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Abstract: One of the critical elements in evaluating the quality of cashmere is its fineness, but we still
know little about how it is regulated at the metabolic level. In this paper, we use UHPLC–MS/MS
detection and analysis technology to compare the difference in metabolites between coarse cashmere
(CT_LCG) and fine cashmere (FT_LCG) skin of Liaoning cashmere goats. According to the data,
under positive mode four metabolites were significantly up-regulated and seven were significantly
down-regulated. In negative mode, seven metabolites were significantly up-regulated and four-
teen metabolites were significantly down-regulated. The two groups’ most significant metabolites,
Gly–Phe and taurochenodeoxycholate, may be crucial in controlling cashmere’s growth, develop-
ment, and fineness. In addition, we enriched six KEGG pathways, of which cholesterol metabolism,
primary bile acid biosynthesis, and bile secretion were enriched in positive and negative modes.
These findings offer a new research idea for further study into the critical elements influencing
cashmere’s fineness.

Keywords: cashmere fineness; metabolomics; Liaoning cashmere goat; UHPLC–MS/MS; MRM

1. Introduction

Cashmere is one of the most popular raw materials on the market, which can be used
to produce cashmere textiles that keep out the cold in people’s daily life. The Liaoning
cashmere goat (LCG) is a local breed in southeastern Liaoning Province, China, and its
cashmere yield is very high worldwide. However, the growth of cashmere is affected by
many factors, such as climate, variety, sex, gene, and nutrient absorption [1]. In recent years,
more and more people have begun to pay attention to the influence of the characteristics
of cashmere fiber on the quality of cashmere, and the fineness of cashmere is one of the
critical factors affecting the quality of cashmere [2]. Despite the excellent cashmere yield of
LCG, it has a rough fineness. Therefore, it is urgent to find new research methods to reduce
the fineness of cashmere.

Metabolomics is a powerful tool for understanding the overall changes in metabolic
response and studying the phenotype of objects through instrumental analysis, and it can
more accurately reflect the physiological state of organisms [3,4]. As metabolites are the final
products of cellular activity, their concentrations may be seen as the biological systems’ final
response to genetic or environmental changes [4]. By metabolomic analysis of maternal hair
during pregnancy, Delplancke et al. found significant differences in some hair metabolites
in early and late gestation and in healthy individuals and diabetics in late gestation. This
research illustrates that variation in the amounts of amino acids, TCA cycle intermediates,
fatty acids, cofactors, vitamin-related metabolites, and xenobiotics can be reflected in
alterations in the hair metabolome during pregnancy [5]. Wang et al. reported that the
skin of rats in the chronic restraint stress (CRS) group showed significant modifications
in the primary and secondary metabolic pathways of carbohydrate metabolism, amino
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acid metabolism, and lipid metabolism through the metabonomic analysis of hair growth
induced by CRS in rats [6]. Each functional state of the skin has its specific metabolite
pattern, which can also reflect the underlying cells and mechanisms of action [7]. By mass
spectrometry analysis of skin and blood samples from patients with psoriasis, Dutkiewicz
et al. found that metabolites on diseased skin, especially choline and citrulline, showed
more significant dynamics [8]. Pohla et al. compared the metabonomic characteristics of
lesional and non-lesional skin between patients with plaque psoriasis and healthy controls.
The results revealed substantial alterations in the concentration levels of 29 metabolites,
indicating that the primary driver of metabonomic changes was the local inflammatory
process promoting cell proliferation [9].

