
Monochromatic image reconstruction via machine learning

Wenxiang Cong1, Yan Xi2, Bruno De Man3, Ge Wang1

1Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biomedical Imaging 
Center, Troy, NY 12180, United States of America

2Shanghai First-Imaging Tech, Shanghai, People’s Republic of China

3GE Research, One Research Circle, Niskayuna, NY 12309, United States of America

Abstract

X-ray computed tomography (CT) is a nondestructive imaging technique to reconstruct cross-

sectional images of an object using x-ray measurements taken from different view angles for 

medical diagnosis, therapeutic planning, security screening, and other applications. In clinical 

practice, the x-ray tube emits polychromatic x-rays, and the x-ray detector array operates in the 

energy-integrating mode to acquire energy intensity. This physical process of x-ray imaging is 

accurately described by an energy-dependent non-linear integral equation on the basis of the 

Beer–Lambert law. However, the non-linear model is not invertible using a computationally 

efficient solution and is often approximated as a linear integral model in the form of the Radon 

transform, which basically loses energy-dependent information. This approximate model produces 

an inaccurate quantification of attenuation images, suffering from beam-hardening effects. In 

this paper, a machine learning-based approach is proposed to correct the model mismatch to 

achieve quantitative CT imaging. Specifically, a one-dimensional network model is proposed 

to learn a non-linear transform from a training dataset to map a polychromatic CT image to 

its monochromatic sinogram at a pre-specified energy level, realizing virtual monochromatic 

(VM) imaging effectively and efficiently. Our results show that the proposed method recovers 

high-quality monochromatic projections with an average relative error of less than 2%. The 

resultant x-ray VM imaging can be applied for beam-hardening correction, material differentiation 

and tissue characterization, and proton therapy treatment planning.
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1. Introduction

Computed tomography (CT) is a three-dimensional nondestructive imaging modality, which 

allows visualization and quantification of anatomical structures of human tissues with 

fine spatial resolution and high contrast resolution for medical diagnosis, therapeutic 

planning, security screening, and other applications. In clinical practice, the x-ray 

tube emits polychromatic x-rays, and the x-ray detector array operates in the energy-

integrating mode to acquire energy intensity [1]. This physical process of x-ray imaging 

is accurately described by an energy-dependent non-linear integral model on the basis of 

the Beer–Lambert law. However, the non-linear imaging model is not invertible using a 

computationally efficient solution, and often approximated as a linear integral model in the 

form of the Radon transform, which basically loses x-ray energy-dependent information 

[1, 2]. Because lower energy photons are more easily attenuated in the tissues than higher 

energy photons, the x-ray spectral distribution at a specific location may be inconsistent 

for different x-ray transmission paths. The attenuation of x-rays is path-dependent and the 

attenuation characteristics are non-linear. Therefore, the attenuation coefficient reconstructed 

from the linear integral model would generate inaccurate quantification of attenuation and 

induce beam-hardening artifacts in the image reconstruction [3, 4].

In addition, conventional clinical CT only reveals the tissues morphology, and does 

not provide any information about the chemical composition of the tissues. Biological 

tissues are mainly composed of hydrogen, oxygen, nitrogen, and carbon. Their absorption 

characteristics are significantly different from that of elements with higher atomic weight, 

such as calcium and iodine. Iodinated contrast is often used in a medical CT exam 

to amplify subtle differences between tissues and visualize vasculatures, improving 

detectability and diagnosis of cardiac, cancer, and other diseases [5]. However, contrast-

enhanced structures may have similar density to bones or calcified plaques, making them 

difficult to be distinguished using single-spectrum CT.

