CD14, such as class B scavenger receptors, including CD36, CLA-1/
SRB-I, and CLA-2/SRB-II9,10. However, which receptors participate in or cooperate with TLR4 during E. coli rec-
ognition and LPS initiation remains unknown.

CD36 is a membrane glycoprotein present in platelets, mononuclear phagocytes, adipocytes, hepatocytes, 
myocytes, and some epithelial cells11. Depending on its distribution, this protein is also involved in the uptake 
of apoptotic cells and in the modulation of inflammation, atherosclerosis, diabetes, and cardiomyopathy10. Some 
researchers have found that CD36 plays a role in the internalization of Gram-positive and Gram-negative bacteria 
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as well as in LPS recognition during the early stages of infections9,12. In recent studies, CD36 was shown to be 
recruited to TLR2/TLR6 heterodimers to form a CD36/TLR2/TLR6 complex in lipoteichoic acid (LTA) and diac-
ylated peptide stimulation13,14. CD36 can not only invoke cell secretion of cytokines in pathogen-induced sig-
naling but also play vital roles in bacterial phagocytosis and clearance12,15. Moreover, some studies have shown 
that cells lacking phagocytic abilities will acquire or increase phagocytic functions following transfection with 
CD3616,17. These reports revealed that CD36 is also capable of activating cells alone or in conjunction with other 
receptors to recognize danger signals, thereby eliminating potential “self ” or “nonself ” threats. Most studies are 
interested in phagocytic cells; however, little is known about the function of CD36 in nonphagocytic cells, such 
as epithelial cells, which act as a “sentinel” to guard mammary tissue from exogenous threats. Therefore, under-
standing the role of CD36 in MECs during an infection is important.

Nuclear factor-kappa B (NF-κ B) and activator protein-1 (AP-1) are the most important transcription fac-
tors in the TLR family of receptors that induce inflammation18,19. After ligand stimulation, the interleukin-1 
receptor-associated kinase (IRAK) family (IRAK1, 2, and 4) is activated and has an essential role in the activation 
of NF-κ B and mitogen-activated protein kinase (MAPK) downstream of MyD88. IRAK activation results in 
an interaction with tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) to activate TAK1 down-
stream20. TAK1 can phosphorylate IKKβ  through its close proximity to the IKK complex (IKKα -IKKβ -IKKγ ), 
which leads to NF-κ B activation via the phosphorylation and subsequent degradation of Iκ B proteins21. TAK1 
also simultaneously activates MAPKs [extracellular signal-related kinase 1 (ERK1), ERK2, p38, and c-Jun 
N-terminal kinase (c-JNK)] by inducing the phosphorylation of MAPK kinases, which then activate various 
transcription factors, including AP-1, and influence cytokine production22. The mechanisms of TLR4 activation 
and downstream signaling cascades are gaining attention from veterinary researchers. A recent finding suggested 
that TLR4 expression is upregulated and activated downstream of NF-κ B, JNK, and ERK in a mouse model of 
LPS-induced mastitis23. Bovine MECs (bMECs) stimulated with E. coli or LPS revealed that NF-κ B plays a vital 
role in E. coli- or LPS-induced infections through TLR4-induced inflammation24. Interestingly, CD36, acting 
as a scavenger receptor, can also participate in the bacteria-induced inflammation process and activate down-
stream signaling pathways. In Bacillus Calmette-Guérin (BCG)-infected macrophages, CD36 participates in lipid 
accumulation and downmodulates inflammatory responses through peroxisome proliferator-activated receptor 
gamma (PPARγ )-dependent and NF-κ B-independent pathways25. CD36-deficient mice exhibit reduced levels 
of activated NF-κ B and oxidative stress, indicating that CD36 is a key mediator of proinflammatory and oxi-
dative signaling pathways26. Recent data revealed that CD36 mediates the activation of Src kinases (Fyn and 
Lyn) followed by the downstream activation of JNK and ERK1/2 kinases27,28. The proinflammatory response and 
bacteria uptake were also shown to be dependent on CD36-JNK signaling12. However, little is known about the 
effect of CD36 on downstream signaling pathways in mastitis because most studies have focused on the role of 
CD36 as a lipid transporter (FAT/CD36) and have neglected its role as a scavenger receptor in dairy ruminants. 
The present study determined the characteristics of CD36 during a LPS-induced inflammatory response and 
examined whether CD36 cooperates with TLR4 in pathogen phagocytosis in primary goat MECs (pGMECs). The 
primary goal of this study was to test the hypothesis that CD36 may be involved in LPS-induced inflammation 
via the NF-κ B and JNK signaling pathways and accompany TLR4 during TLR4-mediated E. coli endocytosis in 
pGMECs.