Currently, the research on metabolomics in goats is mainly focused on milk. Caboni
et al. used gas chromatography coupled with mass spectrometry untargeted metabolomics
approach to study the metabolites of 30 kinds of sheep milk and 28 kinds of goat milk.
The finding demonstrated a relationship between the concentration of metabolites and the
protein and fat levels in sheep and goat milk, which played a role in better understanding
milk metabolism and evaluating milk properties [10]. Goat milk samples from three
different pastures and three different lactation phases were examined by Liu et al. using
the untargeted metabolomics technique. According to the findings, 2 types of lipids and
26 types of lipids in milk at various lactation phases were shown to differ significantly.
There are a total of 38 and 19 lipid molecules that may be employed as possible markers for
determining a region’s origin and lactation stage, respectively [11]. Using a combination
of multivariate statistical data processing and gas chromatography–mass spectrometry,
Paola Scano et al. found that the type of milk can be distinguished according to the
polar metabolite spectrum of milk, which can more easily detect food fraud and protect
the uniqueness of goat milk [12]. Nuclear magnetic resonance technology was used by
Sun et al. to study the metabolic spectrum of Hu sheep during healthy pregnancy. They
discovered that related metabolites are crucial for amino acid and lipid metabolism during
normal pregnancy to meet the nutritional needs of pregnant ewes [13]. Although there are
no articles on studying the fineness of cashmere through metabolomics, there are functional
metabolites such as amino acids and lipids in hair [14]. According to the pertinent research
ideas of others, it is possible to use metabolomics to screen the essential metabolites
determining cashmere fineness.

In this work, the metabolites of the Liaoning cashmere goat’s coarse cashmere (CT_LCG)
and fine cashmere (FT_LCG) skin were examined using the UHPLC–MS/MS technology,
and the amino acids measured in the non-targeted metabolic group were quantitatively
verified by MRM method. Through the in-depth study and analysis of the skin of Liaoning
cashmere goat, more metabolite information can be obtained, which lays a foundation for
improving cashmere quality and economic benefit, and it also provides a new idea for the
study of cashmere fiber fineness in the future.

2. Materials and Methods
2.1. Sample Preparation

The two groups of Liaoning cashmere goats used in the experiment were six coarse
cashmere goats and six fine cashmere goats from Liaoning Province Modern Agricultural
Production Base Construction Engineering Center. The selected goats were not in the same
group, belonged to different paternal lines, had no genetic relationship, their paternal and
maternal relationships were more than six generations, and they were not inbred. These
goats were 2-year-old ewes with the same feeding management and growth environment.
The diameter of coarse cashmere is greater than 17 µm. The diameter of fine cashmere is less
than 15 µm. About 1 cm2 of skin tissue was taken from the right scapula of Liaoning cashmere
goats, which was immediately put into liquid nitrogen and preserved. The experimental
Animal Management Committee of Shenyang Agricultural University approved and oversaw
all of the experimental procedures utilized in this work (Shenyang, China, 201906099).
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2.2. Metabolites Extraction

Take the tissue sample of 100 mg prepared by liquid nitrogen grinding, put it in the
Eppendorf tube, and add 500 mL of 80% methanol aqueous solution containing 0.1% formic
acid. Then, the vortex oscillates while the ice bath remains motionless for five minutes.
A portion of the supernatant was collected and diluted with mass spectrometry-grade water,
until the methanol concentration was 53% following centrifugation at 15000 rpm for 10 min
at 4 ◦C, and then placed in a centrifuge tube. After repeating the above centrifugation
process, the supernatant was collected and injected into LC–MS for analysis. As a QC
sample, combine the same volume samples from each experimental sample.

2.3. UHPLC–MS/MS Analysis
2.3.1. Chromatographic Conditions

The chromatograph was Thermo Vanquish UHPLC, performed at a flow rate of
0.2 mL/min and with a linear gradient of 16 min. The sample was added to the hypersil
gold column (C18, 100 × 2.1 mm, 1.9 m). The injecting volume was 5 µL in the positive
mode and 10 µL in the negative mode. The column temperature was 40 ◦C. The positive
mode eluents were A (0.1% FA in Water) and B (Methanol), and the negative mode eluents
were A (5 mM ammonium acetate, pH 9.0) and B (Methanol). The purity of the reagents
used was LC–MS, and the brand was Thermo. The solvent gradient was set as follows: 2%
B, 1.5 min; 2–100% B, 12 min; 100% B, 14 min; 100–2% B, 14.1 min; 2% B, 17 min.