To enhance imaging performance, dual-energy computed tomography (DECT) is developed 

for several clinical applications. Currently, state of the art DECT scanners include fast 

switching of the x-ray tube voltage or kVp (General Electric’s CT750HD and Revolution 

CT), dual layer detectors (Philips’ IQon), and operating two beamlines at different kVp 

(Siemens’ dual-source CT) [6, 7]. Physically, the photon attenuation is material- and energy-

dependent, and is a combined effect of photoelectric absorption and Compton scattering in 

the diagnostic energy range [8]. DECT acquires two projection data sets at two different 

energy spectra to reconstruct energy-dependent linear attenuation coefficients of the tissue, 

which can be used for the determination of the electron density and effective atomic number 

of materials, facilitating the characterization of materials and identification of tissue types 

[9, 10]. Using DECT techniques, material decomposition methods are developed to provide 

quantitative information on tissue composition to distinguish soft tissue, calcium, and 

iodine for important clinical applications [9, 11–13], such as urinary stone characterization, 

automated bone removal in CT angiography, perfused blood volume quantification. Another 

exemplary application of x-ray virtual monochromatic (VM) imaging is for proton therapy 

treatment planning. Proton therapy delivers a highly focused radiation dose at the Bragg 

peak, which is conformed tightly around a tumor to kill cancer cells. The stopping power 
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ratio can be calculated from the electron density and effective atomic number of matter for 

the determination of Bragg peak position [14–17].

However, DECT can increase system complexity and equipment cost relative to single-

spectrum CT due to the acquisitions of two spectrally different projection datasets. Emerging 

machine learning (ML) techniques are capable of implementing non-linear mapping, feature 

extraction and representation, and are widely applied for image classification, identification, 

super-resolution imaging, and image denoising [18–24]. In 2017, ML-based monochromatic 

image reconstruction method was first proposed to map polychromatic CT images to 

monochromatic sinogram at a pre-specified energy level based on a fully connected neural 

network [25]. In 2018, a deep learning method was proposed to reconstruct the VM 

attenuation images from multiple energy CT images using a fully connected neural network 

for reducing image noise and suppressing artifacts in multiple energy CT images [26]. 

Furthermore, a Wasserstein generative adversarial network with a hybrid loss was proposed 

to transform several polychromatic images with different energy bins to VM images [27]. 

Based on a convolutional neural network, DECT data can be also generated from single-

spectrum CT data using the deep learning [28, 29]. These preliminary studies show the 

feasibility of x-ray VM imaging. In this paper, we propose a ML-based method to learn 

a non-linear transform from a training dataset to map the polychromatic CT image to a 

monochromatic sinogram at a pre-specified energy level. In section 2, we give a detailed 

description for the x-ray imaging and physical model. The one-dimensional deep network 

architecture is presented in detail. In section 3, based on a clinical DECT dataset, we 

perform the network training and testing to evaluate the proposed ML-based VM imaging. 

We conclude the paper in the last section.

2. Methodology

2.1. Optimization model

In medical CT, the x-ray source generally emits polychromatic x-ray photons, and the x-ray 

detector array operates in the energy-integrating mode to acquire energy intensity. The x-ray 

linear attenuation coefficient depends on both material composition of the imaged object and 

the x-ray photon energy. If an x-ray beam passes through an object, the x-ray transmitted 

beam intensity I(l) is accurately described by the non-linear integral model based on Beer–

Lambert law [1, 8]:

I(l) = ∫ S(E)D(E)exp −∫
l

μ(r, E)dr dE, (1)

where S(E) is the energy spectrum of the x-ray source, D(E) is the detection efficiency, and 

μ(r, E) is the energy-dependent linear attenuation coefficient at an energy E and a spatial 

position r along a linear path l through the object. Using the integral mean value theorem, 

there is an energy level εl for the x-ray transmission path such that the following formula 

holds:

Cong et al. Page 3

Mach Learn Sci Technol. Author manuscript; available in PMC 2022 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I(l) = I0(l)exp −∫
l

μ r, εl dr

I0(l) = ∫
Emin

Emax

S(E)D(E)dE

. (2)

Equation (2) is equivalent to

∫
l

μ r, εl dr = log I0(l)
I(l) , (3)

where I0 (l) is the x-ray intensity along the path l without any object in the field of 

view. Equation (3) indicates that the line integral along a transmission path l relies on 

energy levels εl. Because lower energy photons are more attenuated by tissues than 

higher energy photons, the x-ray spectral distribution on different x-ray transmission 

paths may be different. Thus, the line integral along different transmission paths may 

correspond to different energy levels in equation (3). Hence, the x-ray physical model 

described in equation (3) is different from the Radon transform without energy dependence. 

