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Abstract
Background: In epidemiological studies, several diseases share common risk factors or co-exist in their spatial prevalence. Disease mapping 
allows the health practitioners and epidemiologists to hypothesize the disease aetiology and gain better understanding of  the geographical 
prevalence of  the disease risks.
Objective: This paper investigates the differences in small scale geographical variations and the underlying risk factors of  child’s health out-
comes (anemia, stunting and wasting) in Sub-Saharan Africa using spatial epidemiology. 
Method: The study first carried out an independent univariate analysis on each malnutrition indicator to identify underlying risk factors. A 
multivariate conditional autoregressive prior was explored to jointly model the spatial correlation between the undernutrition indicators and 
the small area-geographical disparities at sub-national levels in two sub-Saharan African countries.
Results: The approach was implemented on data from National cross-sectional household- based demographic and health surveys con-
ducted in 17,307 under-five children in Burkina Faso and Mozambique in 2010-2012. Out of  these children, 31.8% are found to be stunted, 
15.5% wasted and 30.9% had anemia among Burkina Faso children, while 42.5% of  Mozambican children were stunted, 5.9% wasted and 
30.9% suffered from iron-deficiency anemia. The multivariate analysis revealed that the spatial prevalence existed across regions in Burkina 
Faso with geographical variations in stunting estimated as: 0.7549, CI (0.4693, 1.264); wasting 0.9197; (95%CI : 0.535, 1.591)and anemia : 
0.734; (0.4606, 1.214). In additin, the spatial correlation between stunting and wasting was negatively correlated: -0.998; 95% CI (-1.000, 
-0.984), and a perfect negative correlation;(-1) between stunting and anemia, and positive for wasting and anemia: 0.997; (0.978, 1.000). The 
spatial occurrence across provinces in Mozambique indicated that there was strong positive correlation between stunting and wasting; 0.986; 
(0.899, 1.000) and a significant negative correlation between stunting and anemia: -0.720, (-0.934, -0.308) and wasting and anemia: -0.640; 
(-0.903 -0.174) with individual geographical variability in child stunting: 1427, (913.6, 2268); wasting:1751, (1117, 2803) and anemia: 556, 
(279.5, 978.9). These extra random effect parameters computed in our multivariate approach would outperform a univariate analysis in sim-
ilar studies. Our model further detected high prevalent of  malnutrition and anemia in the northern Burkina Faso, but high anemia prevalent 
found in central Mozambique, and high stunting and wasting identified Southern Mozambique. In addition, the risk factors of  malnutrition 
and iron deficiency anemia included household poverty, morbidity, short birth interval (less 18 months), breast feeding, antenatal attendance 
and maternal literacy.
Conclusion: The statistical relevance of  the identified risk factors in this study is useful to target specific individual interventions and the 
maps of  the geographical inequalities in sub-national region can be used for designing nutrition interventions and allocation of  scarce health 
resources.
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Introduction
Child malnutrition and anemia are both global pub-
lic health problems with monumental consequences at 
adulthood. The prevalence of  stunting is declining and 
according to UNICEF, 40% (257 million) of  the world’s 
children in 1990 suffered from stunting whereas in 2013, 
the proportion had decreased to 25% (161 million)1. The 
prevalence of  wasting has also significantly declined, 
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from 19% (122 million) in 1990 to 8% (51 million) in 
2013. In 2008, over 1 billion people worldwide were said 
to be malnourished2 and 2 billion people are globally 
affected with anemia3. Recent reports have shown that 
Africa and Asia accounted for more than 85% of  the ab-
solute anemia burden in high-risk groups and a quarter 
of  the global population, including 293 million (47%) 
children younger than 5 years, and women of  reproduc-
tive age, 42% in pregnant women, and 468 million (30%) 
non-pregnant women4.

Malnutrition is a condition that arises as a result of  con-
suming a diet that contains insufficient or too many nutri-
ents or as a result of  faulty or under-utilization of  foods. 
Anthropometric indices are commonly used in order to 
classify individuals as malnourished or of  normal nutri-
tional status. Stunting (short height- for- age) is an indi-
cator of  linear growth retardation and cumulative growth 
deficits in children (chronic malnutrition), wasting is mea-
sured by low- weight-for-height score and it describes the 
body mass in relation to height for current nutritional sta-
tus, and it is commonly referred to as acute malnutrition. 
Both measures depict important public health indicators. 
Child malnutrition is known to be a leading contributor 
to under-five mortality and it results from inadequate nu-
trients from food intake, chronic diseases and infection 
may also lead to mild to moderate anemia5–7. Approxi-
mately 800,000 deaths are attributed to wasting and over 
one million is caused by stunting8. Wasting and stunting 
are also responsible for the loss of  64.6 and 54.9 million 
Disability Adjustment Life Years (DALY) respectively, 
accounting for 14.8% and 12.6% of  the global DALYs 
for children8. Childhood stunting and wasting contribute 
separately to mortality and burden of  disease8.

Anemia is usually described as multifactorial in origin, 
and malnutrition arising from infectious disease, inher-
ent haemoglobinopathies9 and thalassaemias10, which 
are identified as the major contributor. In many regions, 
micro-nutrient deficiency is a problem, particularly iron, 
vitamin A and zinc deficiency and about 50 percent of  
all anemia cases are due to iron deficiency11. Anemia in in-
fancy and young children is associated with reduced cog-
nitive development12, growth retardation13 and immune 
function14 and survival.

Evidently, the planning for resource allocation to control 
child malnutrition and anemia is based on prevalence data 
from field surveys within country, which are often ex-
trapolated to the country as a whole15. However, efficient 
health intervention and programs to control child under 
nutrition including micro-nutrient deficiency in young 
children require target approaches based on information 
on the geographical distribution at the sub-regional level 
or high-risk communities and better understanding the 
relative contribution of  the major underlying factors. 
Geographical differences in the causes of  anemia and 
malnutrition can be partially explained by large-scale vari-
ability in environmental factors, particularly nutritional 
and infection causes. Studies have established environ-
mental drivers of  anemia and childhood malnutrition 
tend to show a certain degree of  spatial dependence i.e. 
geographical clustering15–17.

For decades, the issues of  spatial modeling and develop-
ments have focused mainly on the modeling of  a single 
disease. The spatial mapping model has long been used to 
understand the geographical variation in disease rates18, 
which makes it easier to describe places of  unusually 
high risk and produce a contiguous map of  disease risk 
to guide decision makers. Nowadays, joint mapping pro-
vides useful information on the similarity of  the common 
risk factors and the approach is more appealing than the 
univariate response analyses. The potential benefits of  a 
multivariate disease mapping include improvement in the 
precision of  the underlying risk pattern estimation and 
quantify shared and specific patterns of  risk among differ-
ent diseases18–20. A good review of  multiple disease map-
ping and techniques can be found in existing literature20,21 
and the model framework rely on the ability of  an area 
to borrow information from the neighboring regions22. 
The aforementioned studies have motivated the present 
study and we extend the spatial modeling approach to 
multivariate setting. Accordingly, this study therefore ex-
plores multivariate conditional auto-regressive approach 
to simultaneously model the three malnutrition indicators 
among children less than five years of  age.
The paper is then structured into sections. In section 2, 
the geographical location of  the study area and the DHS 
data was detailed. Section 3 discussed the model formu-
lation and construction of  joint multivariate model for 
binary response and Bayesian estimation procedures. Sec-
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tion 4 presents the results from the implementation of  
the proposed method on cross-sectional data obtained 
from DHS and presented the results. Section 5 discussed 
the results and last section gives a concluding remark.

Methods
Study area and data source
The data used in this study were obtained from Demo-
graphic and Health Surveys (DHS) as domiciled in the Bu-
reau of  Statistics of  respective countries. Over the years, 
the DHS program has provided technical support and 
funding to conduct surveys in many low income coun-
tries. The program has promoted global understanding 
of  health and population trends. They developed stan-
dard procedures, methodologies and manuals to guide 
the sampling survey planning, design and data collection 
processes to obtain quality data and reflect the health and 
demographic representation of  the population compara-
ble among countries. The data used in this study are ex-
tracted from the surveys of  Burkina Faso Demographic 
and Health Survey and Multiple Indicators (DHS23 and 
Mozambique24.