Results
Activation of TLR4 and CD36 in E. coli-induced mastitis. TLR4 and CD36 are important receptors for 
recognizing pathogens and activating downstream signaling; however, little is known about TLR4 and CD36 in 
dairy animals, especially in dairy goats. Therefore, the present study first detected the distribution of TLR4 and 
CD36 in healthy dairy goats to understand the expression status in different tissues, particularly in the mammary 
gland (Fig. 1A). To understand the distribution of CD36 and TLR4 in dairy goats, mRNA was collected and 
extracted from six healthy dairy goats (during the lactation period) to detect CD36 and TLR4 mRNA levels in 
various tissues, particularly those tissues that play important roles in metabolism and immune functions. CD36 
mRNA expression levels were the highest in the rumen (P <  0.05) compared with other tissues. TLR4 mRNA 
levels were expressed at higher levels in the spleen (P <  0.05). Both CD36 and TLR4 were moderately expressed 
in the mammary gland tissues. Interestingly, CD36 and TLR4 mRNA levels were the lowest in the kidney and 
muscle, respectively (Fig. 1A). To confirm E. coli-induced mastitis, milk samples were analyzed, and the bacte-
ria were separated before the experiment (see Supplementary Fig. S1A,B and Table S1). Mammary gland tissue 
samples were collected from three E. coli-infected goats and three healthy dairy goats. Microscopic examination 
showed that the interstitium was infiltrated with inflammatory cells following infection (Fig. 1C). Compared with 
the control group, the acinar lumina and acinar structure of the infection group were disrupted by E. coli inva-
sion, and the bacteria destroyed the epithelial tight junctions (Fig. 1B,C). TLR4 and MyD88 mRNA levels were 
higher in infected goats than in healthy goats (P <  0.01). Surprisingly, CD36 mRNA levels were also significantly 
increased in E. coli-induced mastitis compared with healthy goats (P <  0.01) (Fig. 1D). Unfortunately, changes 
in the CD36 and TLR4 proteins could not be detected because no suitable anti-goat antibodies are currently 
available. However, downstream signal changes revealed that NF-kB-p65, c-JNK, p38-MAPK, and TRAF6 were 
activated in E. coli-induced mastitis tissue samples compared with normal tissue samples (Fig. 1E). The results 
indicated that E. coli-induced mastitis could trigger TLR4 and CD36 mRNA expression and activate the down-
stream signaling pathways in Xinong Saanen dairy goats.

CD36 participates in LPS-induced inflammation in pGMECs. The in vivo studies demonstrated that 
the CD36 receptor was involved in E. coli-induced mastitis. To understand the functions and roles of CD36 
during the infection, E. coli LPS-induced inflammation in the pGMEC model was used to simulate the in vitro 
experiment. At concentrations of 1–10 μg/ml, LPS did not induce cell apoptosis or necrosis (see Supplementary 
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Fig. S2A–D) but did trigger CD36 and TLR4 expression in LPS-stimulated cells (See Supplementary Fig. S2E,F). 
CD36 and TLR4 mRNA were detected at different LPS concentrations (1, 10, 50, and 100 μg/ml) before treating 
the cells with small interfering RNA (siRNA: si-CD36) for 24 h (Fig. 2A,B). Interestingly, the variation in CD36 
mRNA levels was similar to that in TLR4 mRNA levels after adding LPS at different concentrations (Fig. 2A,B). 
From the above results, 10 μg/ml is the ideal LPS concentration to upregulate the expression of both CD36 and 
TLR4 mRNA in treated groups after 12 h.

CD36 mRNA levels were significantly increased (P <  0.001) in cells incubated with CD36 adenovirus 
(Ad-CD36) for 24 h, but no significant changes were noted between the control group and the group incubated 
with adenovirus (Ad-GFP) for 24 h (P >  0.05) (Fig. 2C). In contrast to the LPS-stimulated negative control (NC) 
or Ad-GFP groups, the CD36 and TLR4 mRNA levels declined dramatically in the deficiency groups (P <  0.01) 
(Fig. 2D), whereas their mRNA levels enhanced markedly in the Ad-CD36 cells (P <  0.01) (Fig. 2E). The NF-κ B 
mRNA levels were also influenced by the manipulation of CD36 expression during the LPS-induced inflamma-
tion of pGMECs; however, no change was noted in si-CD36 or Ad-CD36 cells without LPS stimulation, indicat-
ing that CD36 could not invoke NF-κ B activation alone in pGMECs without LPS stimulation (Fig. 2F). After 

Figure 1. Distribution of CD36 and TLR4 expression in various tissues from dairy goats following E. coli-
induced mastitis. (A) Relative distribution of CD36 and TLR4 mRNA expression in different goat tissues. The 
relative expression values are shown on the top of each bar. (B,C) Histology of the dairy goat mammary gland. 
In healthy dairy goats, epithelial tight junctions, intact acinar structures, and no infiltrated inflammatory cells 
are observed in the mammary tissue of the uninfected udder (B, left). Acinar epithelial cells and inflammatory 
cells infiltrated the acinar lumina, causing interstitial edema, and the acinar structures disintegrated in E. coli-
induced mastitis (C, right). (D) Relative to the healthy dairy goat, the mRNA expression of CD36, TLR4, and 
MyD88 increased significantly in E. coli-infected goats (**P <  0.01). (E) NF-κ B, c-JUN, p38-MAPK, and TRAF6 
protein levels were enhanced in mastitis tissues compared to health tissues. The values are the means ±  SEM for 
three individuals. Quantitative PCR data were normalized to GAPDH, UXT, and MRPL39.
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incubating the cells with LPS for 12 h, MyD88 and TRAF6 were increased in the LPS-stimulated groups compared 
with the control groups (Fig. 2G). CD36 overexpression could enhance the MyD88 mRNA levels and TRAF6 
protein expression in LPS-stimulated cells; however, the effects of both adaptor proteins were diminished in the 
si-CD36 group compared to the LPS-incubation group (Fig. 2G). According to the aforementioned results, CD36 
works with TLR4 to regulate adaptor proteins (MyD88 and TRAF6) and activate the NF-κ B downstream signal-
ing pathway in LPS-induced inflammation in pGMECs.