2.3.2. Mass Spectrometry Conditions

Using Thermo QE mass spectrometer, the scanning range was m/z 70–1050. The ESI
source was configured as follows: Spray Voltage, 3.2 kV; Sheath gas flow rate, 35 arb; Aux
Gasflow rate, 10 arb; Capillary Temp, 320 ◦C; Polarity, positive and negative; Secondary
MS/MS scanning is a data-dependent scan.

2.4. Identification of Metabolites

Thermo Fisher’s Compound Discoverer 3.1 (CD 3.1) was utilized to process the
UHPLC–MS/MS raw data files. The mass–charge ratio, retention time, and other variables
were screened. Then, to improve the accuracy of the identification, the peaks of different
samples were aligned using a 0.2 min retention time deviation and a 5 ppm mass deviation.
For the peak extraction, the target ion is integrated after the peak area has been quantified
and the set quality deviation of 5 ppm, 30% signal intensity variation, the minimum signal
intensity of 100,000, and adduct ions have been taken into account. The molecular formula
is then predicted using the molecular ion peak and fragment ion, and it is compared with
the MassList, mzCloud, and mzVault databases. Using a blank sample (53% methanol
containing 0.1% formic acid) eliminates the background ions, and the quantitative data are
normalized. Finally, the quantitative findings of the data were identified.

2.5. Data Analysis

These metabolites were annotated using the KEGG database (http://www.genome.jp/
kegg/, accessed on 10 February 2018), HMDB database (http://www.hmdb.ca/, accessed
on 27 May 2019), and Lipidmaps database (http://www.lipidmaps.org/, accessed on 9
April 2019). Principal components analysis (PCA) and partial least squares discriminant
analysis (PLS-DA) were performed at metaX (a flexible and comprehensive software for
processing metabolomics data). We applied univariate analysis (t-test) to calculate the
statistical significance (p-value). The metabolites with VIP > 1, p-value < 0.05, and fold
change (used to describe the degree of change from an initial value to a final value) ≥ 1.2
or FC ≤ 0.833 were considered to be differential metabolites. Volcano plots were used to
filter metabolites of interest based on Log2(FC) and −log10 (p-value) of metabolites.

The correlation between differential metabolites were analyzed by cor () in R language
(method = Pearson). Statistically significant correlations between differential metabolites
were calculated by cor.mtest () in R language. A p-value < 0.05 was considered as statis-

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.hmdb.ca/
http://www.lipidmaps.org/
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tically significant and correlation plots were plotted by corrplot package in R language.
The functions of these metabolites and metabolic pathways were studied using the KEGG
database. The metabolic pathways enrichment of differential metabolites was performed;
when ratios were satisfied by x/n > y/N, metabolic pathways were considered as an
enrichment, and when p-value of metabolic pathway < 0.05, metabolic pathways were
considered as a statistically significant enrichment.

2.6. MRM Validation

The Agilent 1290 Infinity LC ultra-high-performance liquid chromatography system
was used to separate the samples. The parameters of the chromatographic column are as
follows: Zic HILIC 3.5 µm, 2.1 mm × 150 mm. The mobile phases are A (25 mM ammonium
formate + 0.08% FA aqueous solution) and B (0.1% FA acetonitrile). The sample was placed
in an automatic sampler at 4 ◦C, the column temperature was 40 ◦C, the flow rate was
0.25 mL/min, and the injection volume was 1 µL. The following are the pertinent liquid
phase gradients: 90% B, 0 min; 70% B, 12 min; 50% B, 18 min; 40% B, 25 min; 90% B,
30.1 min. At 30.1–37 min, B remains at 90%. In positive mode, the samples were analyzed
by 5500 QTRAP mass spectrometer (AB SCIEX). Multiquant software was used to obtain
the retention time and chromatographic peak area. The retention time was corrected,
and the metabolites were identified using the standard samples of amino acids and their
derivatives. Standards of amino acids and their derivatives were used to correct retention
time and identify metabolites.

3. Results
3.1. QC Sample Quality Control

Based on the peak area value, the Pearson correlation coefficients between QC samples
were determined, and the values of R2 were all greater than 0.99 (Figure 1). The detec-
tion technique overall had strong stability and high data quality, as shown by the high
correlation of QC samples, which can be used for further investigation.

