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Abstract 

Background:  High red cell distribution width (RDW) has been increasingly recognized as a risk factor for cardiovas‑
cular diseases (CVDs), but the underlying mechanisms remain unknown. Our aim was to explore the associations 
between RDW and plasma proteins implicated in the pathogenesis of CVD using a targeted proteomics panel.

Methods:  RDW and 88 plasma proteins were measured in a population-based cohort study (n = 4726), Malmö Diet 
and Cancer-Cardiovascular Cohort (MDC-CC). A random 2/3 of the cohort was used as discovery sample and remain‑
ing 1/3 was used for replication. Multiple linear regression was used to assess the associations between RDW and 
plasma proteins, with adjustments for age, sex, and other potential confounders. Proteins with Bonferroni-corrected 
significant associations with RDW in the discovery sub-cohort were validated in the replication cohort.

Results:  Thirteen of 88 plasma proteins had significant associations with RDW in the discovery sample, after multivar‑
iate adjustments. Eleven of them were also significant in the replication sample, including SIR2-like protein 2 (SIRT2), 
stem cell factor (SCF, inversely), melusin (ITGB1BP2), growth differentiation factor-15 (GDF-15), matrix metalloprotein‑
ase-7 (MMP-7), hepatocyte growth factor (HGF), chitinase-3-like protein 1 (CHI3L1), interleukin-8 (IL-8), CD40 ligand 
(CD40-L), urokinase plasminogen activator surface receptor (U-PAR) and matrix metalloproteinase-3 (MMP-3).

Conclusions:  Several proteins from this targeted proteomics panel were associated with RDW in this cohort. These 
proteins could potentially be linked to the increased cardiovascular risk in individuals with high RDW.
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Background
Cardiovascular disease (CVD) is one of the leading causes 
of mortality and morbidity, with substantial impact on 
the public health worldwide. Beyond the traditional risk 
factors for CVD, novel circulating blood biomarkers are 
frequently studied [1, 2], which can be measured with rel-
ative ease and are capable of detecting subtle changes in 
the pathophysiological processes underlying CVDs.

Red cell distribution width (RDW) reflects the het-
erogeneity of the red blood cells (RBC) volumes, which 
is often used clinically as a diagnostic tool of patients 
with anaemia. Since Felker et  al. [3] first identified that 
RDW may be useful for predicting both morbidity and 
mortality in heart failure (HF) patients, increasing num-
ber of studies showed that high RDW is associated with 
incidence and prevalence of a broad range of CVDs, 
including atrial fibrillation [4], stroke [5, 6], and myocar-
dial infarction [2, 7]. Though the specific mechanisms 
between RDW and adverse cardiovascular outcomes 
have not been sufficiently investigated, it has often been 
proposed that low-grade inflammation or the actions of 
pro-inflammatory cytokines could be a common cause of 
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high RDW and CVD [7]. It has been shown that inflam-
matory cytokines could inhibit the maturation of RBCs 
[8].

In this population-based study, our primary aim was 
to explore the potential associations between RDW and 
a panel of circulating proteins known or suggested to be 
associated with CVD pathology. The initial analysis was 
performed in a discovery sub-cohort, consisting of a 
random 2/3 of the cohort, with adjustment of potential 
confounding factors. Plasma proteins with significant 
Bonferroni-corrected relationships with RDW were then 
confirmed in a validation sub-cohort consisting of the 
remaining 1/3 of the cohort.

Methods
Study population
The Malmö Diet and Cancer (MDC) cohort was estab-
lished between 1991 and 1996. A total of 30,446 men 
and women from the city of Malmö were recruited by 
mail and newspaper advertisement and invited to a 
health examination at a screening centre. A random 
50% of those examined between October 1991 and Feb-
ruary 1994 (MDC-Cardiovascular Cohort, MDC-CC, 
n = 6103), were selected to undergo additional exami-
nations for a cardiovascular sub-study. Of them, 4742 
people had information for plasma proteins. In addition, 
individuals with missing data for RDW (n = 3), smoking 
(n = 6), high-density lipoprotein (HDL) (n = 1), haemo-
globin (HGB) (n = 1), and low-density lipoprotein (LDL) 
(n = 5) were excluded. After exclusion of missing values, 
4726 subjects (1886 men and 2840 women) with average 
age 57.51 ± 5.96 (mean ± standard deviation, SD) were 
analysed in our study.

All data were pseudonymized during analytic work 
with no identity being revealed.