CD36 regulates NF-κB and c-JNK activation but not p38-MAPK kinase pathways following LPS 
stimulation in pGMECs. The previous results showed that the knockdown or overexpression of CD36 could 
affect the NF-κ B mRNA levels in pGMECs (Fig. 2F). Therefore, a NF-κ B-RE luciferase reporter was transfected 
into the cells to evaluate the activation of the NF-κ B signaling pathway in pGMECs. Adding LPS to CD36 knock-
down pGMECs decreased NF-κ B-RE luciferase activation significantly compared to the NC group (P <  0.01) 
(Fig. 3A). Pretreating cells with Ad-CD36 and then adding LPS increased the NF-κ B-RE luciferase activation 
dramatically (P <  0.01) (Fig. 3B). Detection of the NF-κ B protein revealed that CD36 knockdown in pGMECs 
decreased the protein levels and that CD36 overexpression increased the NF-κ B protein significantly compared 
with the LPS-stimulated group (Fig. 3C). Previous studies have shown that LPS could also activate the AP-1 
transcription factor via the TLR4 signaling pathway29,30. Therefore, we next investigated whether CD36 affected 

Figure 2. CD36 participates in LPS-induced inflammation in pGMECs. (A,B) Changes in CD36 and  
TLR4 mRNA levels are shown. Cells were pretreated with NC or si-CD36 for 24 h and then treated with LPS  
for 12 h. CD36 and TLR4 mRNA levels increased following the addition of various concentrations of LPS.  
(C) Bright field and fluorescence images of pGMECs infected with Ad-GFP (left, upper) and Ad-CD36 (left, 
lower) adenovirus for 24 h (MOI =  100). The changes in CD36 mRNA levels compared with the control group, 
Ad-GFP group, and Ad-CD36 group are shown. (D,E) CD36 and TLR4 mRNA changes in pGMECs pretreated 
with siRNA or adenovirus and then exposed to 10 μg/ml LPS for 12 h. (F) The variation in NF-κ B mRNA levels 
following the manipulation of CD36 in pGMECs. NF-κ B mRNA levels were influenced by knockdown (left) 
or overexpression (right) of CD36 in pGMECs, which were then stimulated with 10 μg/ml LPS. (G) MyD88 
mRNA levels and TRAF6 protein levels were influenced by CD36 expression in LPS-stimulated pGMECs. 
The values are the mean ±  SEM for three individuals. Quantitative PCR data were normalized to GAPDH, 
UXT, and MRPL39. All data are presented as the mean ±  SEM from three experiments. *P <  0.05, **P <  0.01, 
***P <  0.001, and not significant (NS).
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Figure 3. Manipulation of CD36 expression regulates NF-κB and JNK activation but not the p38-MAPK 
kinase pathway in pGMECs exposed to LPS stimulation. (A,B) The NF-κ B-RE and Renilla luciferase vectors 
were cotransfected into pGMECs. Then, CD36 expression was manipulated followed by stimulation with 
LPS for 12 h, and the transcriptional activity of the NF-κ B promoter was evaluated. (C) Overexpression or 
knockdown of CD36 expression on LPS-stimulated pGMECs influenced NF-κ B p65 protein expression.  
(D,E) AP-1 luciferase activity was influenced by the CD36 expression status in LPS-stimulated cells. (F) c-Jun 
protein levels increased in Ad-CD36 cells and decreased in si-CD36 cells treated with LPS for 12 h. (G) p38-
MAPK protein levels were detected in LPS-stimulated cells (Ad-CD36 or si-CD36). The corresponding mean 
gray values of NF-κ B p65, c-Jun, and p38-MAPK protein levels were obtained from three separate blots. The 
graph shows the densitometric quantification of NF-κ B p65/β -actin, c-Jun/β -actin, and p38-MAPK/β -actin as 
the fold change difference compared to the control. The relative mRNA levels of MyD88 were also detected. All 
data are presented as the mean ± SEM from three experiments. *P <  0.05, **P <  0.01, and not significant (NS).
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AP-1 activation during LPS-induced inflammation. Transfection of the AP-1-RE luciferase reporter in pGMECs 
demonstrated that AP-1 activation following LPS stimulation was influenced by the manipulation of CD36 
expression in pGMECs. Cells stimulated with LPS showed increased AP-1 activation compared to the groups 
incubated without LPS (Fig. 3D,E). Treatment with si-CD36 before adding LPS revealed that AP-1 activation 
decreased significantly compared to the LPS-stimulated group (P <  0.01) (Fig. 3D). Compared with the GFP +  
LPS groups, AP-1 activation increased dramatically (P <  0.01) in Ad-CD36 cells stimulated with LPS (Fig. 3E). 
The aforementioned results indicated that CD36 participates in LPS-mediated AP-1 activation via the TLR4 sig-
naling pathway. The AP-1 transcription factor could be activated by c-JNK and p38-MAPK. LPS-stimulated cells 
could increase c-JNK protein levels; moreover, adding Ad-CD36 to cells before LPS treatment led to a notable 
increase in c-JNK protein levels (P <  0.01) (Fig. 3F). However, the protein levels decreased considerably in the 
si-CD36 pretreatment groups compared to the LPS-stimulated groups (P <  0.01) (Fig. 3F). The p38-MAPK pro-
tein levels increased significantly after 12 h of LPS stimulation (P <  0.01) (Fig. 3G); however, cells treated with 
LPS and either Ad-CD36 or si-CD36 revealed that the difference in the expression of p38-MAPK between the 
two groups was not significant (P >  0.05) (Fig. 3G). Therefore, these results demonstrate that manipulating CD36 
expression regulates the transcriptional activation of NF-κ B and AP-1. Specifically, AP-1 was primarily activated 
through c-JNK signaling, not p38 MAPK signaling, in LPS-stimulated pGMECs.