Figure 1. Correlation analysis of QC samples ((A): positive mode; (B): negative mode).

3.2. Total Sample Principal Component Analysis

All experimental samples and QC samples had their extracted peaks subjected to
PCA analysis. According to the results, QC samples are tightly clustered in positive and
negative modes (Figure 2), demonstrating robust experimental repeatability and high data
quality [15].
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Figure 2. Total sample PCA plot ((A): positive mode; (B): negative mode). The fractions of the
first and second main components are shown in the figure as the abscissa PC1 and ordinate PC2,
respectively. The ellipse in the diagram represents the 95 percent confidence interval, and the scattered
spots in the figure indicate of experimental samples.

3.3. KEGG Pathway Enrichment of all Identified Metabolites

For different metabolites to carry out their biological functions in organisms, they
always work in concert with one another. The pathway-based analysis aids in a deeper un-
derstanding of these bodily functions. In the positive mode, the metabolites were primarily
enriched in global and overview maps and amino acid metabolism, according to KEGG
pathway analysis of all the putatively annotated metabolites. Metabolites were primarily
enriched on global and overview maps, amino acid metabolism, and lipid metabolism in
the negative mode (Figure 3).

Figure 3. KEGG pathway enrichment of all putatively annotated metabolites ((A): positive mode;
(B): negative mode). The abscissa represents the number of metabolites, and the ordinate represents
the KEGG pathway.

3.4. HMDB Classification Notes

The Human Metabolome Database (HMDB) contains comprehensive data on the small
molecule metabolites found in the human body, as well as information on their biological
functions, physiological concentrations, disease associations, chemical reactions, metabolic
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pathways, and other factors. According to the classification and attribution of the identified
metabolites, it was found that the metabolites were mainly concentrated in organic acids
and derivatives and lipids and lipid-like molecules in both positive and negative modes
(Figure 4).

Figure 4. HMDB classification notes ((A): positive mode; (B): negative mode). The abscissa represents
the number of metabolites, and the ordinate represents the HMDB entry annotated.

3.5. LIPID MAPS Classification Notes

The LIPID MAPS database can annotate the eight lipids’ categories, their subcategories,
and the identified metabolites. The results show that the lipids in the metabolites in the
positive mode are mainly fatty ester, and the lipids in the negative mode are mainly fatty
acids and conjugates (Figure 5).

Figure 5. LIPID MAPS classification notes ((A): positive mode; (B): negative mode). The abscissa
represents the number of metabolites, and the ordinate represents the LIPID MAPS entry annotated.

3.6. Partial Least Squares Discrimination Analysis (PLS-DA)

The metabolites were characterized by PLS-DA (Figure 6), which showed significant
differences between CT_LCG and FT_LCG in the positive and negative modes. Each group
of samples was basically within a 95% confidence interval. In order to judge the quality of
the model, we conducted a permutation test on the model to check whether the model is



Molecules 2022, 27, 5483 7 of 15

“over-fitted”. We randomly disrupt the grouping marks of each sample and then model
and predict them. Each modeling corresponds to a set of values of R2 and Q2. According
to the values of Q2 and R2 after 200 disruptions and modeling, their regression lines can
be obtained [16], as shown in Figure 7. The results of sequencing verification in positive
and negative modes show that R2 is larger than Q2, and the intercept between the Q2
regression line and the Y–axis is less than 0, indicating that the model does not “overfit”
and is statistically reliable (Figure 7).

Figure 6. PLS-DA score scatter plots ((A): positive mode; (B): negative mode). The sample’s score
on the first principal component is represented by the abscissa, while the ordinate represents the
sample’s score on the second principal component. R2Y is the model’s interpretation rate, and Q2Y is
used to assess the PLS-DA model’s predictive power.

