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HPV L1 virus-like particle (VLP) vaccines administered in a prime/boost series of three injections over six
months have demonstrated remarkable prophylactic efficacy in clinical trials and effectiveness in
national immunization programs with high rates of coverage. There is mounting evidence that the vac-
cines have similar efficacy and effectiveness even when administered in a single dose. The unexpected
potency of one dose of these VLP vaccines may largely be attributed to structural features of the particles,
which lead to the efficient generation of long-lived antigen-specific antibody-producing cells and unique
features of the virus life cycle that make the HPV virions highly susceptible to antibody-mediated inhi-
bition of infection.
� 2018 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The three commercial HPV prophylactic vaccines – Cervarix,
Gardasil, and Gardasil-9 – are non-infectious subunit vaccines that
contain virus-like particles (VLPs) of, respectively, HPV 16 and 18;
HPV 6, 11, 16, and 18; and HPV 6, 11, 16, 18, 31, 33, 45, 52, and 58.
The VLPs form by the self-assembly of 360 copies of the L1 major
capsid protein of the virus (Fig. 1) [1]. Clinical trials that specified
intramuscular injection of three vaccine doses over a six month
period demonstrated high efficacy in preventing persistent inci-
dent infections and pre-malignant neoplasias induced by the HPV
types targeted by the respective vaccines [2]. Vaccinees rarely
tested positive for HPV infection at even a single time point, as
measured by sensitive PCR assays, implying that the vaccines pro-
vide ‘‘sterilizing” immunity from initial infection in most cases.
Most ‘‘breakthrough” infections in vaccinees appeared in the early
months in the trials, suggesting that most of these infections rep-
resent emergence of infections preexisting at the time of vaccina-
tion, rather than new infections after vaccination [3].

There is also accumulating evidence for high effectiveness of
Cervarix and Gardasil in national immunization programs [4,5].
Post hoc analyses of three clinical trials, detailed in companion
articles, have provided evidence that strong protection is induced
in young women even after a single dose [6–8]. In addition, surveil-
lance studies strongly suggest that a single dose can reduce infec-
tion and neoplastic disease incidence in national immunization
programs, although, as discussed in another companion article,
these studies are subject to confounding biases, including differen-
tial risk for preexisting infection in single dose recipients [9,10].

The high degree of efficacy and effectiveness exhibited by the
HPV vaccines, potentially even after a single dose, is exceptional
for two reasons. First, no other vaccine has been successful devel-
oped against a microbe that is primarily sexually transmitted,
despite considerable effort in the public and private sectors. Sec-
ond, other licensed subunit vaccines are administered in a series
of two or more prime/boost immunizations. It is therefore interest-
ing to consider what factors may contribute to the unanticipated
potency of the HPV vaccines. We believe that the two most impor-
tant aspects are the ability of the vaccines to consistently induce
high and durable titers of infection-inhibiting antibodies and an
exceptional susceptibility of the virus to antibody-inhibition of
infection in its target tissue. In this review, we discuss why anti-
bodies are likely to be the prime mediators of protection, why
the VLPs are exceptionally strong inducers of durable antibody
responses, and why the virus life cycle makes it especially respon-
sive to antibody-mediated inhibition. Together, these explanations
provide a biologically plausible rationale for why the HPV VLPs
may be the first subunit vaccine to exhibit long term effectiveness
after a single dose.
2. Mechanisms of protection

Several lines of evidence support the conjectures that infection-
inhibiting antibodies are the principal mediators of HPV vaccine-
induced protection and that cell-mediated immune effector
responses play, at best, a more limited role, although they are part
of the immune response to the vaccine. First, as discussed in more
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Fig. 1. Atomic model of HPV16 L1 VLP, reproduced from [54].
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detail below, high and durable serum titers of VLP antibodies are
consistently generated by the vaccines, and these antibodies read-
ily neutralize the virus in in vitro assays. Second, antibody-
mediated neutralization, like protection in the trials, is type-
restricted, with the limited cross-type protection observed in clin-
ical trials largely mirroring the antibody-mediated cross-
neutralization observed in vitro [11]. Third, protection can be pas-
sively transferred in serum drawn from vaccinated individuals to
naïve individuals in animal challenge models [12–14]. Fourth,
cell-mediated effectors generally function only after infection
occurs, while sterilizing immunity was observed in the clinical tri-
als. Fifth, the vaccines had no observable effect on established
infections, although such effects would be expected if cell-
mediated mechanisms were primarily responsible for protection
[15–17]. In this context, it is important to note that L1 is primarily
a nuclear protein that is not displayed on the surface of infected
cells, which makes it unlikely that L1 antibodies can induce
regression of established infections/lesions by antibody-
dependent cytotoxicity. Therefore, the L1 antibodies are likely to
function exclusively by preventing initial events during the
infection process.