Role of CD36 in regulating proinflammatory cytokine expression under LPS stimulation in 
pGMECs. To evaluate the role of CD36 in the inflammatory response to the E. coli-derived ligand LPS in 
cells, cytokines such as IL-1β , IL-6, IL-8, TNF-α , and transforming growth factor-beta (TGF-β ) were measured 
in CD36-depleted or CD36-overexpressed pGMECs following 12 h of stimulation with LPS. In the CD36 knock-
down groups, the mRNA levels of the cytokines were significantly elevated after the cells were treated with LPS 
for 12 h (Fig. 4A). Compared with CD36-manipulated groups, the IL-1β , IL-6, IL-8, and TNF-α  mRNA lev-
els decreased following LPS-induced inflammation (P <  0.01) (Fig. 4A). However, no significant change in the 
mRNA levels of TGF-β  (P >  0.05) was noted after LPS stimulation for 12 h (Fig. 4A). In the Ad-CD36 cells, the 
mRNA levels of IL-1β  (P <  0.01), IL-6 (P <  0.01), IL-8 (P <  0.01), and TNF-α  (P <  0.01) increased significantly 
compared with the Ad-GFP groups after treating pGMECs with LPS for 12 h (Fig. 4B). Additionally, the mRNA 
levels of TGF-β  (P >  0.05) were not influenced by CD36 overexpression compared to the Ad-GFP-stimulated 
groups (Fig. 4B). The cytokine production levels were also similar to the mRNA levels. All cytokine levels 
increased after the cells were stimulated with LPS for 12 h (Fig. 4C,D). However, in the absence of CD36, IL-6, 
IL-8, and TNF-α , cytokine production was impaired following LPS treatment (Fig. 4C). The cytokine IL-1β  
(30%), IL-6 (30%), IL-8 (80%), and TNF-α  (30%) levels increased notably in the Ad-CD36 groups compared to 

Figure 4. Inflammatory cytokine production is influenced by the manipulation of CD36 expression 
following stimulation with LPS in pGMECs. (A,B) The relative mRNA expression levels of the 
proinflammatory mediators were detected in CD36 knockdown pGMECs stimulated with LPS (10 μg/ml) for 
12 h. Then, the cell supernatants were harvested for the analysis of TNF-α , IL-β , IL-8, and IL-6 production by 
ELISA. (C,D) Changes in the gene expression of the proinflammatory cytokines were evaluated in pGMECs 
incubated with Ad-GFP alone, Ad-GFP +  LPS, or Ad-CD36 +  LPS. Then, the cell supernatants were harvested 
for analysis of TNF-α , IL-β , IL-8, and IL-6 production by ELISA. Three replicates were evaluated in each group. 
The values are the mean ±  SEM for three individuals. Quantitative PCR data were normalized to GAPDH, 
UXT, and MRPL39. The data are presented as the mean ±  SEM from three experiments. *P <  0.05, **P <  0.01, 
and not significant (NS).
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the LPS-stimulated groups (Fig. 4D). These data indicated that CD36 plays an important role in proinflammatory 
cytokine (IL-1, IL-6, IL-8, and TNF-α ) production in pGMECs in response to the E. coli-derived ligand LPS.

CD36 cooperates with TLR4 during E. coli internalization and phagocytosis. The prior results 
suggested that CD36 cooperates with TLR4 during LPS-induced TLR4 signaling in pGMECs. Therefore, it was 
hypothesized that CD36 and TLR4 would also interact during bacteria recognition. To confirm that TLR4 cooper-
ates with CD36 during E. coli endocytosis and phagocytosis in vitro, a bimolecular fluorescence complementation 
(BiFC) assay was used to visualize the process of pGMEC endocytosis in bacteria. pGMECs were cotransfected 
with pBiFC-VC155-TLR4 and pBiFC-VN155-CD36, and then Hoechst 33342-labeled E. coli bacteria were added 
for 2 h at 37 °C. No fluorescence was visualized at 488 nm after transfection with either VC-TLR4 or VN-CD36 
alone or with labeled E. coli (Fig. 5A,B). Similarly, cotransfecting cells with VC-TLR4 and VN-CD36 and then 
staining them with Hoechst 33342 could not trigger green fluorescence (Fig. 5D). The only time fluorescence was 
visualized was when VC-TLR4, VN-CD36, and E. coli all existed together in the cells (Fig. 5C). The TLR4/CD36 
complex at the membrane internalized the bacteria into the cytoplasm of the cell (Fig. 5C). However, TLR4 and 
CD36 were not combined in LPS-stimulated cells (Fig. 5E). The data showed that CD36 combined with TLR4 to 
form a CD36-TLR4 complex to mediate E. coli endocytosis in pGMECs. These data also suggested that CD36 and 
TLR4 might interact during the phagocytic process of cells (Fig. 5C).

From the BiFC results of this study, TLR4 is hypothesized to interact with CD36 during E. coli recognition and 
internalization in pGMECs (Fig. 5C). The vectors pef-NEO-Myc-TLR4 and pef-NEO-Flag-CD36 were cotrans-
fected into E. coli-infected cells to confirm the interaction between TLR4 and CD36 in the presence of stimuli. 
First, cell lysates (input) were probed with Flag-tag and Myc-tag antibodies (Fig. 5F). Flag-CD36 immunopre-
cipitation using the Myc-TLR4 antibody showed that TLR4 interacts with CD36 in E. coli-infected pGMECs 
(Fig. 5G). Myc-TLR4 was not detected in LPS-stimulated cells (Fig. 5G). These data suggested that E. coli-induced 
infection in pGMECs might stimulate the interaction between TLR4 and CD36; however, no cooperation was 
shown in LPS-stimulated cells.