Figure 1(a) and(b) shows the geographical maps of  re-
gions(provinces) in Burkina Faso and Mozambique re-
spectively.

Burkina Faso is a landlocked country in West Africa. It 
covers an area of  around 274,200 km2 and it has 13 re-
gions and subdivided into 45 administrative provinces25. 
The Burkina Faso has a population of  about 18.1 mil-
lion26. Mozambique is a country in Southeast Africa bor-
dered by six countries and the Indian Ocean. According 
to the 2017 World Population Prospects, Mozambique 
has a total population of  28.8 million26 and a total fertility 
rate24 of  5.9. Mozambique is made up of  10 administra-
tive provinces and a total landmass of  799,380 km2

Variables considered in the study
In this study, data information from Demographic and 
Health Surveys of  two countries were assessed and ana-
lyzed. Anemia is described as a product of  low level con-
centration of  functional hemoglobin (Hb) in the blood. 
According to the World Health Organization (WHO), 
children whose age range from 6-59 months are consid-
ered anemic if  their Hb concentration levels are below 

11.0 g/dl27. The study also adopted the 28 standard mea-
sure for characterization of  child malnutrition: weight-
for-height (wasting) and height-for-age (stunting) z scores 
as when the child Z− score falls below minus 2 SD, the 
child is considered as wasting or stunting respectively.

The following variables are also chosen used in existing 
empirical studies of  childhood malnutrition as suggest-
ed29,30. The factors included in our model are(a) child 
use bed net (1), 0- not(reference) (b) the child’s age (in 
months) categorized as: 1–5 months, 6-11 months, 12-23 
months and ≥ 24 months (reference); (c) birth within 3 
years is categorized as: ≤ 1 child, ≥ 2 or more children (d) 
child’s sex male=1, female=0(reference), (e) had morbid-
ity (diarrhea, fever, cough and pneumonia, 2 weeks prior 
to the survey) yes=1, no=0(reference) and (h) measles 
vaccination, yes=1, no=0 (reference). Maternal factors 
considered include (f) mother’s literacy (ability to read 
and write) =1, not literate=0(reference); (g)maternal age 
(in years) used as continuous variable in the model; and 
(h) antenatal class attendance categorized as (i) No vis-
it, (ii)1 to 3 visits (iii) 4 and more visits(reference)during 
pregnancy. The socio-economic variables included in the 
analysis are: (i) place of  residence (rural=1, urban=0); 
and (ii) mother’s wealth index categorized as: poorest(ref-
erence), poor, middle, richer, richest and (iii) access to 
electricity yes=1, no=0(reference).

Joint disease modeling
The shared component models have been commonly ap-
plied to jointly model risk of  oral and esophageal can-
cers31, chronic obstructive pulmonary disease(COPD) 
and lung cancer32, sudden infant mortality and causes of  
death in Austria33, ecological comorbidity modelling of  
childhood diseases in Somalia34, infant mortality from 
four cancers 20 and gender inequalities in hospital admis-
sion for chronic diseases35. However, analysts can decide 
to use a multivariate normal model approach to access 
co-variances and correlation within and between diseases 
of  underlying spatial risk22,32. The introduction of  a new 
joint modeling paradigm known as the shared component 
model by31 and subsequent extension of  their work to 
joint disease clusters detection. Other studies employed 
multiple-membership multiple-classification (MMMC) 
models for assessing social network dependence in an in-
dividual response to academic performance by including 
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other group dependence such as the school or area to 
which an individual belongs36,37 and in adolescent Health 
Study data set38.

However, a multivariate joint analysis permits the esti-
mation of  conditional correlation between two health 
outcomes while at the same time, facilitates the determi-
nation of  the spatial association with the region. Estimat-
ing the joint spatial distribution of  multiple diseases will 
better outperform the underlying risks than it would be 
obtained from the univariate analysis. For example, recent 
developments of  theory and applications of  multivariate 
joint modelling can be found in the literature39–41 and a 
scale mixture approach for spatial dependence was pro-
posed by42 as a recent contribution in this field.

Model building
In this section, the reviewed models are adopted to suit 
the Bernoulli data at hand. Let yijk be the disease (nutri-
tional status) coded (0/1) of  a disease k, where k = 1 for 
stunting ,  k = 2 for wasting , and k = 3 for anemia for 
individual child i, i = 1,2,...,nj, in regions j (provinces as 
the case may be). We further assume that the observed 
outcomes arise from a trivariate distribution, with pijk as 
the probability of  disease k occurring in individual in area 
j. The data generation model is defined as
yijk ∼ Bernoulli(pijk) (1) and for each model, the covariates are in-
troduced as stated below.

In the separate analysis, the covariates and random effects 
are introduced as follows:

Where 1U  , 2U  ,  and 3U are structured spatial random 
effects modeled by independent conditional auto-regres-

sive prior, while 1V  , 2V  , and 3V are unstructured ran-
dom effects  modeled by independent normal distribu-
tions, known as convolution model , i.e. Besag, York and 
Mollie (BYM) model
In the a shared component model approach, the covari-
ates and random effects are introduced as follows in  two 
disease case  scenarios

where 
1U  is the shared component and   is the compo-

nent specific to the first disease only. These two compo-
nents are modeled using conditional autoregressive priors 
with precision,  τ1 and τ2 respectively.
In the case of  a multivariate joint model approach, one 
can easily extend into three outcomes. In the multivariate 
setting, the covariates and random effects are introduced 
as follows
ηij2 = logit(pij1) = α1 + XTβ1 + φi (2a)
ηij3 = logit(pij2) = α2 + XTβ2 + φi (2b)
ηij1 = logit(pij3) = α3 + XTβ3 + φi (2c)
The multivariate joint modeling approach can be easily 
generalized to more than two outcomes. In the multivar-
iate setting, the covariates and random effects are intro-
duced as follows
where φ = (φ1,φ2,φ3)T is modeled using a multivariate 
conditional autoregressive prior that is Φ  MCAR(1,Σ),
and where Σ is the covariance matrix including correla-
tion.
In order to induce spatial correlation structure between 
the set of  binary logistic models, equations (2) can be 
fused together into a multivariate version, and the matrix 
form explicitly expressed as
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We then model y1ij,y2ij,andy3ij via the following tri-vari-
ate normal distribution

  (4) 
 

where αk,k = 1,2,3 in equation (3) represents individual 
specific disease intercept, and the terms β =(β1,β2,β3)T 
are p×1 vectors of  regression parameters to the set of  
covariates (fixed effects) are presented in Table of  pos-
terior estimates. R is a within-subject correlation matrix 
with diagonal elements set to 1 for identifiability and off  
diagonal ρ denoting the conditional correlation between 
y1ij, y2ij, and y3ij given as φi and φi = (φ1,φ2,φ3)0 is a 3 
× 1 vector of  spatial dependent random effects for the 
ith region or province as presented in Table 2 and 6) for 
Burkina Faso and Mozambique respectively.
Model estimation was carried in a full Bayesian approach 
by assigning appropriate prior distributions to all the pa-
rameters of  the models. In addition to the priors given to 
the random effects discussed in the models above, non-in-
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formation priors were assigned to the regression coeffi-
cients. For the intercepts, diffuse priors were assumed, 
that is, p(αk), while for the covariate coefficients, highly 
dispersed normal prior distributions were assumed, that 
is, p(β) ∼  N(0,104).

In a shared component model, the analyst needs to spec-
ify an extra parameter δ by allocating a prior as logδ    (0, 
σ2), while in the case with multivariate setting, the cova-
riance matrix was assigned an inverse Wishart prior as Σ 
∼ IW(r,R) with R considered to be an identity matrix. 

All model was fitted using WinBUGS software43.

There are two ways of  proceeding, via the covariance ma-
trix or its reciprocal. One way is to specify the joint dis-
tribution (??) and assume specific forms for Σ. For more 
readings, see39,44.