Figure 7. PLS-DA sorting verification diagram ((A): positive mode; (B): negative mode). The scores
for R2 and Q2 make up the ordinate, while the abscissa represents the correlation between the original
grouping Y and the random grouping Y.
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3.7. Differential Metabolite Analysis

The total number of metabolites identified in positive and negative modes was 286
and 339, respectively. The VIP value indicates the contribution rate of different metabolites
in different groups. The screening criteria of differential metabolites are set as VIP > 1.0,
FC > 1.2 or FC < 0.833, and p-value < 0.05. The differential metabolites were screened out.
According to the findings, four metabolites were significantly up-regulated under positive
mode, while seven metabolites were significantly down-regulated. Seven metabolites
were significantly up-regulated under negative mode, whereas fourteen were significantly
down-regulated (Figure 8). Among them, Gly–Phe in positive mode and taurochenodeoxy-
cholate in negative mode were up-regulated and the difference was the most significant
(Tables 1 and 2).

Figure 8. Differential metabolite volcano plots ((A): positive mode; (B): negative mode). The abscissa
represents the multiple changes in expression of metabolites in different groups (log2FC), and the
ordinate represents the significant level of difference (−log10 p-value). Each dot on the volcano
plot stands for a different metabolite; the red dot indicates a metabolite that has been significantly
up-regulated, while the green dot indicates a metabolite that has been significantly down-regulated,
and the size of the dot denotes the VIP value.

Table 1. Significant difference metabolites in positive mode.

ID Name Formula FC log2FC p Value VIP Trend

Com_1878_pos Gly–Phe C11H14N2O3 1.840516 0.88011 0.008541 1.355301 up
Com_2079_pos Tyrosylalanine C12H16N2O4 2.28476 1.192043 0.009232 2.011242 up

Com_2167_pos 6,7,8-trimethoxy-2-(2-phenoxy-3-
pyridyl)-4H-3,1-benzoxazin-4-one C22H18N2O6 0.314242 −1.67005 0.013825 2.865879 down

Com_2371_pos Neodiosmin C28H32O15 0.329646 −1.60101 0.016317 3.036509 down
Com_1438_pos Glycochenodeoxycholic acid C26H43NO5 3.171151 1.665007 0.017141 2.102527 up

Com_191_pos
4-(2,3-dihydro-1,4-benzodioxin-6-

yl)butanoic
acid

C12H14O4 0.165891 −2.59169 0.017738 4.05138 down

Com_2328_pos Celestolide C17H24O 2.629355 1.394709 0.018376 1.504881 up

Com_2181_pos
3-hydroxy-N-(1-hydroxy-4-
methylpentan-2-yl)-5-oxo-6-

phenylhexanamide
C18H27NO4 0.420322 −1.25043 0.036147 1.137918 down

Com_469_pos 3-Methylcrotonylglycine C7H11NO3 0.308891 −1.69483 0.041219 2.062733 down
Com_1157_pos ACar 10:1 C17H32NO4 0.400311 −1.32081 0.044941 2.120841 down
Com_404_pos indoline-2-carboxylic acid C9H9NO2 0.568419 −0.81497 0.04785 1.004339 down
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Table 2. Significant difference metabolites in negative mode.

ID Name Formula FC log2FC p Value VIP Trend

Com_3763_neg Taurochenodeoxycholate C26H44N
NaO6S 2.245599 1.167101 0.001669 1.407966 up

Com_730_neg 13,14-Dihydro-15-keto Prostaglandin A2 C20H30O4 1.856423 0.892526 0.006386 1.124458 up
Com_422_neg Taurochenodeoxycholic acid C26H45NO6S 2.302059 1.202925 0.008387 1.380152 up
Com_2821_neg PE (18:1e/18:1) C41H80NO7P 0.431353 −1.21306 0.009712 1.747769 down
Com_3691_neg Prostaglandin B2 C20H30O4 2.039076 1.027916 0.011712 1.406344 up
Com_1996_neg 7-Ketodeoxycholic acid C24H38O5 3.34657 1.742683 0.011779 3.023359 up
Com_1193_neg Delta-Tridecalactone C13H24O2 0.568493 −0.81479 0.012783 1.015299 down
Com_4499_neg PE (18:2e/18:2) C41H76NO7P 0.25246 −1.98587 0.013294 2.21477 down
Com_116_neg N-Isobutyrylglycine C6H11NO3 0.19186 −2.38187 0.016014 2.980363 down
Com_1221_neg N-Acetylglycine C4H7NO3 0.326927 −1.61296 0.016573 1.708988 down
Com_1799_neg Jasmonic acid C12H18O3 0.378752 −1.40068 0.017172 3.143533 down