The mismatch of the physical model may induce beam-hardening artifacts in the image 

reconstruction [2].

The purpose of this research is to establish a transform relation between polychromatic 

CT images and monochromatic sinograms at a pre-determined energy level ε in the 

detectable energy range, using a ML technique. A polychromatic attenuation image μ(r) 
is reconstructed from log-transformed raw data collected at all x-ray transmission paths and 

viewing angles. The image μ(r) contains abundant prior information on the object structure 

and x-ray attenuation information. A practical method is to map attenuation distribution 

on the x-ray transmission path l in the polychromatic image μ(r) to corresponding 

monochromatic projection datum at the specific energy level ε, denoted by pmon (l, ε). This 

transform relation can be described mathematically by an optimization model as follows 

[25]:

ℳ = argmin ∑
l ∈  all path set 

ℳ(μ(r), r ∈ l) − pmon (l, ε) , (4)

where ℳ denotes a transformation relation, μ(r) is the polychromatic attenuation image 

reconstructed from a single-spectrum CT, l is an x-ray transmission path indexed by the 

location variable r, and pmon (l, ε) is the monochromatic projection data at a pre-specified 

energy level ε, which can be calculated from the corresponding labeled monochromatic CT 

image at the energy level ε using the standard ray-tracing method. Specifically, we assume 

that all x-ray transmission paths have the same length, equal to the diameter of the field of 

view. The transmission path is divided into a fixed number of segments, which is denoted 

as n. Typically, n is chosen larger than 2 × the input image size for sufficient sampling. 
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The attenuation coefficient of each segment is calculated from an input polychromatic CT 

image using bi-linear interpolation, as shown in figure 1. The involved computation is fairly 

straightforward, identical to the ray-tracing process in a typical iterative reconstruction, 

such as algebraic reconstruction technique (ART) or simultaneous algebraic reconstruction 

technique (SART). As input data, the attenuation distribution along the x-ray transmission 

path is calculated by multiplying the attenuation coefficient of each segment by the length of 

the segment.

2.2. Architecture of a one-dimensional fully connected network with a shortcut 
connection

A well-defined fully connected neural network is capable of learning any function [30]. 

To implement the optimization model in equation (4), we establish a one-dimensional fully 

connected deep network, allowing a much lower computational cost and much less memory 

requirement than higher dimensional networks. The neural network consists of seven layers, 

including an input layer, five hidden layers, an output layer, and a shortcut connection, 

as shown in figure 2. The first hidden layer contains 1024 neurons, the second hidden 

layer contains 512 neurons, the third hidden layer has 256 neurons, the fourth hidden layer 

contains 128 neurons, and the fifth hidden layer has 64 neurons. For every hidden layer, 

neurons receive the weighted combinations of neuron values on the previous layer and 

perform corresponding sigmoid activations. Inspired by the idea of the two-dimensional 

ResNet [31], the shortcut connection technique is adapted to stack the line integral of the 

input polychromatic image along the transmission path to the neuron on the output layer to 

implement a residual mapping. For implementation of the shortcut connection, a summation 

of the attenuation distribution along the transmission path on the input polychromatic CT 

image can reproduce an approximate energy-integrating projection value {log[I0 (l)/I(l)]}. 

The linear integral model is approximate in CT imaging, and usually leads to inaccurate 

quantification of reconstructed images. The proposed VM imaging approach is to correct 

the errors/mismatches of the line integral model, which can be effectively implemented 

by the residual mapping scheme. Prior works show that modeling residual mapping is 

easier than the original mapping [31]. The shortcut connection helps train neural networks 

efficiently. The input of the network is attenuation distribution along an x-ray transmission 

path l on the polychromatic CT image μ(r). The x-ray transmission path is divided into 

1024 segments to describe the corresponding attenuation coefficient distribution. The output 

layer only contains a single neuron yielding a weighted linear combination of all neuron 

units on the last hidden layer, and outputs an x-ray monochromatic projection along the 

corresponding x-ray transmission path. The loss function uses the l1 norm to evaluate the 

difference between the predicted monochromatic projection value and the monochromatic 

projection value along the same transmission path for the label image.