Model specification
We performed separate independent univariate analysis 
for each malnutrition indicator to assess demographic risk 
factors associated with the child malnutrition status. Data 
cleaning and re-coding was done in R45, and the univari-
ate analysis was carried out via a Bayesian Approximation 
using the Integrated Nested Laplace Appropriation(IN-
LA)46. The Shapefile data of  the geo-reference coordi-
nates of  countries was downloaded at Global Adminis-
trative Areas47 and the maps of  the posterior estimates of  
the models was done using R-INLA environments. The 
following models to investigate the socio-demographic 
factors.
•    M1: ηi = x0β
•    M2: η=x0β + f1(zi) + φi + θi
where, the set of  observations (xi) represents categorical 
covariates, ,zi continuous variable and ,si represents the 
index of  geographical location split into unobserved(un-
structured) spatial and structured (correlated) random 
effects.

•    Model M1, (i.e. usually pure linear model) which is 
represented as the baseline model where all parameters 
assumed fixed effect regression model,
•    Model M2, (i.e. structured additive regression model), 
which includes linear and non-linear covariates, unstruc-
tured and structured(correlated) effects.

In order to account for the variability or ‘noise’, which are 
not measurable by the categorical and continuous covari-
ate factors, many different approaches to spatial smooth-
ing have been developed. But the one that has gained 
wide acceptance and applicability is that of  Besag, York 
and Mollie (the BYM model), which allows for both het-
erogeneous and spatially structured random effects 48. 
For the structured spatial effect, we assume a first-order 
intrinsic Gaussian Markov Random Field prior 46 and 
two-dimensional P-spline prior49.

Model estimation
In Bayesian framework, all functions and parameters are 
assigned appropriate prior functions. The smooth func-
tions and model parameters used the empirical Bayesian 
approach according50. The fixed effect parameters, β of  
the categorical covariates assumed non-informative dif-
fuse priors, p(βk) ∼ constant
The non-linear smooth functions of  continuous covari-
ate (mother’s age ( in years) in our case) adopt a Bayesian 
P-splines prior as suggested in the work of  Fahmier et 
al51, as an extension of  polynomial regression splines pro-
posed by Elier and Maxr52. The basic assumption behind 
the P-splines approach is that the unknown smooth func-
tion f  can be approximated by a spline of  degree l defined 
on a set of  equally spaced knots within the domain of  x. 
The spline can then be written as a linear combination of  
basis function (B-spline), i.e. f(x) = Pj=1 βjBj(x) where 
Bj(x) are B−splines. Smoothness of  the basis function is 
achieved by a first or second-order random walk model. 
In our case, the second-order random walk is adopted in 
this study i.e. βj = 2bj−1 + bj−2 with Gaussian error β 
∼ N(0,τ2).

Multivariate conditional auto-regressive(MCAR) Prior
The development of  the multivariate model is credited to 
55, which is an extension of  Besag53 results into a multi-
variate setting. In their work, Mardia 55 showed that con-
ditions under which the conditional multivariate distribu-
tion uniquely determines the corresponding multivariate 
joint probability density function.
Under this condition,54 extended MCAR into a gen-
eralized MCAR model in the following manner. Let

), where each φi is n × 1 vector. 
Then Φ is an np × 1 vector. Also let Φ have a multivariate 
Gaussian distribution with mean, 0 and dispersion matrix 

∼ 
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Q, we then define
 

  (10) 
 

Q is an np × np symmetric and positive definite matrix. 
It is informative to look at Q as a p × p block matrix with 
n × n block Qij and the full conditional distributions are 
then given by

 

  (11) 

This implies that  and the full conditional probability den-
sity function is given by

 

  (12) 

where Σi and Cij are n × n matrices analogues to σij and 
cij as defined for the univariate case above (6). The matrix 
Σiis also symmetric and positive definite. the matrices Σi 
and Cij can also be written in terms of  Q, the precision 
matrix of  the joint distribution as C and . If  we set Σ 
to be a block diagonal matrix with Σi blocks and C as a 
partitioned matrix with blocks Cij and Cij = 0n×n, then
 Q = Σ−1(I − C)                                               (13)
A propriety parameter, α can be added into the precision 
matrix into equation (12) to yield
 Q = Σ−1(I − αC)                                           (14)
For a symmetric matrix Q and smoothing parameter α 
satisfying the condition such that CijΣj = ΣiCTj , 56 de-
noted the distribution by MCAR(C,Σ). To carry out the 
inference, α and Σ are assigned appropriate priors, such 
as uniform distribution for α and Wishart (ρ,Σ0) for Σ.

Posterior computation
The joint posterior distribution for the spatial bilogit 
model is given by π(β1,β2,α1,α2,ρ,Φ,Σ) ∝ 

 Pr  

× Pr Pr  

  (15) 

where ηij = (η1ij,η2ij0) as given in equation (4) and the 
π(.) represent the prior distributions for their respective 
parameters as defined in section above.

The model performances are investigated via deviance 
information criterion (DIC) 57, DIC = D(θ) + pD is a 
model selection criterion according to which the model 
performance is evaluated as the sum of  a measure of  fit, 
the posterior mean of  the deviance, D = E−2log(f(y|pa-
rameters)), and a measure of  complexity, the effective 
number of  parameters, pD is obtained as the diference 
between the deviance posterior mean and the deviance 
evaluated at the parameters posterior mean. Thus, a mod-
el is preferred if  it shows a lower DIC value.

Data analysis
The above-discussed models were applied on data ob-
tained from DHS of  Burkina faso 2010 and Mozambique 
2011. The first part of  the analysis consists was carried 
out using independent univariate models. Of  which the 
results produced three outputs namely Tables of  posteri-
or estimates of  fixed effects, spatial maps and non-linear 
graphs. The second part consists of  results from multi-
variate analysis. using the Multivariate CAR model analy-
sis in section and implemented in WinBUGS 14.

Study population
The tabulated number of  the children suffering from 
undernutrition in the sampled population by country are 
presented in Table 1. The overall prevalence of  child-
hood anemia among the children understudy in the two 
countries are similar with about 30.9% of  the regions 
showed high prevalence in both countries (Burkina Faso 
and Mozambique). The wasting prevalence in Burkina 
Faso was 15.5 %, which was about 3 times higher than 
prevalence in Mozambique (5.5%). But percentage of  
stunting was slightly higher among Mozambican chil-
dren (42.6 percent) to that of  Burkina Faso, 34.8 percent. 
From survey population, there were many missing values, 
may be the respondent (mother) declined to provide in-
formation about her child, or the child was not available 
(not at home) when the interview was being conducted, 
or the child was sick, or the child was living with a family 
relation.
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The exploratory variables considered in the analysis are 
based on the existing literature on the socio-demographic 
determinants of  the under nutrition indicators /variables. 
About 81 percent of  these children were from rural areas, 
of  which there was higher prevalence stunting among the 
children than the urban. About one-half  of  the children 
(54%) were either first-born or at second and third or-
der. While the percentage prevalence of  anemia had a lin-
ear association with birth order, childhood stunting and 
wasting did not indicate any consistent linear association 
with the birth order. Majority of  these children (97%) 
were born of  single birth, with higher prevalence of  
anemia and stunting were 25.9% and 39.1% respectively 
among children of  multiple birth (twin) than the single 
birth (22.9% and 28.2%), but lower prevalence of  child 
wasting. About a quarter of  these children were born 
to mothers who attained no formal education (25.5%), 
some formal education (63.3%) attained primary, while 
11.3% achieved secondary or higher). Generally, the prev-
alence percentage n of  anemia did not differ significantly 

among the maternal wealth strata(groups), but the prev-
alence of  childhood malnutrition (stunting and wasting) 
decline linearly as the maternal wealth move upward the 
economic strata.
 
Model comparison
Table 2 presents the measure of  fitness using Deviance In-
formation Criteria(DIC) from univariate analysis for mal-
nutrition indicators among under five children in Burkina 
Faso and Mozambique. Model M2 showed a substantial 
difference (∆ DIC) over model M1 within the range of  
50 and 150. For each country, we provide the goodness 
of  fit values for each type of  child malnutrition. The best 
model selected has the lowest DIC. BYM model(M2) is 
considered the best models overall because they yielded 
the smallest DIC values. The inference revealed that the 
spatial random effects had significant determinant factors 
that influence prevalence of  childhood malnutrition.
Geographical prevalence of  childhood anemia, stunting 
and wasting

Table 1: Percentage distribution of child‘s health conditions (stunting, wasting and anemia) by 
country in total sampled population from the Demographic and Health Surveys. 