Com_3977_neg (3 shan,5 fou,9 fou)-3,23-Dihydroxy-1-
oxoolean-12-en-28-oic acid C30H46O5 0.478919 −1.06215 0.017208 1.489396 down

Com_39_neg Cholic acid C24H40O5 3.341702 1.740583 0.022171 3.659888 up
Com_1573_neg N-Acetylsphingosine C20H39NO3 2.000667 1.000481 0.027948 1.19617 up
Com_1902_neg 5-(3-cyclohexylprop-1-ynyl)nicotinic acid C15H17NO2 0.169535 −2.56034 0.028812 2.900065 down
Com_407_neg Hexanoylglycine C8H15NO3 0.149356 −2.74317 0.034156 2.920229 down
Com_1371_neg Capryloylglycine C10H19NO3 0.220021 −2.18429 0.034311 2.813614 down
Com_337_neg N-Tigloylglycine C7H11NO3 0.417917 −1.25871 0.041284 1.575588 down
Com_2101_neg Isophorone C9H14O 0.609557 −0.71417 0.044981 2.975498 down

Com_1063_neg 3-[(methoxycarbonyl)amino]-2,2,3-
trimethylbutanoic acid C9H17NO4 0.299 −1.74178 0.047286 2.261636 down

Com_326_neg 3,3-Dimethylglutaric acid C7H12O4 0.658063 −0.6037 0.048218 2.792619 down

3.8. Correlation Analysis of Differential Metabolites

Correlation analysis can be used to quantify the metabolic closeness of metabolites
with notable differences and to understand how metabolites are regulated in concert due to
changes in biological state. The correlation between metabolites with notable changes was
examined by measuring the Pearson correlation coefficient between all metabolites. Ce-
lestolide and neodiosmin have a negative association in the positive mode, but celestolide
and other metabolites correlate positively. Taurochenodeoxyacetate has a negative corre-
lation with delta-tridecalactone and a positive correlation with other metabolites in the
negative mode (Figure 9).

Figure 9. Differential metabolite correlation diagram ((A): positive mode; (B): negative mode). Red
denotes positive correlation, and the highest correlation is 1. Blue means negative correlation, and
the lowest correlation is −1. p > 0.05 is true of the portion without color. The top 20 differential
metabolites are correlated in the figure in order of p-value from minimum to maximum.
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3.9. KEGG Pathway Enrichment of the Differential Metabolites

According to the KEGG enrichment analysis of the selected significant differential
metabolites, only the three pathways of cholesterol metabolism, primary bile acid biosynthe-
sis, and bile secretion were enriched in the positive mode (Figure 10). Only one significant
difference metabolite, glycochenodeoxycholic acid, was enriched (Table 3). Six KEGG path-
ways were enriched in the negative mode, which are taurochenodeoxycholate, cholic acid,
taurochenodeoxycholic acid, jasmonic acid, and prostaglandin B2 (Figure 10). Among them,
five metabolites with significant differences were enriched, namely, taurochenodeoxy-
cholate, cholic acid, taurochenodeoxycholic acid, jasmonic acid, and prostaglandin B2
(Table 4). There were significant differences in primary bile acid biosynthesis and bile
secretion in positive and negative modes.

Table 3. KEGG enrichment pathway in positive mode.

Map ID Map Title p Value x y Enrich Direct Meta IDs Name

map04979 Cholesterol
metabolism 0.017544 1 1 Over Com_1438_pos Glycochenodeoxycholic acid

map00120 Primary bile acid
biosynthesis 0.035088 1 2 Over Com_1438_pos Glycochenodeoxycholic acid

map04976 Bile secretion 0.105263 1 6 Over Com_1438_pos Glycochenodeoxycholic acid

Notes: The x denotes the number of differential metabolites associated with the pathway; y denotes the number
of background (all) metabolites related to the pathway.