A well-trained fully connected deep network would be a non-linear transform ℳ that maps 

the polychromatic CT images to the monochromatic projection data at energy level ε. Once 

the monochromatic projections are obtained through ML, a monochromatic image μ(r, ε) 

can be reconstructed using a standard image reconstruction algorithm such as a filtered 

backprojection (FBP) or iterative algorithm (ART or SART) based on following line integral 

model:
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∫
l

μ(r, ε)dr = pmon(l, ε) . (5)

Equation (5) is an accurate x-ray imaging model at energy level ε. Therefore, the 

monochromatic CT image can be reconstructed based on equation (5), achieving accurate 

quantification of attenuation images and overcoming beam-hardening artifacts.

2.3. Ablation study

We performed an ablation study on the number of neurons per layer, the number of layers 

in the network, activation functions, and so on. The proposed network architecture has five 

hidden layers, where the number of neurons in each layer is half the number of neurons 

in the previous layer. This network was selected based on our extensive simulation and 

experimental results, some of which are described below. To demonstrate the performance of 

the proposed network, we also trained a multilayer perceptron (MLP) with the same number 

of neurons in each of the five hidden layers, and evaluated its convergence and accuracy. 

We found that our proposed network showed an excellent convergence and accuracy, 

comparable to that of the MLP, while the proposed network only requires a half the 

memory and half the computational cost. Especially, compared with the network architecture 

without a shortcut connection, the convergence speed of the network architecture with a 

shortcut connection was increased by more than three times. Moreover, we applied different 

activation functions for our neural network. The experiments show that the sigmoid is 

an appropriate activation function for this application. For example, if we use the ReLU 

activation function for all the hidden layers, the average relative error of the reconstructed 

monochromatic projection would exceed 20%, which is ten times higher than that of 

the proposed network architecture. The proposed network represents an excellent balance 

between accuracy, efficiency, and robustness.

3. Experiments and results

In clinical practice, medical x-ray imaging systems use polychromatic x-ray tubes, and the 

x-ray detector array operates in the energy-integrating mode to acquire energy intensity. 

An ideal monochromatic imaging device is not available using current x-ray sources and 

detectors. DECT can be used to generate VM images. In this context, VM images and 

polychromatic images from DECT are applied for the training and testing of the proposed 

neural network. In our study, the parallel-beam geometry was used for the ray-tracing 

process, and an image matrix of 512 × 512 pixels. Over a 360° range, 720 projections 

are uniformly acquired, and 729 detector elements are equidistantly distributed for each 

projection view.

3.1. Clinical dataset obtained with first CT scanner

A dataset of VM CT images produced from a GE Discovery CT750HD dual-energy scanner 

at Ruijin Hospital in Shanghai was used for the network training, validation, and testing. 

The scanning was performed with fast kVp switching between 80 kVp and 140 kVp 
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with tube current of 260 mAs. The gantry rotation time was 0.5 s. The dataset includes 

274 VM CT images at 50 keV, 60 keV, 65 keV, 70 keV, 80 keV, 90 keV, 100 keV, and 

110 keV, respectively. Based on Beer–Lambert law, we first synthesized polychromatic 

projection data from these multi-energy images using an x-ray source spectral distribution 

at 120 kVp/30 mA generated by public software [32]. Then, 274 polychromatic CT images 

were reconstructed from polychromatic projection data using the FBP algorithm. The 274 

polychromatic CT images and corresponding 274 VM images at 80 keV formed the training 

dataset I, while 274 polychromatic CT images and corresponding 274 VM images at 110 

keV formed the training dataset II. The dataset was divided into training dataset of 200 

images, validation data of 50 images, and testing data of 24 images. A total of 105 million 

(200 images × 720 views × 729 rays) data pairs as training data were extracted along x-ray 

line integral paths from 200 polychromatic CT images and corresponding 200 VM images. 