  
Country Years of DHS Population No of children No of stunted No of wasted No of anemic 

    sample(N) response children(%) children (%) children (%) 

Burkina Faso 2010 15044 6994 2420(34.8) 1084(15.5) 2343(30.9) 

Mozambique 2011 11102 10313 4393(42.6) 609(5.9) 3394(30.9) 

           
            % = ratio of number of cases children divided by sample population at risk (response) 

 

Table 2: Deviance Information Criterion (DIC) for the measure goodness 
of fit for the independent univariate analysis 

 

 

 

 D(θ) pD DIC D(θ) pD DIC 

Anemia 
M1 9237.85 23.96 9261.81 13461.00 24.00 13485.00 
M2 9087.00 36.20 9123.20 13334.39 34.67 13369.06 

Stunting 
M1 7368.49 23.94 7392.43 11047.37 23.98 11071.35 
M2 7330.59 33.98 7364.57 10891.00 35.30 10926.30 

Wasting 
M1 4909.40 23.86 4933.26 3176.17 23.69 3199.86 
M2 4845.18 34.47 4879.65 3113.24 32.59 3145.83 

Model Burkina Faso Mozambique 
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Figure 2 presents a set of  maps of  the estimated smooth 
geographical effects on malnutrition prevalence among 
children in Burkina Faso, after controlling for other co-
variates. It was evident that there were apparent geo-
graphical disparities across sub-national level or province 
level as seen from the graphics. The spatial residual ef-
fects are grouped into five categories with black coloured 
region signifying the lowest spatial residuals and a yellow 
coloured region denotes highest risk. Burkina Faso: From 
spatial plots displayed in Fig 2, it could be observed that 
children living in about 15% geographical (2 regions) ar-
eas were found to experience high prevalence for anemia 
2, whereas 23 percent and 46 percent of  these regions 
showed high prevalence for stunting and wasting respec-

tively. Sahel and Cascades were two regions with high 
prevalent of  anemia e, but only Sahel region also showed 
high prevalence from all the malnutrition indicators. 
Three regions (Sahel, Est and Cascades) had high risk 
of  childhood stunted only, while four (4) regions (Cen-
tre-Nord and Centre Sud) constituting 30% of  higher 
risk wasted regions. Two regions (Hauts-Bassins and Sud-
Ouest) had low prevalence of  being anemia and wasting, 
while Centre-Ouest and Boucle du Mounhoun regions 
recorded low risk of  stunting. A further inspection of  
the maps indicated that Est region was only region expe-
rienced high risk of  both stunting and wasting. Cascades 
region experienced high prevalence for both anemia and 
stunting, but the Sud-Oest and Hauslts-Bassins regions 
recorded low prevalence for anemia, but not wasting.

 
                             

                            Figure 1: Maps showing geographical regions/ provinces in (a) Burkina Faso (b) Mozambique 
 

 
 

Figure 2: Mapping of posterior mean of structured spatial residual effect of childhood  
(a)anemia, (b)stunting and (c) wasting showing posterior  

mean of prevalence in Burkina Faso, DHS2010 
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                            Figure 1: Maps showing geographical regions/ provinces in (a) Burkina Faso (b) Mozambique 
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Mozambique: carefully inspection of  the maps of  the 
spatial residual plots displayed in Figure 3, about 65% of  
the provinces in Mozambique were classified to be high 
prevalence for anemia among young children living in 
seven provinces (Niassa, Nampula, Tete, Maniza, Gaza, 
Sofala and Zambezia). Furthermore, three provinces 
(Cabo, Delgado, and Gaza) recorded high prevalence of  
childhood stunting, and four other provinces predicted 
with high prevalence of  childhood wasting. For instance, 

anemia and wasting prevalence exhibit co-occurrence 
across the two provinces of  Manica and Nampula, but 
only Gaza province classified with high prevalence for 
both anemia and stunting among the children, while Ma-
puto and Maputo city had a high prevalence both stunted 
and wasted. The maps generally revealed a higher preva-
lent of  stunting and wasting occupying in about 35% and 
37% of  the provinces but 4 provinces high anemia plus 
Maputo city .

Non-linear effects of  mother’s age on the childhood 
under nutrition
The mother’s age of  the model is described by the 
non-linear functional relationship on the malnutrition 
status, i.e. the effect of  mother ‘s age “mage” on the child 
malnutrition indicators. The graphs depict that it cannot 
be represented linear functions. Fig. 4 a represents the ef-
fect of  mother ‘s age on the childhood anemia, and it de-
scribes a non-linear relationship resemble a flip S-shape 
curve or reversed sigmoid curve of  the mother’s age at 
birth on the anemia risk among children in Burkina Faso. 
The graph can be segmented into three phases:(under-
age mother (teenage, ≤ 20 years) mothers, young mother 
(20 − 32 years) represented by ‘plateau’ or stabilize, and 
older mother (≥ 32 years). This translates into the risk of  
anemia declines at a slow rate among children of  young 
mothers and flexes at age say, between 20- 30 years, and 

soon after 30 years, the anemia risk declines faster. 
Fig. 4 b described the relationship between the mother 
‘s age (years) effects and child’ stunting can be described 
as a U-shape curve or J-shape function, as displayed in 
Fig 4b. This indicates that a reduced risk of  anemia in 
children whose mother’s age was less than 28 years old 
and then rose exponentially. Fig. 4 b refer to stunting 
prevalence in Burkina Faso: Fig. describes the relation-
ship between mother’s age and children risk of  stunting 
was a reverse sigmoid-curve and it resembles the effect of  
anemia risk as for Burkina Faso, but it declines at a slower 
rate. Whereas the Figure 4 c shows that the relationship 
between the mother ‘s age and childhood wasting was a 
power law curve or downward- concave curve, indicative 
that the wasted risk decreases faster among the children 
of  older mothers (say, ≥ 30 years) than of  younger and 
teenage mothers in Burkina Faso.

 

Fig 3. Mapping of posterior mean of structured spatial residual effect  
of childhood (a)anemia, (b)stunted and (c) wasted showing  

posterior mean of prevalence in Mozambique DHS 2011. 
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Mozambique: Figure 5a described the effect of  mother’s 
age (in years) at birth and child anemia risk. The relation-
ship represents a non-linear relation such like a flipped 
S− shape curve, indicating a small rise of  anemia risk in 
children born of  teenage mothers (less 20 years) and the 
risk decreases soon after until mother’s age 40 and rise 
again. The lowest prediction of  the anemia risk in Mo-

zambican children can be attained at the mother ‘s age of  
40 years old. Figure 5 b describes the effect of  mother 
‘s age (years)and the child risk of  stunting, which can be 
illustrated to be an inverse J-shape (or truncated expo-
nential function), while the effect on childhood wasting 
could be described as a power-law function with a con-
stant exponent scaling factor or concave down curve as 
displayed by Figure 5 c.

 

Figure 4: Non-linear plot of the effect of mother ‘s age(years) on (a) anemia,  
b) stunting and c) wasting showing posterior mean and 95% credible interval 

 for Burkina Faso data. In all tests, the mother’s age (in years) along the  
horizontal axis, and relative posterior risk effect on the vertical axis. 
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Figure 5: Non-linear plot of the effect of mother ‘s age(years) on (a) anemia, 
(b) stunting and c) wasting showing posterior mean and 95% credible interval for 
Mozambique data. In all tests, the mother’s age (in years) along the horizontal axis, 

and relative posterior risk effect on the vertical axis. 
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Fixed effects estimates of  categorical covariates
Tables presented the results of  the fixed-effects parame-
ter estimates are based on Model 2. The relative contri-
bution of  each risk factor to anemia was estimated from 
prevalence odd ratios (POR) derived from geo-additive 
binomial regression models with anemia as the outcome. 
In this section, we present the fixed effect estimates of  
the covariates considered to be categorical in the mod-
els and the corresponding 95% credible intervals on the 
three child ‘s health conditions. The interpretation of  the 
binomial response models was done using its odds and 
corresponding 95% credible intervals. Generally, when-
ever the odds confidence interval includes one, it indi-
cates that the variable effect is statistically not significant 
at 95% CI.