However, one observation that is difficult to reconcile with an
antibody effector mechanism for protection are the findings from
the Cervarix phase 3 trial that protection from high grade cervical
precancers (CIN3) associated with non-vaccine types appears to be
stronger than protection against incident infection by the same
types [18,19]. Studies of the impact of Cervarix in the Scottish
immunization program support the high level of cross-protection
for CIN3 observed in the clinical trial, in that the rates, irrespective
of the HPV type, have decreased by more than 90% in young
women who were vaccinated with Cervarix at age 13 and screened
at age 20 [20]. How the vaccine could differentially induce cross-
protection at the level of high grade disease is unclear.

One possible explanation for the differential protection at the
level of CIN3 may be that the vaccine induces T cell responses to
L1 that potentially could be cross-type protective (and there is
some limited evidence to support this conjecture [21]), but that
expression of L1 is normally too low in the basal epithelial cells,
where productive infections are maintained (discussed below),
for the infected cells to be targeted by cell-mediated responses.
CIN3s are thought to arise mainly from high-risk HPV infection
in a specific subset of cells in the cervical squamocolumnar junc-
tion that retain certain embryological characteristics [22]. It is pos-
sible that L1 is expressed at sufficient levels in these unusual cells
to make them preferentially susceptible to type cross-protective T
cell responses, thereby leading to preferential elimination of the
infected cells destined to produce CIN3. Consistent with this possi-
bility, VLP vaccination can induce regression of transplantable sub-
cutaneous tumors that express very low levels of L1 in a mouse
model [23]. The presence of an immunosuppressive microenviron-
ment in established infections/neoplasia [24] may prevent these
mechanisms from effectively functioning to induce lesion regres-
sion if the vaccines are administered in a therapeutic setting.

If antibodies are the primary mediators of protection, the ques-
tion arises as to whether persistent levels of antibodies need to be
maintained long term so they are present at the time of initial virus
exposure or whether an anamnestic response after exposure,
mediated by memory B cells, can protect from persistent infection
and subsequent disease. There is precedence for the latter possibil-
ity. For example, individuals vaccinated with a hepatitis B virus
(HBV) vaccine can become transiently infected, as evidenced by
seroconversion for non-vaccine viral antigens, but never become
symptomatic [25]. However, it is most likely that neutralizing anti-
bodies need to be present at the time of exposure for the HPV vac-
cines to be most effective.

The female genital tract is generally considered to be a poor
inducer of antibody responses, presumably in part to limit infertil-
ity that could result from the induction of anti-sperm antibodies
[26]. In keeping with this idea, intravaginal delivery of 5 mg
HPV16 VLPs, a relatively high dose, induced little if any antibody
response in mice unless the tissue was chemically disrupted [27].
Although the virion antigen load that is transferred from an
infected sexual partner is not well documented, it is likely to be
relatively low, too low to readily induce an anamnestic response.
Consistent with this conjecture, increases in VLP antibody titers,
once they have stabilized after vaccination, are rare in sexually
active women, although these women are fully able to mount a
strong anamnestic response to an additional injected dose of the
vaccine [28].

One could postulate that a breakthrough infection at a genital
site with low propensity for carcinogenic progression, e.g. the vagi-
nal wall, could induce a recall antibody response that would pro-
tect against successive rounds of auto-inoculation, which could
otherwise lead to infection of the cervical transformation zone
with high probability of progression. However, if this scenario
occurred commonly, then vaccination of women with prevalent
infection would be expected to have a reduced rate of progression
to high grade precancer, but this type of protection was not
observed in the clinical trials [15,17].