To understand the CD36-mediated phagocytic ability of pGMECs, the cells were treated with si-CD36 and 
Ad-CD36 to confirm whether manipulating CD36 expression influenced the phagocytic ability of the cells. The 

Figure 5. CD36 cooperates with TLR4 during E. coli internalization and phagocytosis. (A,B) Cells were 
transfected with pBiFC-VC155-TLR4 (A, left upper) or pBiFC-VN155-CD36 (B, right upper) alone, and 
then Hoechst 33342-labeled E. coli was added for 2 h at 37 °C. (C) Hoechst 33342-stained E. coli bacteria 
were used to stimulate cotransfection of VC-155-TLR4 and VN-155-CD36 cells for 2 h. (D) pGMECs were 
cotransfected with pBiFC-VC155-TLR4 and pBiFC-VN155-CD36 plasmids, and the cells were stained with 
Hoechst 33342 to visualize the nuclei. (E) pGMECs were cotransfected with pBiFC-VC155-TLR4 and pBiFC-
VN155-CD36 plasmids, and then the cells were stimulated with LPS (10 μg/ml) and Hoechst 33342 for 2 h. The 
images are representative of multiple fields from three experiments. Scale bar: 10 μm. (F) Cells were transiently 
cotransfected with pef-NEO-Flag-CD36 and pef-NEO-Myc-TLR4 and then incubated with LPS for 12 h or with 
E. coli for 2 h. The cell lysates (input) were probed for Flag-CD36, Myc-TLR4, and β -actin. (G) Flag-CD36 was 
immunoprecipitated from the cell lysates using mouse anti-Flag antibody. (H) The cells were lysed and plated 
on agar after incubation with E. coli (107 cfu/ml) in pGMEC manipulated with mock, Ad-CD36, or si-CD36 for 
2 h. Equal protein amounts were immunoprecipitated (IP: Flag-CD36) using anti-Flag antibody. All data are 
presented as the mean ±  SEM from three experiments. *P <  0.05, **P <  0.01, and not significant (NS).
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cells were lysed with ice-cold water and then plated on agar dishes at various dilutions for overnight incubation 
at 37 °C. Intracellular bacterial counts in pGMECs infected with E. coli in the presence of antibiotics were mainly 
dependent on the rate of bacteria internalization. Bacteria were incubated in Ad-CD36 cells, and the number of 
intracellular bacteria was greatly increased compared with the mock group (Fig. 5H). However, pGMECs defi-
cient in CD36 had a 35% reduction in E. coli bacterial counts in contrast to the mock group (Fig. 5H). These data 
demonstrated that CD36 plays an important role in E. coli phagocytosis in pGMECs.

Discussion
The E. coli-induced mastitis caused acinar structure disintegration and infiltration of inflammatory cells in the 
interstitium and acinar lumina (Fig. 1B). During this process, epithelial cells produce a variety of cytokines and 
initiate an inflammatory response to the noxious environmental stimuli, which links exogenous pathogen infec-
tion and endogenous immune cell activation. In E. coli-induced mastitis udders, the mRNA levels of TLR4 and 
CD36 were upregulated during the infection (Fig. 1D). Interestingly, the proteins (MyD88 and TRAF6) in the 
NF-κ B pathway and MAPK signaling pathway were also activated in the infected tissues (Fig. 1E). In in vivo stud-
ies evaluating E. coli-induced mastitis, dairy animals showed signs of acute clinical mastitis, including somatic cell 
counts, decreased milk yield, udder swelling and TLR4 mRNA upregulation during the early stages of infection31. 
Mastitis studies in mouse models also found that the NF-κ B and MAPK signaling pathways were activated by 
LPS-induced inflammation32,33. Interestingly, changes in CD36 mRNA expression were first revealed in E. coli 
mastitis.

LPS is an important virulence factor of E. coli that sufficiently induces an inflammatory response. In this study, 
LPS was used to model mastitis in vitro. The concentration of LPS (10 μg/ml) did not induce pGMEC apoptosis 
and necrosis (see Supplementary Fig. S2) but could evoke an appropriate inflammatory response (Fig. 2A). In 
the present study, treating pGMECs with LPS for 12 h significantly increased TLR4 mRNA levels, activated the 
downstream transcription factor NF-κ B, and markedly elevated proinflammatory cytokines (IL-1β , IL-6, IL-8, 
TNF-α , and TGF-β ). CD36 levels under different LPS stimulation conditions in pGMECs revealed that changes 
in TLR4 mRNA expression correlated with CD36 mRNA levels (Fig. 2A). Interestingly, incubation of si-CD36 
pretreated pGMECs with 100 μg/ml LPS significantly increased TLR4 mRNA levels compared to the NC group 
possibly because a high concentration of LPS (100 μg/ml) causes TLR4 overexpression, which offsets CD36 defi-
ciency in danger signal processing.

The TLR4-MyD88-dependent pathway was triggered by LPS and subsequently induced the production of 
an array of proinflammatory mediators. Based on a study by Lim et al., TLR4, MyD88, and CD36 participated 
in the oxLDL-mediated differentiation of Th17 cells in atherosclerosis34. Another study also demonstrated that 
CD36/TLR4/MyD88 mediated the production of proinflammatory cytokines in response to modified oxLDL35. 
Interestingly, impaired CD14 and CD36 expression caused by caveolin-1 deletion could attenuate TLR4 and 
MyD88 expression36. In the present study, the manipulation of CD36 expression influenced TLR4 and MyD88 
expression in pGMECs. TRAF6 is an important signaling molecule that relays TLR4 signals to the NF-κ B and 
MAPK pathways to directly modulate key cellular processes20. TRAF6 has been reported to be associated with 
Lyn kinase in LPS-stimulated mast cells37. However, the stimulation of endothelial cells with LPS indicated that 
TRAF6 interacted with Src and Fyn but not with Lyn38. These results demonstrated that TRAF6 interacted with 
Src kinases (Fyn, Lyn, and Scr) but that the interaction was dependent on cell type. Interestingly, CD36 can also 
mediate multiple signaling pathways primarily through the activation of Src kinase (Lyn, Fyn, Yes). Therefore, the 
connection between TRAF6 and CD36 could be mediated by Src kinase; however, confirmation of this hypoth-
esis requires further testing. In this study, CD36 overexpression or deletion influenced TRAF6 expression in 
LPS-stimulated pGMECs.