For the one-dimensional model, 105 million data pairs were sufficient for the network 

training with supervised learning.

The training procedure was programmed in Python and Tensorflow on a PC with a NVIDIA 

Titan XP GPU with 12 GB memory. The network training was conducted using the ADAM 

optimization algorithm with β1 = 0.9, β2 = 0.999, epsilon = 1.0 × 10−7, and weight decay 

= 0.0. The learning rate was set to 10−3. Weight and bias parameters of the network were 

initialized randomly. Data were randomly sampled in the training dataset, maximizing the 

probability of finding the global minimum. Based on dataset I, the network is trained to 

generate monochromatic sinogram at 80 keV, while the network is trained using dataset II 

to generate monochromatic sinogram at 110 keV. The networks were trained in 1000 epochs 

within 12 h. Figure 3(a) shows the loss function during the network training using dataset I. 

Figure 3(b) shows the loss function during the network training using dataset II. The training 

of the fully connected deep network showed an excellent convergence behavior.

For the testing of the trained network, 24 polychromatic images at 120 kVp were input to 

the trained neural network models I and II to generate monochromatic sinogram at 80 keV 

and 110 keV, respectively. CT image were randomly selected in testing dataset as examples 

to present the quality of monochromatic imaging. The labeled monochromatic sinogram data 

were obtained from the labeled monochromatic CT image using the ray-tracing method. 

Figure 4 presents the comparison between the estimated monochromatic sinograms and the 

corresponding (ground-truth) labeled monochromatic sinograms at 80 keV and 110 keV 

respectively. Figure 5 presents the comparison between the polychromatic x-ray projection 

at 120 kVp, the estimated monochromatic projection, and the corresponding labeled 

monochromatic projection at the horizontal views. The trained neural network delivered 

high-quality monochromatic projection data in the testing phase, with an average relative 

error of less than 2%. With VM images reconstructed from DECT as the reference, we used 

the popular signal-to-noise ratio (PSNR) and structural similarity (SSIM) indices to evaluate 

the estimated monochromatic sinogram against the labeled monochromatic sinogram. The 

average PSNR measures are 37.54 dB and 36.89 dB for monochromatic sinograms at 80 

keV and 110 keV respectively, and the average SSIM values are 0.9941 and 0.9902 for 

monochromatic sinograms at 80 keV and 110 keV respectively.
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Furthermore, the VM CT images at 80 keV and 110 keV were reconstructed from the 

estimated monochromatic sinogram at 80 keV and 110 keV using the FBP algorithm. Figure 

6 presents the comparison between the estimated VM image and the label VM image at 80 

keV and 110 keV. We calculated PSNR and SSIM indices to evaluate the estimated VM 

images at 80 keV and 110 keV. The average PSNR was 69.79 dB and 63.34 dB for the VM 

images at 80 keV and 110 keV, respectively, while the average SSIM was 0.9999 and 0.997 

for the VM images at 80 keV and 110 keV, respectively. The proposed ML-based method 

well preserved structural information especially texture features and gave superior image 

quality.

3.2. Clinical dataset obtained with second CT scanner

We obtained a second series of clinical DECT dataset to further evaluate the performance 

of the deep learning-based VM imaging method. We now used the originally reconstructed 

kVp images as the input to the network, instead of the synthesized kVp images used in 

the previous section. DECT data of eight patients (3182 slices in total) were collected on a 

SOMATOM Definition Flash DECT scanner (Siemens Healthineers, Forchheim, Germany) 

at Ruijin Hospital in Shanghai, China. The DECT scanner worked in the dual-source 

scanning mode, which operated at 100 kVp/210 mAs and 140 kVp/162 mAs with a wedge 

filter and a flat filter respectively. The scanning was set for exposure time 0.5 s. CT images 

were reconstructed using the FBP algorithm. The dataset includes 3182 polychromatic CT 

images at 140 kVp, being associated with 3182 VM CT images at 80 keV and 3182 VM 

CT images at 110 keV. The dataset was split into training, validation and testing sets, which 

respectively came from five, two and one patients. In other words, 2195 polychromatic 