From Table 3 for Burkina Faso, eight risk factors were 
found to be significantly associated with anemia. The 
children aged 12-24 months had strongest risk of  anemia 
than the reference group above 2 years, with higher odds 
(OR= 1.19; CI 95%; 1.01, 1.40), but young infants, aged 

1-5 months old had lower chance of  anemic, OR=0.836; 
CI 95% (0.74 to 0.94). Also, children whose mother were 
literate (OR=0.84, CI 95% ; 0.77 to 0.91); (ability to read 
and write) had significant lower odds of  being anemic 
compared with children of  non-literate: and Mozam-
bique(OR=0.91, CI 95% ; 0.85 to 0.95). In addition, chil-
dren living in families that belonged to a higher wealth in-
dex quintile were at a lower risk of  anemia: 0.90; 95% CI, 
0.81 – 1.00) for richer household, and lowest anemia risk 
in richest household; OR=0.87, CI 95% ; 0.72. to 1.03), 
but not significant. Children who experienced morbidity 
(2 weeks before the survey) were at a higher risk of  ane-
mia, particularly pneumonia and fever had contributed to 
a larger anemia risk, although they were not statistically 
significant. For instance, Burkina Faso children who had 
diarrhea had significant increased risk of  stunting: 1.230; 
95%CI (1.047, 1.443) and wasting 1.327; 95%CI (1.095, 
1.605) wasting. Children whose mothers took iron syrup 
supplementation during pregnancy were 2.5 times more 
likely to be anemic. In other words, children whose moth-
ers took iron/syrup supplementation during pregnancy 
raise its anemia risk by 145%, OR=2.25, CI (1.42, 4.21).

Table 3: Posterior odd ratios and 95% credible intervals of fixed effect risk factors for anemia, 
stunting and wasting among under-five children in Burkina Faso (BDHS2010) 

 

variables 
  stunting   wasting Anemia 

Odds 95% CI odds 95% CI odds 95% CI 
(Intercept) 0.227 ( 0.177 , 0.289 ) 0.068 ( 0.049 , 0.094 ) 0.330 ( 0.272 , 0.400 ) 
Sleeping under bednet 
No(ref.) 1.000 

  
1.000 

  
1.000 

  

bednet 1.044 ( 0.963 , 1.133 ) 0.924 ( 0.832 , 1.026 ) 0.963 ( 0.896 , 1.036 ) 
Child age(months) 
1 − 5 1.872 ( 1.622 , 2.166 ) 1.163 ( 0.990 , 1.365 ) 1.064 ( 0.957 , 1.184 ) 
6 − 11 1.991 ( 1.719 , 2.308 ) 1.770 ( 1.508 , 2.077 ) 0.836 ( 0.742 , 0.941 ) 
12 − 24 0.171 ( 0.125 , 0.230 ) 0.626 ( 0.483 , 0.806 ) 1.193 ( 1.014 , 1.403 ) 
> 24 months (ref.) 1.000   1.000   1.000   
Antenatal visits 
No 0.618 ( 0.267 , 1.422 ) 1.646 ( 0.448 , 5.954 ) 3.578 ( 1.714 , 7.449) 
1 − 3 1.256 ( 0.820 , 1.926 ) 0.872 ( 0.454 , 1.686 ) 0.544 ( 0.374 , 0.793 ) 
≥ 4 (ref.) 1.000   1.000   1.000   
Place of residence Rural 
(ref.) 1.000 

  
1.000 

  
1.000 

  

Urban 0.953 ( 0.869 , 1.046 ) 1.077 ( 0.957 , 1.210 ) 0.921 ( 0.846 , 1.002) 
Child’s sex Female 
(ref.) 1.000 

  
1.000 

  
1.000 

  

Male 0.906 ( 0.857 , 0.958 ) 0.912 ( 0.847 , 0.981 ) 0.994 ( 0.945 , 1.045 ) 
Maternal literacy) No 
(ref.) 1.000 

  
1.000 

  
1.000 

  

literate 0.936 ( 0.851 , 1.027 ) 0.981 ( 0.869 , 1.104 ) 0.838 ( 0.769 , 0.912 ) 
Mother wealth index) 
Poorest (ref.) 1.000 

  
1.000 

  
1.000 

  

poor 1.093 ( 0.971 , 1.230 ) 1.011 ( 0.863 , 1.183 ) 1.089 ( 0.980 , 1.210 ) 
middle 1.177 ( 1.050 , 1.319 ) 0.993 ( 0.853 , 1.154 ) 1.088 ( 0.981 , 1.206 ) 
richer 0.985 ( 0.879 , 1.103 ) 1.043 ( 0.899 , 1.208 ) 0.901 ( 0.812 , 0.999 ) 
richest 0.658 ( 0.536 , 0.805 ) 0.888 ( 0.683 , 1.146 ) 0.865 ( 0.724 , 1.032 ) 
Supplementation No 
(ref.) 1.000 

  
1.000 

  
1.000 

  

Iron 0.610 ( 0.327 , 1.133 ) 1.265 ( 0.479 , 3.301 ) 2.446 ( 1.418 , 4.210 ) 
Vitamin A 0.955 ( 0.805 , 1.136 ) 1.262 ( 1.014 , 1.585 ) 0.988 ( 0.849 , 1.152 ) 
Child spacing(3 years ≤ 1 
child(ref.) 1.000 

  
1.000 

  
1.000 

  

≥ 2 children ) 1.039 ( 0.934 , 1.154 ) 1.057 ( 0.926 , 1.203) 0.968 ( 0.888 , 1.054 ) 
Breast feeding No 
(ref.) 1.000 

  
1.000 

  
1.000 

  

Breastfed 1.058 ( 0.886 , 1.265 ) 1.727 ( 1.376 , 2.177 ) 0.697 ( 0.613 , 0.792 ) 
Disease morbidity 
No 1.000 

  
1.000 

  
1.000 

  

diarrhea 1.230 ( 1.047 , 1.443 ) 1.327 ( 1.095 , 1.605 ) 0.949 ( 0.811 , 1.110 ) 
Cough 0.012 ( 0.000 , 48.790 ) 2.472 ( 0.380 , 12.52 ) 0.931 ( 0.160 , 4.106 ) 
fever 0.916 ( 0.790 , 1.062 ) 1.210 ( 1.006 , 1.453 ) 1.108 ( 0.962 , 1.274 ) 
Vaccination 
No 1.000 

  
1.000 

  
1.000 

  

Measles vaccine. 1.038 ( 0.958 , 1.126) 0.940 ( 0.847 , 1.045 ) 0.982 ( 0.913 , 1.057 ) 
Access to electricity 
No 1.000 

  
1.000 

  
1.000 

  

Yes 0.846 ( 0.719 , 0.993 ) 0.907 ( 0.745 , 1.101 ) 1.065 ( 0.934 , 1.213 ) 
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Refer to Table 4 for Mozambique, the direction of  the 
effects of  covariates were similar to that of  Burkina 
Faso, child spacing, breastfeeding, antenatal attendance, 
use bed-nets, mother’s literacy and children age5-11 
months were associated with lower likelihood of  ane-
mia. However, younger infant 1-5 months:1.351; 95 % 
CI (1.211, 1.508) had significant higher risk of  anemia. 
Children whose mothers took iron syrup: 2.030, 95% CI 
(1.357, 3.035) and did not attend antenatal class: 2.564, 
CI%(1.460, 4.496) were also found to raise risk of  anemia. 
Other factors such as disease morbidity, measles vaccina-
tion and urban residence had increased risk of  anemia, 
but it was not statistically significant. There were slight 
significant differentials in gender in the malnutrition prev-

alence among children in this study. Children belonging 
to upper socio-economic status(SES), i.e. richest: 0.705, 
CI95%(0.581, 0.855) had significant lower likelihood of  
stunting, but not significant for wasting compared to the 
less economically deprived household (richer family). 
Children, age below 12 months (infants) were at higher 
risk of  child malnutrition (adjusted height-for-age and 
weight-for-height) than the older children (over 2 years 
of  age). Furthermore, children who had experienced dis-
ease morbidity (two weeks prior to the survey) had higher 
probability of  being stunting, wasting or both. Mozambi-
can children who had recent episode of  disease morbidity 
e.g fever were significantly stunted 1.170; (1.014, 1.348) 
but not significantly wasted: 1.152; 95%CI (0.851, 1.544).