The latest reports have demonstrated that CD36 may interact with different coreceptors and mediate multiple 
signaling pathways (p38-MAPK, c-JNK, and NF-κ B)12,13,39,40. In this study, CD36 could influence downstream 
transcriptional factors (NF-κ B and AP-1) in LPS-induced epithelial cells. The downstream nucleic transcription 
factors NF-κ B and AP-1 play important roles in exogenous-induced inflammation. In a mouse model of masti-
tis, expression of the NF-κ B p65 subunit in the mammary epithelium was confirmed in infected glands33. In an  
in vitro study, E. coli and LPS strongly activated NF-κ B in bMECs41. In the current study, the manipulation of 
CD36 expression influenced MyD88, TRAF6, and NF-κ B transcriptional activation in LPS-induced pGMECs, 
which confirmed that CD36 was involved in the MyD88-dependent signaling pathway.

The relationship between AP-1 and CD36 in E. coli-induced mastitis is an interesting finding. In a pre-
vious study, treatment of monocytes with oxLDL suggested that CD36 and TLR4 were involved in AP-1 
activation, which could induce IL-1β  production42. In bMECs, cells treated with heat-killed or culture super-
natant of Staphylococcus aureus revealed that AP-1 was activated in both S. aureus products but not by E. coli or 
LPS-induced inflammation24,43. However, the results of this study suggested that AP-1 activation was triggered 
by LPS-induced inflammation. The results of these studies may differ due to the use of different types of E. coli 
in each study. AP-1 activation is regulated by MAPK (p38 and JNK) in E. coli-mediated inflammation44,45. This 
article demonstrated that c-JNK, but not p38 MAPK, was influenced by the manipulation of CD36 expression 
during LPS-induced activation in pGMECs. These results were similar to those obtained by Baranova et al., who 
were interested in human CD36 in LPS-induced JNK-mediated signaling12. LPS may trigger the activation of dif-
ferent MAPK kinase (MKK) pathways, such as the MKK4/7-activated c-JNK and MKK3/6-triggered p38-MAPK 
pathways, via TLR4 signaling.

When the transcriptional factors (NF-κ B and AP-1) were activated, an array of proinflammatory mediators 
(e.g., IL-1β ) was released to target neutrophils and mononuclear cells. In a mouse model of mastitis, IL-6 and 
TNF-α  had high local concentrations in E. coli intramammary infections in wild-type mice33. In an in vitro 
model of mastitis, proinflammatory cytokines (e.g., IL-6, IL-8, and TNF-α ) were highly expressed, and NF-κ B 
was strongly activated downstream in bMECs stimulated with E. coli or LPS41,46. Incubating bMECs with LPS for 
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12 h increased the proinflammatory cytokine (IL-1β , IL-6, TNF-α , and IL-8) mRNA levels significantly compared 
with the control groups47. In E. coli- or LPS-induced infections, proinflammatory cytokines could affect CD36 
expression9,12,36. According to the present study’s results, the cytokines IL-1β , IL-6, and TNF-α  and chemokine 
IL-8, but not TGF-β , were regulated by CD36 in LPS-induced inflammation in pGMECs.

Previous research has suggested that CD36 participates in Gram-negative bacteria-induced inflammation. 
The scavenger B receptor CD36 is not only a transporter of fatty acids for lipid utilization but also an important 
component of the innate immune system, which recognizes microbial pathogens and their cell wall lipids12,48. 
Philips et al. demonstrated that the transfection of murine CD36 into human HEK293 cells greatly influenced 
the internalization of E. coli but had only a slight impact on S. aureus uptake48. Another study showed that  
E. coli and LPS were recognized by CD36, which then mediated inflammatory signaling in cells transfected with 
CD369. Transfection of human CD36 into HeLa cells could enhance the uptake of Gram-negative bacteria, acti-
vate downstream JNK kinases and increase IL-8 production compared with the control groups12. The findings of 
this study suggested that CD36 interaction with TLR4-mediated E. coli phagocytosis in pGMECs, but not LPS, 
induced internalization possibly because E. coli is a complete organism that has different components, including 
LPS. When cells were treated with E. coli, a complex between CD36 and TLR4 could form possibly by variations 
in spatial conformation. However, stimulating cells with LPS could not induce CD36/TLR4 complex formation, 
which may be due to CD36 likely stimulating CD14 to present the ligand to TLR4 but not directly interact with 
TLR4. The results of this study were similar to those of previous studies demonstrating that CD36 served a func-
tion analogous to CD14 by cooperating with TLR4 in ligand recognition and triggering downstream cascades49,50. 
However, the connection between CD14 and CD36 in E. coli-induced inflammation is still unclear and requires 
further study. Additionally, whether CD36 recognizes danger signals (endogenous or exogenous) alone or in 
cooperation with other receptors is still controversial and must be studied further. In the current study, CD36 
cooperated with TLR4 in E. coli phagocytosis to trigger downstream activation following LPS stimulation in 
pGMECs.

In conclusion, CD36 can regulate the LPS-induced inflammation process via the NF-κ B and c-JNK signal-
ing pathways to modulate downstream cytokine production and interplay with TLR4 in E. coli phagocytosis in 
pGMECs. This result illustrates that CD36 may serve as a new target for the treatment of E. coli-induced mastitis.