CT images at 140 kVp and the corresponding 2195 monochromatic images at 80 keV 

formed training dataset I, while 2195 polychromatic CT images at 140 kVp and the 

corresponding 2195 monochromatic images at 110 keV formed training dataset II. In total, 

1152 million (2195 images × 720 views × 729 rays) data pairs were extracted along x-ray 

line integral paths from the 2195 polychromatic CT images at 140 kVp and corresponding 

2195 monochromatic images in the datasets I and II for training the network models I and II 

respectively.

Polychromatic CT images at 140 kVp for the test datasets were input to the trained 

neural network models I and II to generate monochromatic sinograms at 80 keV and 110 

keV, respectively. Figure 7 presents the comparison between the estimated monochromatic 

sinograms and the corresponding label monochromatic sinograms at 80 keV and 110 

keV respectively. Figure 8 presents the comparison between the polychromatic x-ray 

projection at 140 kVp, the estimated monochromatic projection, and corresponding label 

monochromatic projection in the horizontal views. We calculated PSNR and SSIM to 

evaluate the estimated monochromatic sinograms with label monochromatic sinograms as 

reference. The average PSNR was 33.40 dB and 33.27 dB for the estimated monochromatic 

sinograms at 80 keV and 110 keV, respectively, while average SSIM was 0.9995 and 0.9978 

for the estimated monochromatic sinograms at 80 keV and 110 keV, respectively.

Again, VM images at 80 keV and 110 keV were reconstructed from the estimated 

monochromatic sinogram data at 80 keV and 110 keV respectively using the FBP algorithm. 
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Figure 9 shows the comparison between the estimated VM image and the label VM images 

at 80 keV and 110 keV, respectively. The proposed estimation method well preserved 

structural information, in particular texture features, yielding a superior image quality. We 

calculated the PSNR and SSIM measures to evaluate the reconstructed VM images against 

the label VM images. The average PSNR was 48.92 dB and 48.73 dB for the reconstructed 

VM images at 80 keV and 110 keV respectively, while the average SSIM was 0.9940 and 

0.9933 for the reconstructed VM images at 80 keV and 110 keV, respectively. Comparing 

image quality in terms of SSIM and PSNR in sections 3.1 and 3.2, the quality of the VM 

image reconstructed from real kVp images is slightly compromised relative to the quality 

of the VM image reconstructed from synthesized kVp images, due to non-ideal noise and 

spectral distortion in clinical data.

4. Discussions and conclusion

DECT acquires two spectrally different projection datasets for VM imaging, and can 

perform the characterization of materials and identification of tissue types. However, DECT 

suffers from increased system complexity and higher cost compared to a conventional 

single-spectrum CT scanner. This proposed ML-based method learns a non-linear transform 

from the training dataset to map polychromatic CT images to monochromatic sinogram 

through a powerful neural network. Unlike DECT image reconstruction from two spectrally 

different projection datasets, the ML-based monochromatic imaging method only utilizes 

a single-spectrum energy-integrating projection dataset. Our experimental results show that 

the neural network model has an excellent convergent behavior in the training process, and 

recovers high-quality monochromatic sinogram with an average relative error of less than 

2%, realizing VM imaging and overcoming beam-hardening effectively and efficiently. The 

proposed one-dimensional network model has a much lower computational cost and a much 

lower memory requirement than higher dimensional counterparts.