Although 40% of vaccine recipients in the Gardasil trials were
reported to become seronegative for HPV18 by four years post-
vaccination, there was no evidence that Gardasil was less protec-
tive against HPV18 infection than against infection by the other
three types targeted by the vaccine, for which a higher percentage
of subjects remained seropositive. This observation prompted the
proposal that perhaps memory B cells are sufficient to serve as
effectors of protection [29]. However, this explanation no longer
needs to be invoked, as the apparently lower immunogenicity of
the HPV18 VLPs in Gardasil is primarily an artifact of the perfor-
mance of the serological assay used in the clinical trials. For each
of the four HPV types targeted by the vaccine, the assay that Merck
used measured the ability of the serum polyclonal antibodies
induced by vaccination to compete with a type-specific mono-
clonal antibody for VLP binding. The binding site of the HPV18
monoclonal antibody they used appears to overlap less consis-
tently with the immunodominant epitopes recognized by the sera



4770 J. Schiller, D. Lowy / Vaccine 36 (2018) 4768–4773
of the vaccinees than do the monoclonal antibodies against the
other HPV types. Using an alternative ‘‘total IgG” assay, 97% of sub-
jects remained seropositive for HPV18 VLPs after four years [30].
As discussed below, it is possible that even the few vaccinees that
become seronegative in the most sensitive in vitro serologic assays
remain protected by circulating antibodies, because very low levels
of VLP antibodies appear to be sufficient for protection against
infection of cervicovaginal tissue.

In summary, the preponderance of the evidence supports the
conclusion that long lived plasma cells (LLPCs) that continuously
produce antigen-specific antibodies, and not memory B or T cells,
are the key immune effectors that underlie the strong type-
restricted protection induced by the HPV vaccines. However, it is
important to note that low responders and ‘‘breakthrough” infec-
tions are rare, and there is no correlation between them, and so
the minimum systemic or mucosal antibody level required for pro-
tection has not been established yet.

3. Immunologic considerations

The exceptionally strong, consistent, and durable antibody
responses to the three HPV vaccines is well documented [31]. In
healthy young women, seroconversion rates are virtually 100%,
peak in vitro neutralizing titers of 1000–10,000 are generally
obtained, and, after a relatively steep 10-fold drop in titer over
the first two years, IgG titers plateau or decline very slowly, stabi-
lizing at levels that are substantially higher than the antibody titers
induced by natural infection [32]. Responses in preadolescent girls
and boys are even stronger [33,34]. The stability of antibody
responses, now observed for almost a decade [35,36], is unprece-
dented for a subunit vaccine.

Surprisingly this pattern of antibody response is observed even
after a single dose of vaccine, with stable geometric mean IgG
binding and in vitro neutralizng titers that are only about 4-fold
lower than the plateau titers measured after the standard three
doses [8,37]. Unexpectedly, avidity, as measure in a VLP-based
chaotrope ELISA, similarly rose over the first four years after
immunization with one or three doses of Cervarix, and then stabi-
lized for both dose regimens [38 and unpublished data].

The long-term antibody levels, regardless of dose number, are
almost certainly due to efficient induction of LLPC, which primarily
reside in the bone marrow and continuously produce antibodies,
probably independent of additional antigen exposure [39]. It is
unlikely that successive rounds of memory B cell activation from
putative secondary exposure to virion antigens are primarily
responsible for the durable levels, as intermittent increases and
decreases in antibody levels would be expected if repeated episo-
dic antigen exposure were involved, while the antibody levels in
individuals actually remain constant or decrease at a slow rate.
In addition, essentially all vaccinees maintain a stable level of anti-
bodies against the VLP types in the vaccine, and it very doubtful
that virtually all the women would have experienced immunizing
levels of environmental exposure to each of the multiple genital
HPV types targeted by the vaccines. Therefore, the central
immunological question is why the HPV vaccines are such potent
inducers of LLPCs.

The specific structure of the VLPs that comprise the HPV vaccine
is probably the key to their ability to efficiently induce LLPCs. The
particulate nature and densely ordered repetitive display of B cell
epitopes on the surface of the antigen could contribute in multiple
ways to LLPC induction. Perhaps most importantly, the ordered
display of epitopes at 50–100 Å on the VLP surface is a pathogen-
specific danger signal to the humoral immune system [40]. Epitope
spacing at this distance is found on the surface of most viruses (HIV
being a notable exception [41]), and on other microbial structures,
such as bacterial pili.
Binding and subsequent cross-linking of the B cell receptors
(BCR) on the surface of naïve B cells by these ordered repetitive
antigens transmit exceptionally strong activation and survival sig-
nals [42] (Fig. 2). Naïve B cells generally express both IgM and IgD
BCRs. Interestingly, while both monomeric and repetitive antigens
can activate IgM BCRs, signaling through IgD is preferentially acti-
vated by repetitive antigens, raising the possibility that IgD BCR
crosslinking is an important component in the efficient induction
of LLPCs by VLPs [43]. It is noteworthy that pentameric subunits
of L1 can also induce virion neutralizing antibody responses, how-
ever the induced antibody titers are substantially lower than those
induced by VLPs (at least when the L1 pentamers have been genet-
ically altered so they cannot self-assemble after injection) [44]. The
durability of the antibody responses to assembly deficient L1 pen-
tamers has not been critically evaluated.