Figure 10. KEGG enrichment bubble diagram ((A): positive mode; (B): negative mode). The abscissa
is x/y, and the value increases with the pathway’s differential metabolite enrichment level. The hy-
pergeometric test’s p-value is represented by the color of the point, and the smaller the value, the
higher the test’s reliability. The number of distinct metabolites in the associated route is indicated by
the size of the point.
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Table 4. KEGG enrichment pathway in negative mode.

MapID MapTitle p Value x y Enrich Direct MetaIDs Name

map00120 Primary bile acid
biosynthesis 0.002056 3 6 Over

Com_3763_neg
Com_39_neg
Com_422_neg

Taurochenodeoxycholate; Cholic
acid; Taurochenodeoxycholic acid

map04976 Bile secretion 0.01536 3 11 Over
Com_3763_neg
Com_39_neg
Com_422_neg

Taurochenodeoxycholate; Cholic
acid;Taurochenodeoxycholic acid

map04979 Cholesterol
metabolism 0.016769 2 4 Over Com_3763_neg

Com_422_neg
Taurochenodeoxycholate;

Taurochenodeoxycholic acid

map00592 alpha-Linolenic acid
metabolism 0.060241 1 1 Over Com_1799_neg Jasmonic acid

map00590 Arachidonic acid
metabolism 0.172016 1 3 Over Com_3691_neg Prostaglandin B2

map04726 Serotonergic synapse 0.172016 1 3 Over Com_3691_neg Prostaglandin B2

Notes: The x represents the number of differential metabolites associated with the pathway; y represents the
number of background (all) metabolites related to the pathway.

3.10. Validation Experiment

From the comprehensive analysis of KEGG metabolic pathway and its metabolic
mechanism, it was found that the BAAT gene was annotated in the primary bile acid
biosynthesis pathway, and previous studies have shown that this gene may be related to
cashmere performance [17]. Moreover, the expression of the BAAT gene directly acts on
taurochenodeoxycholate, glycochenodeoxycholic acid, Taurocholate, and Glycocholate. At
the same time, it interacts with taurine and glycine. Amino acids are the smallest molecules
of all metabolites. In addition to serving as the building blocks for the creation of proteins,
amino acids are a crucial source of energy for cells. Amino acids also play an essential
role as signal molecules in intracellular signal transduction and metabolic regulation [18].
There are more sulfur-containing amino acids in hair. In addition, serine, glycine, arginine,
aspartic acid, alanine, ornithine, threonine, phenylalanine, glutamic acid, and lysine are
the primary amino acids in hair [19,20]. Taurine, serine, glycine, ornithine, threonine, and
asparagine were detected in CT_LCG and FT_LCG, and the relative expression is relatively
high (Figure 11). We verified the six amino acids by MRM and found that the changing
trend of these amino acids was consistent with that based on UHPLC–MS/MS technology
(Figure 12). It can be seen that glycine, ornithine, and asparagine play a positive role in
regulating cashmere.
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Figure 11. Trend map of relative expression of metabolites.

Figure 12. Trend map of metabolite expression.

4. Discussion

In this study, we used UHPLC–MS/MS technology to detect differences in the skin of
coarse and fine cashmere LCG. Metabolites in the two groups of samples varied, as was to
be expected. Some studies have shown that melatonin can stimulate the development of
secondary hair follicles in cashmere goats, increase cashmere production, and reduce fiber
diameter [21]. The changes in serum melatonin, insulin-like growth factor, and prolactin
concentrations in LCG during the rapid cashmere growth period are related to cashmere
growth. Tryptophan can promote cashmere growth by increasing diurnal insulin-like
growth factor secretion and nocturnal melatonin [22]. We detected 32 differential metabo-
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lites in the skin of LCG, of which 11 were up-regulated and 21 down-regulated. Further
investigation reveals that these metabolites could be crucial to the fineness of cashmere.