Table 4: Posterior odds ratios and 95% credible intervals of fixed effect risk factors for 
anemia, stunted and wasting among under-five children in Mozambique (MDHS2011) 

 
Variables 

  stunting   wasting   Anemia 
Odds 95% CI odds 95% CI odds 95% CI 

(Intercept) 0.318 ( 0.270 , 0.374) 0.020 ( 0.014 , 0.029) 0.369 ( 0.322 , 0.422 ) 
Sleeping under bennet 
No(ref.) 1.000 

  
1.000 

  
1.000 

  

bednet 0.994 ( 0.934 , 1.058) 1.154 ( 1.003 , 1.331) 0.930 ( 0.879 , 0.985 ) 
Child age(months) 
1 − 5 1.351 ( 1.211 , 1.508) 0.997 ( 0.790 , 1.254) 1.000 ( 0.914 , 1.093 ) 
6 − 11 1.866 ( 1.682 , 2.070) 2.030 ( 1.669 , 2.467) 0.892 ( 0.816 , 0.974 ) 
11 − 24 0.298 ( 0.244 , 0.362 0.936 ( 0.654 , 1.324) 1.200 ( 1.048 , 1.373 ) 
> 24 months (ref.) 1.000   1.000   1.000   
Antenatal visits 
No 1.241 ( 0.656 , 2.344) 0.983 ( 0.183 , 5.153) 2.564 ( 1.460 , 4.496 ) 
1 − 3 0.926 ( 0.672 , 1.275) 0.996 ( 0.433 , 2.313) 0.644 ( 0.485 , 0.855 ) 
≥ 4 (ref.) 1.000   1.000   1.000   
Place of residence Rural (ref.) 

1.000 
  

1.000 
  

1.000 
  

urban 0.994 ( 0.929 , 1.063) 0.855 ( 0.727 , 1.000) 1.055 ( 0.993 , 1.120 ) 
Child’s sex Female (ref.) 

1.000 
  

1.000 
  

1.000 
  

Male 0.922 ( 0.881 , 0.965) 0.902 ( 0.815 , 0.998) 0.996 ( 0.956 , 1.038 ) 
Mother literacy No (ref.) 

1.000 
  

1.000 
  

1.000 
  

literate 0.895 ( 0.843 , 0.950) 0.819 ( 0.711 , 0.941) 0.905 ( 0.857 , 0.954 ) 
Mother wealth index) 
Poorest (ref.) 1.000 

  
1.000 

  
1.000 

  

poor 1.133 ( 1.015, 1.263) 0.913 ( 0.710 , 1.171) 0.926 ( 0.837 , 1.026 ) 
middle 0.993 ( 0.896 , 1.099) 0.958 ( 0.755 , 1.210) 0.973 ( 0.886 , 1.069 ) 
richer 0.978 ( 0.887 , 1.078) 0.867 ( 0.684 , 1.090) 0.957 ( 0.877 , 1.044 ) 
richest 0.705 ( 0.581 , 0.855) 0.897 ( 0.566 , 1.410) 1.033 ( 0.877 , 1.217 ) 
Mother supplementation No (ref.) 

1.000 
  

1.000 
  

1.000 
  

Iron 1.179 ( 0.748 , 1.857) 1.417 ( 0.425 , 4.657) 2.030 ( 1.357 , 3.035 ) 
Vitamin A 0.917 ( 0.842 , 0.999) 0.896 ( 0.760 , 1.061) 0.997 ( 0.922 , 1.079 ) 
Spacing(birth in 3 years ≤ 1 
child(ref.) 1.000 

  
1.000 

  
1.000 

  

≥ 2 children ) 0.977 ( 0.905 , 1.056) 0.998 ( 0.842 , 1.174) 0.917 ( 0.857 , 0.980 ) 
Breast feeding No(ref.) 

1.000 
  

1.000 
  

1.000 
  

Breastfed 0.894 ( 0.789 , 1.014) 1.110 ( 0.869 , 1.431) 0.725 ( 0.660 , 0.797 ) 
Disease morbidity 
No 1.000 

  
1.000 

  
1.000 

  

Diarrhea 1.084 ( 0.931 , 1.260) 0.914 ( 0.664 , 1.242) 0.941 ( 0.811 , 1.091 ) 
Cough 0.258 ( 0.022 , 1.765) 6.709 ( 0.961 , 36.64) 1.200 ( 0.328 , 3.937 ) 
fever 1.170 ( 1.014 , 1.348) 1.152 ( 0.851 , 1.544) 1.088 ( 0.947 , 1.249 ) 
Vaccination 
No 1.000 

  
1.000 

  
1.000 

  

Measles vaccine. 0.983 ( 0.920, 1.050) 1.042 ( 0.909 ,1.200) 1.021 ( 0.961 , 1.085 ) 
Access to electricity 
No 1.000 

  
1.000 

  
1.000 

  

electricity 0.901 ( 0.817 , 0.994) 1.127 ( 0.895 , 1.412) 0.958 ( 0.881 , 1.042 ) 
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Multivariate conditional autoregressive (MCAR) 
analysis
The results represented in this section include the esti-
mation of  parameters from equation 4 via multivariate 
conditional auto-regressive (MCAR) prior in Section and 
implemented in WinBUGS version 14. After adjusting 
for the confounding factors, the covariates such as child’s 
age(categorical), maternal wealth index (socio-economic 
deprivation) and birth intervals found to be significant 
under univariate analysis.
Burkina Faso
The posterior estimates of  the covariate risk factors of  
the multivariate model of  the three child malnutrition in-
dicators were also presented in Table 5 for Burkina Faso. 

The results revealed that all the fixed effect factors
(observable) were not significantly associated with any of  
the malnutrition indicators considered in this study. How-
ever, refer to Table 5, the three child malnutrition indi-
cators were significantly associated with the unobserved 
geographical factors in the regions.
Table 5 presents the posterior estimates of  the multivar-
iate conditional association between the childhood mal-
nutrition prevalence with the regions in Burkina Faso. 
Child malnutrition prevalence was significant associated 
with the region if  the 95% credible interval does not in-
clude zero. The overall childhood malnutrition indicators 
estimates showed that there were significant strong pro-
vincial associations between the regions in Burkina Faso. 