Interestingly, high density display of self-antigens on a VLP sur-
face can efficiently break B cell peripheral tolerance and even reac-
tivate anergic self-reactive B cells [45,46]. The BCRs on a majority
of newly produced B cells are thought to bind self-antigens, which
renders them functionally anergic [47,48]. Autoreactive intermedi-
ates generated during somatic hypermutation in the B cell follicles
on the lymph node may similarly be tolerized. Therefore, there are
expected to a rather limited number of immunoglobulin develop-
ment pathways through which monomeric foreign antigens can
generate B cells expressing high avidity antibodies. In contrast,
the ability of VLPs to override peripheral tolerance implies that
there are a much larger number of developmental pathways avail-
able to VLPs than low valency antigens to generate this class of
antibodies [41]. The polyvalent interaction of repetitive VLP epi-
topes might also lead to stable engagement and subsequent B cell
activation through BCRs whose affinity, if they were engaged by a
monomeric antigen, would be too low to be activating. These con-
jectures that delineate potential mechanisms for activating a large
variety of distinct naïve B cell clones can provide a mechanistic
explanation for the remarkable consistency of VLP antibody
responses across individuals who have a diverse set of alleles at
their immunoglobulin gene loci.

Several additional mechanisms related to the particulate nature
of the VLPs may also contribute to their generation of potent anti-
body responses. First, after parenteral injection, particles of this
size (55 nm) readily enter the lymphatic system and traffic to
lymph nodes, where they induce primary antibody responses
[49]. Second, the closely spaced arrangement of determinants on
the VLP surface can lead to the stable binding of natural low avidity
IgM and complement, thereby promoting acquisition of the VLPs
by follicular dendritic cells, which present antigens for the induc-
tion of B cell responses in the lymph node [50]. Third, particles
in this size range are efficiently taken up and processed by phago-
cytic antigen-presenting cells for MHC-II presentation, leading to
the induction of potent T helper responses [51]. Fourth, polyvalent
binding of the HPV VLPs to human monocytes, macrophages, and
dendritic cells induces the release of a variety of cytokines that
may promote antibody induction [52].

The above considerations could also help to explain the patterns
of antibody responses observed for other classes of vaccines rela-
tive to the HPV VLPs. Subunit vaccines composed of monomer or
low valency antigens, such as bacterial toxoids and polysaccha-
ride/protein conjugates, consistently induce protective antibody
responses only after several doses and require periodic boosting,
as the antibody titers continue to wane over time. This is presum-
ably because these antigens do not deliver the strong signals
induced by BCR oligomerization that promote differentiation into
LLPCs. Interestingly, although the HBV vaccines are multivalent
particulate antigens, they behave more like simple subunit vacci-
nes than HPV VLPs in that they often do not induce serocoversion
after a single dose and generally fail to induce stable antibody
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responses [53]. The reason for this difference is not entirely clear.
Induction of LLPCs may be limited because the HBV particles are
only 22 nm in diameter, the surface antigen spikes in the HBV par-
ticles float in a lipid membrane, or because there are a relatively
small number of repetitive elements (24 knuckle-like protrusions
of the surface antigen for HBV vs 360 L1 molecules arranged into
72 pentamers for HPV) [54]. Each of these factors could limit the
potentially critical oligomerization and downstream signaling
through the BCRs.