Methods
Cell culture and treatment. Mammary tissue samples were collected from healthy, lactating 2-year-old 
Xinong Saanen goats. The pGMECs were isolated from six healthy goats (mid-lactation) as described in a pre-
vious study51. Additionally, the cell culture methods were described previously52. Briefly, cells digested from the 
mammary gland of mixed samples were cultured for 2 weeks. The pGMECs were grown in DMEM/F12 medium 
(Invitrogen Corp., CA, USA) containing 5 mg/ml insulin, 0.25 mM hydrocortisone, 50 U/ml penicillin/ml strep-
tomycin, 10 ng/ml epidermal growth factor-1 (EGF-1, Gibco, USA), and 10% fetal bovine serum at 37 °C in a 
humidified atmosphere with 5% CO2 53,54. At confluence, the pGMECs were dissociated using a Trypsin-EDTA 
solution (0.25% Trypsin and 0.05% EDTA). At passage 1 or 2, the cells were seeded on DMEM/F12 medium in 
plates (Nunc, Denmark) at a density of 5 ×  104 cells/cm2 for adenovirus infection. Briefly, E. coli was separated and 
identified from four clinical E. coli-induced mastitis dairy goats from Shaanxi Province, China. E. coli separation 
and identification are presented in Supplementary Fig. S1 and Table S1. LPS O55:B5 was purchased from Sigma-
Aldrich, USA.

Histological analysis. Healthy and E. coli-infected goat mammary gland tissues were collected. The tissues 
were fixed in 4% paraformaldehyde at room temperature for 24 h and then embedded in paraffin. Sections (6 μm 
thick) were stained with hematoxylin and eosin (H&E) for histological examination. A light microscope was used 
to examine the sections, and the sections were imaged using a Nikon DS-U2/L2 Controller and NIS-Elements F 
3.22 (Nikon Corporation, Tokyo, Japan).

CD36 expression and manipulation and cell treatment. CD36 adenovirus was prepared for 
CD36 overexpression using previously published methods55. Goat CD36 [NM_001285578.1] was subcloned 
into the pAdTrack-CMV plasmid vector between the SalI and NotI (New England BioLabs, Inc., MA, USA) 
restriction sites to generate a pAdTrack-CMV-CD36 vector. This vector was inserted into an adenoviral vector 
(pAdEasy-1) to generate adenoviral plasmids in BJ5183 cells. The adenoviral plasmids linearized by PacI (New 
England BioLabs, Inc.) were transfected into 293A cells to generate the adenovirus pAd-CD36. The adenovirus 
(Ad-GFP), which was used as a positive control, was provided by Zhijie Chang (Tsinghua University, Beijing, 
China). Cultures of pGMECs at approximately 80% confluence were infected with Ad-GFP or Ad-CD36 at mul-
tiplicities of infection (MOIs) of 50, 100, 150, 200, or 250. The infection efficiency was determined by observing 
green fluorescence under inverted/phase contrast microscopy (Leica CMF-500, Germany). The infection effi-
ciency was highest (80%) at a MOI of 100. CD36 expression was higher in the Ad-CD36-infected cells than in 
the Ad-GFP-infected cells at a MOI of 100 (Fig. 2C). Moreover, Ad-GFP did not affect CD36 mRNA expression 
compared with uninfected cells (Fig. 2C).

For CD36 knockdown, siRNA (si-CD36) was designed and synthesized by Invitrogen. si-CD36-977: sense, 
5′ -GUGCUAGACAUUAGCAAAUTT-3′ ; antisense, 5′ -AUUUGCUAAUGUCUAGCACTT-3′ ; si-CD36-1231: 
sense, 5′ -CCCUAUUCUUUGGCUUAAUTT-3′ ; antisense, 5′ -AUUAAGCCAAAGAAUAGGGTT-3′ . Cells 
treated with a nontargeting siRNA served as a NC. pGMECs were grown in plates to 80% confluence and trans-
fected with si-CD36 and NC using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s 
instructions. After nucleofection, si-CD36-977 was found to be more efficient than si-CD36-1231 at knocking 
down goat CD36 (see Supplementary Fig. S3A). The time-dependent knockdown efficiencies were also detected 
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after 24 and 48 h cell culture by real-time polymerase chain reaction (PCR) (see Supplementary Fig. S3B). 
pGMECs were stimulated after 24 h of infection (adenovirus) or transfection (siRNA).

BiFC analysis. Cultured cells at 60% confluence in 6-well microscope plates were cotransfected with goat 
TLR4 [JF825527.1] pBiFC-VC155 and CD36 [NM_001285578.1] pBiFC-VN155 (I152L) together with 1.0 μg 
of the plasmids using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions56. After the 
cells were incubated for 12 h, they were washed at least three times with phosphate-buffered saline (PBS) and 
treated with Hoechst 33342-labeled E. coli in an incubator at 37 °C with 5% CO2 for 2 h. In the control group (not 
stimulated with E. coli and not transfected with plasmids), cell nuclei were also stained with Hoechst 33342. Then, 
the slides were washed with PBS to remove any unattached bacteria, fixed in 4% paraformaldehyde, and viewed 
immediately under a microscope. BiFC analysis was performed as described in previous studies57,58. The fluo-
rescence complementation was observed using a Nikon confocal microscope (Nikon), and images of the middle 
section of the cell nucleus were taken. The Hoechst 33342 and enhanced green fluorescent protein emissions were 
measured at 450 and 488 nm, respectively. Image analyses for the fluorescence complementation localization were 
performed using the program NIS-Elements Viewer.