Table 5: Posterior estimates and 95% credible intervals of multivariate  
conditional association between childhood malnutrition indicators and regions  

parameters among under-five children in Burkina Faso 
 

    Stunting Wasting   Anemia 
variables parameters mean 2.50% 

97.50% 
mean 2.50% 
97.50% 

mean 2.50% 97.50% 

intercept α -2.074 -199.5 199.8 2.159 -208.6 197.3 0.437 -197.6 192.3 
1 − 5 months β1 1.471 -195.2 196.0 1.301 -196.4 175.0 2.529 -192.4 196.6 
6 − 11 β2 -0.047 -194.9 191.3 -7.222 -199.5 187.8 0.006 -198.4 192.8 
12 − 24 β3 1.543 -194.8 198.3 -3.824 -208.3 203.0 2.372 -194.4 200.5 
24 − 36 β4 -0.168 -191.6 189.6 0.428 -214.6 200.1 -0.396 -194.0 193.3 
poorest β5 -0.913 -191.4 193.9 2.334 -186.1 205.7 -1.088 -193.0 190.5 
poor β6 1.762 -200.0 197.1 -2.205 -196.2 191.1 1.328 -190.6 198.1 
middle β7 -1.513 -187.4 194.4 2.248 -197.0 199.7 -1.094 -195.7 197.5 
richer β8 -0.835 -194.6 190.8 -0.774 -191.6 198.2 1.257 -193.2 200.0 
≥ 2 children β9 0.417 -195.9 199.4 0.733 -185.1 191.9 -0.551 -195.0 190.8 
Regions                   
Boucle de 
Mouhoun 

φ1 2179 2150 2199 -367.1 -373.6 -363.6 -790.9 -875.6 -502.0 

Cascades φ2 3953 3898 3969 -661.8 -670.2 -657.5 -1444.0 -1569.0 -909.2 
Centre φ3 5686 5666 5720 -949.1 -957.3 -938.9 -2213.0 -2393.0 -

2070.0 
Centre-Est φ4 -2621 -2662 -2609 441.3 437.8 454.9  953.2 618.9 1037.0 
Centre-Nord φ5 4362 4346 4378 -731.5 -748.0 -727.8 -1643.0 -1727.0 -

1426.0 
Centre-Ouest φ6 -564.4 -597.3 -494.2 91.44 86.71 97.93  210.0 -111.0 307.8 
Centre-Sud φ7 -870.5 -883.5 -828.3 144.1 134.0 160.1  362.1 75.10 698.7 
Est φ8 -5412 -5464 -5396 910.9 906.3 924.4 2005.0 1626.0 2088.0 
Hauts Basins φ9 -3748 -3786 -3722 629.5 624.3 631.8 1415.0 1153.0 1544.0 
Nord φ10 3046 3027 3096 -511.6 -524.7 -506.3 -1132.0 -

1195.0 
-920.7 

Plateau Central φ11 2988 2961 2999 -503.4 -505.1 -499.7 -1107.0 -
1184.0 

-880.6 

Sahel φ12 -4080 -4097 -4059 685.8 683.1 692.4 1506.0 1055.0 1588.0 
Sud-Ouest φ13 -4917 -4987 -4905 821.5 813.5 838.0 1879.0 1505.0 2017.0 
variability σu21 0.7549 (0.4693 1.264)         
  σu22  − − − 0.9197 (0.535 1.591)     
  σu23  - - - -  - - 0.7335 (0.4606 1.214) 
Correlation ρ12 0.184 (-0.475 0.728)   
  ρ13 -0.038 (-0.621 0.582)   
  ρ23 -0.037 (-0.650 0.595)   
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Out of  13 regions in Burkina Faso, six regions were found 
for high risk stunting and seven regions recorded signifi-
cant low prevalence. Regions with high risk stunting are: 
Boucle de Mouhoun, Cascades, Centre, Nord and Pla-
teau Central. In contrast, childhood wasting and anemia 
were significantly low in those regions observed with high 
prevalence of  stunting. Surprisingly, the results revealed 
that wasting and anemia recorded significant high prev-
alence in those regions with low stunting incidence. Sev-
en regions were found with high childhood wasting and 
anemia prevalence are: Centre-Est, Centre-Ouest, Cen-
tre-Sud, Est, Hauts Basins, Sahel and Sud-Ouest. There 
were strong negative correlation between stunting and 
wasting; -0.998;   95% CI (-1.000, -0.984), and a perfect 
negative correlation between stunting and anemia, ρ1,3 = 
−1 , but a significant positive correlation between wasting 
and anemia i.e. 0.997; 95% CI (0.9778 to 1.0000). The 
positive correlation depicts the indication of  co-vary in 
the spatial prevalent across regions, and a negative cor-
relation indicates difference or dissimilarity in spatial pat-
terns of  prevalence.

Mozambique
In Mozambique, the results of  multivariate analysis were 
presented in Table 6. The multivariate analysis revealed 
that three provinces of  experienced high stunting prev-
alence among the children in Niassa, Tete, and Sofala), 
while significant low stunting prevalence in five provinces 

(Cabo delgado, Nampula, Zambezia, Gaza and Maputo 
provincial). A significant high prevalence of  childhood 
wasting was detected in Niassa, Tete, Manica, and Sofala. 
Five provinces were found to be significantly high preva-
lence of  anemia (Niassa, Cabo Delgado, Zambezia, Ma-
puto provincia and Maputo cicada).  In addition, Table 6 
also included spatial correlation estimates and the region-
al variability of  the individual prevalence. There was a 
strong positive correlation between stunting and wasting; 
0.986; (0.899, 1.000), which was significant at 95% CI. 
We found that there was significant negative correlation 
between stunting and anemia: -0.720, (-0.934, -0.308) and 
between wasting and anemia: -0.640; (-0.903, -0.174).
The results further indicated that the geographical pattern 
of  variations in the prevalence of  stunting: 1427 (913.6, 
2268), wasting: 1751 (1117, 2803) and anemia 556 (279.5, 
978.9) were significant across the provinces in Mozam-
bique. The findings further indicated that there was sig-
nificant high prevalence of  stunting among young infants 
age less than 1 year (age groups 1 − 5 and 6 − 11 months 
and among children of  most economically deprived and 
deprived mothers, when compared with the reference 
groups. But, a significant reduction in stunting prevalence 
of  was found among the older children age 2 years and 
above. In contrary, childhood wasting was less prevalence 
among the younger children, but older children age 12 − 
24 months had 5.3 times more likely to suffer from high 
risk wasting compared to children over 3 years of  age.
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Discussion
In the present study, the research has investigated the risk 
factors and small-area geographical variations of  child’s 
health outcomes in sub-Saharan Africa. The study em-
ployed a flexible and robust approach, which accommo-
dates different kinds of  covariates and produce three 
types of  output: posterior estimates of  risk factors in 
Tables, non-linear graph of  continuous covariates and 
spatial maps.
The present study indicated that the child and maternal 
characteristics are significantly associated with child mal-

nutrition (including micro-nutrient anemia. The moth-
er’s characteristics such as short birth interval (less 18 
months) influenced high risk of  stunting and wasting but 
not significant among Burkina Faso children, but resulted 
into significantly lower prevalence of  child malnutrition 
among Mozambican children. The effect of  mother’s age 
on the childhood malnutrition resulted into nonlinear re-
lationship in the two countries. The children of  mothers, 
who did not attend antenatal session were at higher risk of  
malnutrition compared to those whose mothers attended. 
The findings are in agreement with the study conducted 

   Table 6: Posterior estimates and 95% credible intervals of multivariate conditional association between 
childhood malnutrition indicators and provinces (regions) among under-five children in Mozambique 

 
variables 

  Stunting Wasting Aneamia 

Parameters mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50% 

intercept α -4.274 -196.4 189.8 -1.283 -203.5 188.3 0.6402 -198.6 189.0 

1 − 5 β1 -1.108 -271.1 222.9 1.459 -198.3 203.0 -1.142 -207.0 205.9 

6 − 11 β2 -1.010 -229.5 231.7 1.090 -250.5 299.2 0.560 -332.0 275.2 

12 − 24 β3 4.426 -208.5 217.2 -1.645 -260.0 247.9 -12.86 -301.4 271.7 

25 − 36 β4 8.502 -194.6 224.3 1.091 -195.6 207.6 -4.077 -206.3 216.5 

poorest β5 3.988 -220.6 233.4 -4.064 -239.8 220.1 -4.907 -232.2 216.0 

poor β6 -1.563 -190.2 203.9 3.453 -192.5 202.0 -2.165 -194.7 206.5 

middle β7 -2.372 -196.9 193.3 1.052 -212.2 213.9 0.825 -202.7 194.1 

richer β8 1.836 -189.8 198.4 3.511 -198.4 198.3 -1.236 -197.3 191.8 

birth intervals ≥ 2 β9 1.514 -207.5 204.6 1.848 -191.6 204.5 1.546 -202.2 198.5 

Provinces                     

Cabo Delgado φ1 538.1 302.0 733.5 979.6 843.2 1126.0 383.5 265.2 530.3 

Gaza φ2 -1380.0 -1496.0 -1319.0 -1628.0 -1950.0 -1434.0 512.3 403.8 577.1 

Inhambane φ3 -400.5 -554.0 -221.8 -676.2 -1051.0 -316.8 -122.8 -225.3 -27.72 

Manica φ4 -843.1 -908.5 -799.6 -1002.0 -1202.0 -888.1 322.7 274.6 368.5 

Maputo cidade φ5 962.2 820.3 1147.0 1205.0 970.2 1485.0 -289.3 -345.8 -245.5 

Maputo provincia φ6 2080.0 1430.0 2204.0 2482.0 1920.0 2680.0 -788.2 -886.7 -680.4 