As an x-ray beam passes through biological tissue, interactions mainly involve the 

photoelectric effect and Compton scattering. Photoelectric absorption occurs when an 

incident x-ray photon collides with an inner-shell electron in an atom, while Compton 

scattering is the result of the interaction between an x-ray photon and an outer orbital 

electron. As a result, photoelectric absorption is related to the atomic number of the 

attenuating medium (Z), and Compton Effect is dependent on the electron density in the 

absorbing material. With our proposed ML-based VM imaging, VM CT images at two 

energy levels can be reconstructed, and the electron density and effective atomic number of 

matter composition can be extracted from energy-dependent linear attenuation coefficients 

for material decomposition, tissue characterization, beam-hardening correction, and proton 

therapy planning [33].

Moreover, the proposed method is able to reconstruct energy-dependent attenuation images. 

So, the trained neural network model relies on the spectral distribution of x-ray source in CT 

scanner. The trained network model should be used to process CT images obtained from a 

CT scanner whose x-ray tube energy spectral distribution is similar to that of the x-ray tube 

generating input CT images in the training dataset.
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The proposed method can be interpreted as a learning-based, advanced beam-hardening 

correction, since a beam-hardening correction also maps a polychromatic dataset onto a 

VM dataset at a given energy. It is possible that the proposed learning-based method 

learns to generate monochromatic datasets more accurately than conventional single-

material beam-hardening correction methods, and more robustly than multi-material beam-

hardening correction methods. The proposed approach is able to take into account 

contextual information to perform the best possible estimation. A comparison of the 

proposed approach relative to traditional single-material and multi-material beam-hardening 

correction approaches is out of scope for this paper but will be a critical focus of future 

work.
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Figure 1. 
The attenuation distribution along an x-ray transmission path. Specifically, the x-ray path 

is first partitioned into segments of equal length. Then, the image value at the mid-point 

of each segment is bi-linearly interpolated from four nearest pixel values. Finally, the 

attenuation distribution along the x-ray transmission path is calculated by multiplying the 

value of each segment and the length of the segment, and processed into the corresponding 

line integral.
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Figure 2. 
One-dimensional fully connected deep neural network with a shortcut connection.
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Figure 3. 
L1 norm loss versus the number of epochs. (a) and (b) are the loss function during network 

training I and II, respectively.
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Figure 4. 
Monochromatic sinogram comparison: the estimated monochromatic sinograms at 80 keV 

(a) and 110 keV (c) and the label monochromatic sinograms at 80 keV (b) and 110 keV (d).
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Figure 5. 
Comparison between the polychromatic x-ray projection at 120 kVp, the estimated 

monochromatic projection, and the corresponding label monochromatic projection: (a) the 

horizontal view at 80 keV; (b) a zoomed portion of the 80 keV profile; (c) the horizontal 

view at 110 keV; and (d) a zoomed portion of the 110 keV profile.
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Figure 6. 
Monochromatic image reconstruction, trained based on VM CT image data. (a) VM image 

at 80 keV reconstructed by the deep learning-based estimation and (b) the label VM image 

at 80 keV reconstructed from DECT VM data. (c) VM image at 110 keV reconstructed by 

the deep learning-based estimation and (d) the label VM image at 110 keV reconstructed 

from DECT VM data. The images are displayed with a window width of 436 HU and a level 

of 416 HU.
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Figure 7. 
Monochromatic sinogram estimation based on kVp images. The estimated monochromatic 

sinograms at 80 keV (a) and 110 keV (c). The label monochromatic sinograms at 80 keV (b) 

and 110 keV (d).
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Figure 8. 
Comparison between the polychromatic x-ray projection at 140 kVp, the estimated 

monochromatic projection, and corresponding label monochromatic projection. (a) The 

horizontal view at 80 keV and (b) a zoomed portion of the 80 keV profile. (c) The horizontal 

view at 110 keV and (d) a zoomed portion of the 110 keV profile.
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Figure 9. 
VM image reconstruction trained based on DECT data. (a) VM image at 80 keV 

reconstructed by the deep learning-based estimation and (b) the label VM image at 80 keV 

reconstructed from DECT. (c) VM image at 110 keV reconstructed by the deep learning-

based estimation and (d) the label VM image at 110 keV reconstructed from DECT. The 

images are displayed with a window width of 981 HU and a level of 143 HU.
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