Antibiotic protection assay. The endocytosis of GMECs was detected under different CD36 expression 
conditions (mock, Ad-CD36, and si-CD36). Before the GMECs were treated with the bacteria, they were washed 
with PBS. Then, the cultured cells were incubated in DMEM/F12 medium containing 10% FCS, 100 μg/ml peni-
cillin/streptomycin, and E. coli (approximately, 10 bacteria/cell) in culture wells. After the cells were incubated for 
2 h at 37 °C, the plates were washed with ice-cold PBS (at least three times) and lysed in ice-cold water for 40 min 
on ice. Lysates were plated on agar dishes at various dilutions (102–108 cfu/ml) and incubated overnight at 37 °C.

Total RNA extraction and purification and quantitative real-time PCR. Total RNA from tissues 
and cells were separately extracted using TRIzol Reagent (Invitrogen) and an RNAprep Pure Cell Kit (Tiangen 
Biotech Co., Ltd., Beijing, China) according to the manufacturers’ protocols. The RNA used in the qPCR was 
treated with DNase (Tiangen Biotech Co., Ltd.) to remove genomic DNA contamination. cDNA was synthe-
sized using a PrimeScript RT Kit (TaKaRa Bio, Inc., Otsu, Japan) according to the manufacturer’s instructions. 
Real-time quantitative RT-PCR was performed in a 96-well plate in an CFX96 sequence detector (Bio-Rad, CA, 
USA) using SYBR Green Reagent (SYBR Premix Ex Taq II, Perfect Real Time, TaKaRa Bio, Inc.). The primers 
were purchased from Sangon Biotech (Shanghai, China). The primer sequences used in this study are shown in 
Supplementary Table S2. The qPCR data were analyzed using the 2−ΔΔCt method.

Dual luciferase reporter gene expression assay. Cells were transiently transfected with a dual lucif-
erase reporter gene construct of inducible firefly luciferase under the control of a NF-κ B response element 
(pGL4.32[luc2P/NF-κ B-RE/Hygro] vector, Promega, Germany) or an AP-1 response element (pGL4.44[luc2P/
AP-1-RE/Hygro] vector, Promega) and a construct with constitutive Renilla luciferase expression. After the 
cells were transfected for 12 h, they were incubated with Ad-CD36 or si-CD36 for 24 h, and then LPS (10 μg/ml)  
was added. The cells were harvested using a commercial lysis buffer (Promega) after 48 h of transfection. The 
relative luciferase activity was analyzed using the Dual-Luciferase Reporter Assay (Promega) according to 
the manufacturer’s instructions. The relative luciferase activity of the pGL4.32[luc2P/NF-κ B-RE/Hygro] and 
pGL4.44[luc2P/AP1 RE/Hygro] vectors was tested in GMECs before the experiment was started using Thermo 
Scientific Varioskan Flash (Thermo, USA) (see Supplementary Fig. S4A,B).

Western blotting, ELISA, and immunoprecipitation analysis. After the cells were harvested, they 
were washed three times with cold PBS and lysed with RIPA buffer containing protease inhibitors (Solarbio, 
China). Protein concentrations were quantified using a BCA Protein Assay Kit (Thermo Scientific™  Pierce, 
USA) according to the manufacturer’s instructions. Proteins were separated on SDS-PAGE gels and transferred 
to nitrocellulose membranes. The blots were incubated with NF-κ B p65 rabbit mAb, c-Jun rabbit mAb, p38 
MAPK rabbit polyclonal antibody, TRAF-6 rabbit mAb (Cell Signaling Technology), and β -actin mouse mAb 
(Cwbiotech, China). The secondary antibodies used were HRP-conjugated goat anti-rabbit IgG (Cwbiotech) and 
HRP-conjugated goat anti-mouse IgG (Cwbiotech). Protein bands were detected using a chemiluminescent ECL 
Western blot detection system (Pierce) and visualized by autoradiography with a cold CCD camera (Bio-Rad). 
The chemiluminescent intensity was evaluated by densitometric analysis using Image-Pro Plus software 6.0.

For immunoprecipitation, pef-NEO-Myc-TLR4 and pef-NEO-Flag-CD36 were cotransfected into cells after 
12 h and then incubated with E. coli for 2 h. The efficiencies of Myc-TLR4 and Flag-CD36 were detected after 
cotransfection with pGMECs for 12 h (see Supplementary Fig. S5A,B). Anti-Myc (Proteintech, China) and 
anti-Flag (Proteintech) antibodies were used to detect Myc-TLR4 and Flag-CD36 protein levels in the pGMECs 
(see Supplementary Fig. S5C). The treated cells were washed three times with ice-cold PBS and then lysed with 
immunoprecipitation lysis/wash buffer (Thermo). The immunoprecipitation steps were performed following the 
co-immunoprecipitation (Co-IP) kit (Thermo) instructions.

pGMEC secretion of cytokines (IL-1β , IL-6, TNF-α , and IL-8) was analyzed in culture supernatants after 
the cells were incubated with LPS (10 μg/ml) for 12 h using commercially available ELISA kits for goat cytokines 
(R&D Systems, USA) according to the manufacturer’s instructions. All samples and standards were measured in 
triplicate.

Ethical statement. All experimental materials and protocols were approved by the Animal Care and 
Use Committee of Northwest A&F University. The methods were carried out in accordance with the approved 
guidelines.
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Statistical analysis. All of the reported results were obtained from at least three independent experiments. 
One-way analysis of variance (ANOVA) and t-test statistics were obtained using GraphPad Prism software 6.0. 
All of the experimental data are presented as the mean ±  standard error of the mean (SEM). P <  0.05 was con-
sidered statistically significant.
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