The fact that inactivated virus vaccines are particulate and have
a dense array of repetitive surface elements and yet are adminis-
tered in multiple doses and generally fail to induce stabilizing anti-
body responses may seem to contradict the hypothesis that these
structural elements are the critical features for efficient induction
of LLPCs. However, it is likely that the inactivation process (e.g.
protein crosslinking with formalin) sufficiently disrupts the dense
repetitive array of their surface epitopes to ablate their ‘‘virus-like”
character [55]. An exception may be the Hepatitis A (HAV) inacti-
vated virus vaccine, which appears to induce durable protective
antibody responses after a single dose and therefore may retain a
sufficient number of repetitive surface epitopes after inactivation
to retain its virus-like character [56]. On the other hand, the obser-
vation that live attenuated vaccines, such as yellow fever and vac-
cinia, induce potent, durable antibody responses and immunity to
infection after the primary inoculation in most vaccinees [57] has
usually been attributed to the infectious nature of the inoculum.
In light of the findings with the HPV vaccines, the alternative
explanation, that they are highly immunogenic primarily because
they contain authentic virion surface structures, must now be
considered.
4. Virologic considerations

Papillomaviruses have a unique life cycle in which production
of virions occurs only in the terminally differentiated layer of a
stratified squamous epithelium. However, completion of its pro-
ductive life cycle depends upon establishing infection in the cells
of the basal layer of the epithelium [58]. To ensure that initial
infection occurs only in basal epithelial cells, the virus cloaks its
cell surface receptor binding domain until after it has undergone
a series of conformational changes. These changes are induced by
binding specifically modified forms of heparan sulfate proteogly-
cans specific to the basement membrane that separates the dermis
from the epithelium [59] (Fig. 3).

We have postulated that this unusual strategy of initiating
infection on an acellular surface may increase substantially the
susceptibility of the virus to serum-derived neutralizing antibodies
in two ways [60]. First, exposure of the basement membrane to the
virus requires disruption of the epithelial barrier, which results in
direct exudation of capillary and interstitial antibodies at these
sites. A consequence of this event is that HPV encounters an
increasing concentration gradient of systemic antibodies at poten-
tial sites of infection. This mechanism can explain why intramus-
cular injection of the vaccine, a route that is a poor inducer of
mucosal antibody responses, can be so effective in preventing a
mucosal infection. There is also significant transudation of sys-
temic antibodies via the neonatal Fc receptor in the female genital
tract [61]. However, this latter mechanism may play a secondary
role in protection, because levels of transudated VLP-specific anti-
bodies in cervical mucus of vaccinated women are 10- to 100-fold
lower than serum levels (depending on the stage of the menstrual
cycle) [62] and because the vaccines are highly protective against
infections of cutaneous epithelia (e.g. external genital warts),
which are not routinely bathed in mucus.

The second factor that contributes to increased susceptibility is
the exceptional slowness of the initial stages of the papillomavirus
life cycle. In a mouse cervicovaginal challenge model, HPV virions
remain on the exposed basement membrane for hours before they
attach to the epithelial cells that migrate into close the disrupted
tissue. Internalization of the cell-bound virus takes several hours,
which is also unusually slow [59]. Thus, the virions are exposed
to neutralizing antibodies for an exceptionally long time. Relatively
high concentrations of passively transferred VLP antisera can pre-
vent infection by inhibiting basement membrane binding. How-
ever, lower doses that permit basement membrane binding are
nonetheless effective at preventing infection [13]. We speculate
that the long exposure of antibody-bound virions on the basement
membrane and cell surface makes the complexes highly suscepti-
ble to opsinization by phagocytes, which would also be attracted
to the sites of trauma [60]. The observation that antibody levels
that are more than 100-fold lower than the minimum level
detected in the in vitro neutralizing assay are able to prevent
in vivo infection is consistent with the idea that there are potent
antibody-mediated mechanisms relevant to in vivo inhibition that
are not detected in vitro [63].
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Remarkably low levels of VLP antibodies are protective in vivo.
For example, in the mouse cervicovaginal model, circulating anti-
body levels in recipient mice that were 10,000-fold lower than in
the donor HPV16 VLP-vaccinated rabbit potently inhibited infec-
tion from high-dose HPV16 cervicovaginal pseudovirus challenge
[13]. Although the titers of in vitro neutralizing antibodies induced
by HPV VLP vaccination are approximately 10-fold lower in
humans than in rabbits, we nonetheless speculate that the levels
of VLPs antibodies in human vaccinees considerably exceed the
minimum level required for prevention of genital infection and
that protective levels are lower than those that can be reproducibly
detected in current in vitro antibody binding and neutralizing
assays. Therefore, it is our expectation that the fourfold lower,
but readily detectable, plateau titers induced by one- versus
three-dose vaccine regimens will not substantially reduce the
long-term protection induced by the HPV VLP vaccines.
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