Hair abounds with sulfur amino acids, including cystine, cysteine, and methion-
ine [23]. Additionally, the sulfur level directly impacts the characteristics of wool fiber, and
amino acids containing sulfur are crucial for animal metabolism and function. Sherlock et al.
showed that supplementing sulfur-containing amino acids could significantly increase wool
yield and sulfur concentration in wool [24]. The nutritional supply of sulfur-containing
amino acids can significantly increase the mitosis rate of wool hair follicle globular cells [25].
The study by Prusiewicz-Witaszek et al. showed that adding methionine and lysine to
rabbit feed could affect the synthesis of keratin in hair and increase the yield of villi [26].
A total of two sulfur-containing differential metabolites, taurochenodeoxycholate and tau-
rochenodeoxycholic acid, were detected in this study (Table 2). These two metabolites are
up-regulated and contribute to the regulation of cashmere’s fineness. The metabolism of
methionine and the cysteine production of taurine is a naturally occurring β-amino acid.
Taurine has been found to be absorbed by connective tissue sheath, proximal outer root
sheath, and hair bulb, promoting hair survival in vitro and preventing harmful effects on
hair follicles induced by TGF-β1 [27]. Tauroursodeoxycholic acid can inhibit the prolifer-
ation of keratinocytes in a dose-dependent manner and has a reversible inhibitory effect
on the growth of human keratinocytes [28]. Taurine has great potential for anti-alopecia,
especially for chemical stress-induced alopecia [29]. KAP8.1, the structural gene responsible
for cashmere, contains high levels of glycine and tyrosine [30]. The contents of tyrosine,
glycine, leucine, and phenylalanine in ortho cortical cells of wool are high [31]. The heads
and/or tails of epidermal keratins are glycine and phenylalanine abundant, but alanine is
lacking [32]. In this study, there is a difference in taurine and glycine expression between
FT_LCG and CT_LCG (Figure 12), which indicates that these two amino acids may be
involved in the regulation of cashmere fineness.

At present, studies have shown that Wnt, Shh, TGF-b, Notch, NF-kappa B, and PPAR
signal pathways may be related to cashmere development [33–37]. In this study, we en-
riched six KEGG pathways in positive and negative modes, among which cholesterol
metabolism, primary bile acid biosynthesis, and bile secretion were enriched in both ion
modes (Table 3, 4). The three pathways were annotated with four highly significant differ-
ences in metabolites: taurochenodeoxycholate, cholic acid, taurochenodeoxycholic acid,
and glycochenodeoxycholic acid. Lactosylceramidase I in skin fibroblasts can be stimulated
by pure taurocholate, while lactosylceramidase II can be stimulated by taurocholate or
pure sugar deoxycholate, taurine deoxycholate, and taurine goose deoxycholate to catalyze
the hydrolysis of lactose ceramide [33]. Cholesterol is crucial to the physiology of the
skin and is a component of epidermal barrier function [38]. For a long time, cholesterol
has been considered as an important factor affecting hair growth and plays an important
role in hair follicle biology [39]. Cholesterol modification is also necessary for the signal
transduction of Wnt/β-catenin and Hedgehog pathways [40]; these pathways are the basis
for controlling the circulation of hair follicles [41]. Although no literature has reported
that cholesterol metabolism, primary bile acid biosynthesis, and the bile secretion signal
pathway are related to cashmere fineness, there are related metabolites in these pathways
that are closely related to hair follicle development, so it can be inferred that these pathways
may regulate cashmere growth and fineness, but this needs further study to verify.

5. Conclusions

To summarize, this study analyzed the metabolomics of coarse and fine cashmere skin
of Liaoning cashmere goats; 32 differential metabolites were screened and enriched into six
KEGG pathways. The findings suggest that Gly–Phe and taurochenodeoxycholate may be
crucial in regulating cashmere’s growth, development, and fineness. This study offers a the-
oretical foundation for further investigating the variables influencing cashmere’s fineness.
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