Nampula φ7 788.2 716.6 868.5  906.2 723.8 1138.0 -336.3 -382.9 -283.1 

Niassa φ8 -100.6 -290.7 252.6 -320.8 -542.4 384.0 -257.5 -372.1 -152.4 

Sofala φ9 -557.3 -636.9 -480.0 -721.2 -795.5 -602.0 77.25 -2.95 153.9 

Tete φ10 -975.6 -1007.0 -913.4 -1181.0 -1294.0 -995.5 295.4 172.7 412.8 

Zambezia φ11 -112.3 -182.6 156.0  -45.5 -164.5 138.5 203.1 174.2 294.4 

variability σu21 1427 (913.6 2268)         

  σu22 − − −  1751 (1117 2803)     

  σu23 - - -  - - - 556 (279.5 978.9) 

Correlation ρ12 0.986 (0.899 1.000)   

  ρ13 -0.720 (-0.934, -0.308)   

  ρ23 -0.640 (-0.903 -0.174)   
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in Bangladesh, which showed that previous birth inter-
val, size at birth, mother body mass index and mother’ 
education are significantly associated with malnutrition 
in under-five children58. Proceeding birth intervals have 
been found to be significantly correlated with childhood 
mortality and nutritional status in previous studies con-
ducted many developing countries59,60.
Additionally, the study revealed that children from wealthy 
households were at reduced risk of  anemia and undernu-
trition than the material deprived households. This report 
was consistent with the studies conducted in other parts 
of  sub-Saharan Africa. A study in Rwanda had elucidated 
that children from the lower socio-economic SES class 
(measured by education status, occupation) were found 
to be associated with higher risk of  anemia, malaria in-
fection and under nutrition61. Our findings corroborated 
previous results obtained in Ghana that indicated malnu-
trition prevalence was higher among children from the 
poorest SES households as much as twice as the counter-
parts from the richest households62,63. A study conduct-
ed in Brazil has found determinant factors such like the 
poorer households, inadequate nutritional food intake, 
poor sanitary system, lack of  portable drinking water, and 
infectious diseases aggravate the risk of  anemia in young 
children64.

The result of  the present study revealed that the sever-
ity of  anemia decreased among the older children (i.e. 
as older age groups). Research evidence has shown that 
varying child’s age determines the red blood hemoglobin 
requirements for physical, psychomotor functioning and 
cognitive developments in children in their early years of  
life65. This finding corroborated similar studies in SSA 
that malnutrition was also found to be more prevalent in 
older than in younger children66,67.
 
The results demonstrated that infants aged 6-11 months 
were at lower risk of  anemia, perhaps this age group has 
adjusted to the environmental factors and breast feeding. 
Not surprising that the result revealed a relative high risk 
of  anemia among age group of  younger infants (age 1-5 
months) and highest risk of  anemia among the age group 
12-23 months. Although, studies have shown that child-
hood anemia was rarely investigated or measured in in-
fants aged below six months in practice, the high anemia 
detected among young infants (age 1-5 months) could 
probably be associated with child bearing mothers suf-
fered anemia during pregnancy in those countries under-

study. In contrast, the high prevalence of  anemia is com-
monly observed among children of  risk group of  malaria 
than the same age groups of  non-endemic settings5,68,69.

In addition, the findings also revealed some factors 
showed non-linear relationship or curve-like association 
with child malnutrition status. The S-shaped growth curve 
(sigmoid growth curve) presents a pattern of  growth 
in which, in a new environment, the population densi-
ty of  an organism increases slowly initially, in a positive 
acceleration phase; then increases rapidly and approach-
es an exponential growth rate as in the J-shaped curve; 
but then declines in a negative acceleration phase until 
at zero growth rate the population stabilizes, see for ex-
planation70. In medicine, U-shaped risk curves have been 
found for risk factors such as cholesterol level, diastolic 
blood pressure, work stress, and alcohol use. Of  these 
factors, the alleged U-shape relationship between alcohol 
use and disease risk has been the most controversial71. 
The graph highlights critical points or contours on the 
curve that are important to the health professionals. The 
graphs would assist the policy makers and health practi-
tioners to monitor critical point on the curve for policy 
health intervention as unique feature portray for individ-
ual country.

The spatial distribution of  anemia and child growth fail-
ure among young children in these countries understudy 
are presented as smooth maps. This demonstrated the 
merit of  the proposed approach. The output corrobo-
rated the findings in similar studies conducted on min 
the sub-Saharan Africa. For example, a model-based 
geostatistics was used to map the risk of  anemia, malaria 
and helminth infection in three West Africa countries15 
and found that anemia in these countries (Burkina Faso, 
Ghana and Mali) accounted for about 37% anemia cases 
in preschool children, which could be averted by treat-
ing malnutrition and malaria related infections15. Other 
researchers had used Bayesian geostatistical prediction 
in West Africa to estimate local variations in Schistoso-
ma haematobium infection72, where high risk of  S. hae-
matobium infections was detected in the north-western 
part of  Niger River valley of  the Niger. Studies found 
a clustered high-intensity infection in western and cen-
tral Mali, and North-eastern of  Burkina Faso. A recent 
study conducted on childhood under nutrition in three 
sub-Saharan African countries73 detected a high pattern 
of  childhood malnutrition in eastern and north-eastern 
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Zambia, central Malawi and southern Tanzania. Other 
useful applications of  multivariate mapping models has 
been discussed in previous studies. For example, Kinyoki  
et al34 recently used the multivariate approach for mod-
eling the ecological co-morbidity of  childhood diseases 
in Somalia. Assun applied multi-variate model to study 
multiple cancer site incidence.39

The result of  this work would consolidate the applicabil-
ity and usefulness of  multivariate mapping methods for 
outperforming than the separate independent analysis. 
The present study has applied multivariate joint modeling 
and demonstrated the strength of  method to determine 
the conditional correlation among malnutrition indicators 
and co-occurrence with the regions. The approach facil-
itates the computation of  the spatial conditional correla-
tion between the malnutrition indicators and the marginal 
variations of  the geographical variation in the prevalence 
across the regions. The findings further identified poten-
tial socio-demographic risk factors of  the three child-
hood malnutrition, which can be used to target specific 
interventions and even combination of  inventions. This 
output could aid policy makers to design a combination 
of  multiple strategies to optimize the scarce health re-
sources in a more effective manner.

Conclusion
The central point of  the present study was to jointly ana-
lyze three malnutrition indicator in children less than five 
years simultaneously. The findings provide reasonable 
patterns in the co-occurrence in geographic prevalence 
across regions. The Bayesian multivariate model adopted 
provides a flexible and robust tool to assess the risk fac-
tors in a unified regression model. The proposed method 
facilitates the estimation of  conditional correlation be-
tween the multiple health outcomes (malnutrition status) 
and spatial dependence within the region and across re-
gions. The results obtained provide a better understand-
ing on spatial variations in the co-existence and etiology 
patterns of  childhood undernutrition, which would have 
neglected in the standard spatial analysis. The output 
would inspire public health practitioners, epidemiologists, 
and policy makers to design a combination of  interven-
tion strategies and effective allocation of  scarce health re-
sources. Despite the complexity in the methodology, the 
result is reasonable and consistent with univariate analy-
sis. The advantage of  the multivariate approach is that it 
yields more precise estimates and easy interpretation of  

regressions coefficients defined in terms of  odds ratios. 
A potential drawback, however is the huge computational 
burden involved in MCMC simulations. The researchers 
experience with the univariate models suggests that the 
two approaches provide similar results with respect to the 
direction and strength of  predictor outcome associations.
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