Baseline examination
Anthropometric measurements were made at baseline 
using standard procedures. Venous blood samples were 
drawn at the first visit at the screening centre. HGB, and 
erythrocyte diameter were analyzed in fresh, heparinized 
blood, using a fully automated assay (SYSMEX K1000 
hematology analyzer; TOA Medical Electronics, Kobe, 
Japan). RDW was calculated as the width (fL) of the 
erythrocyte distribution curve at the relative height of 
20% above the baseline [9]. Reference values were 36.4–
46.3 fL in women and 35.1–43.9 fL in men [10]. The rela-
tionships between RDW, cardiovascular risk factors and 
incidence of cardiovascular disease has been presented 
in previous papers [4, 5, 7, 11]. Weight and height were 
measured in light indoor clothing, without shoes. Body 
mass index (BMI) was calculated as weight/height2 (kg/
m2). Smoking was obtained from the self-administered 

questionnaire. Smoking was categorized in two catego-
ries—smoking (i.e., current or occasional smokers) and 
non-smoking (never smokers or former smokers). Dia-
betes was defined as self-reported physician-diagnosed 
diabetes or current use of diabetes medication or with 
venous whole blood glucose ≥ 6.1  mmol/L (correspond-
ing to plasma glucose ≥ 7.0 mmol/L).

Laboratory measurements
HDL and glucose levels were analysed using standard 
procedures at the Department of Clinical Chemistry, 
Malmö University Hospital. LDL levels were calculated 
according to the Friedewald formula. Plasma proteins 
were measured in fasting EDTA-plasma which had been 
frozen at − 80 °C after collection at the baseline examina-
tion until analysis.

Proteomics analysis
Ninety-two plasma proteins were analysed using the 
Olink Proseek Multiplex CVD Panel I 96 × 96 Kit (Olink 
Bioscience, Uppsala, Sweden), based on the Proxim-
ity Extension Assay (PEA) technology with the Fluidigm 
BioMark HD real-time PCR platform in 54 chip runs. 
PEA uses matched antibodies labelled with unique oli-
gonucleotides, binding to a targeted protein. This makes 
probe pairs hybridize and create double-stranded signals, 
which are amplified and quantified by the PCR platform 
[12], generating Normalized Protein Expression (NPX) 
values which corresponds to protein levels. Normaliza-
tion procedure included a set of internal controls (incu-
bation, extension and detection controls) and a total of 6 
external controls for each plate, used to correct for vari-
ation between runs and plates (inter-plate controls) and 
for assessment of detection limits. The protein concen-
trations are presented as arbitrary units (AU) on a log2 
scale. LOD (limit of detection) is defined as 3 × standard 
deviations (SD) above background based on the negative 
controls in each run. Protein values below the LOD were 
replaced with LOD/2. Intra- and inter-assay coefficients 
of variation for the various proteins, and information 
regarding the CVD proteomic panel, PEA technology, 
data normalization and standardization is available in 
detail on the Olink webpage (http://​www.​olink.​com). 
Previous studies from this cohort have reported the 
plasma protein profiles in individuals with high cadmium 
concentrations and poor self-rated health [13, 14].

Four proteins with less than 75% of subjects having a 
valid measurement were excluded: Beta-nerve growth 
factor (Beta-NGF, n = 478); Protein S100-A12 (EN-
RAGE, n = 128); Natriuretic peptides  B (BNP, n = 696); 
Interleukin-4 (IL-4, n = 29). In total, 88 cytokines were 
used for analyses in this study. For analytic purposes, the 
cohort was divided randomly in an approximate 2:1 ratio 
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(discovery cohort: 2/3 population; validation cohort: 1/3 
population).

Statistical analysis
Data were presented as mean ± SD for continuous varia-
bles with normal distribution and percentage for categor-
ical variables. Multiple linear regression was performed 
to explore the associations between RDW and different 
proteins (one protein at a time), with RDW as depend-
ent variable and protein as well as other risk factors as 
independent variables. We used the standardized form of 
plasma proteins (i.e. the Z-score) to allow for direct com-
parisons of different biomarkers. Beta coefficients with 
95% confidence intervals (CIs) were presented. Model 1 
was adjusted for age and sex, model 2 was adjusted for 
potential confounding factors (i.e. age, sex, BMI, HGB, 
LDL, HDL, diabetes, smoking). The calculations were 
performed using IBM SPSS Statistics V.27 (www.​spss.​
com). P value < 5.68 × 10–4 (Bonferroni adjustment for 88 
tests, 0.05/88) was considered significant in the discovery 
population (2/3 of subjects). A p value < 0.05 was used as 
criterion for successful replication in the remaining 1/3 of 
the population. Since RDW and several plasma proteins 
are increased by smoking, we also examined the associa-
tions with RDW in never smokers as sensitive analysis. 
This sensitivity analysis was only performed for proteins 
with significant Bonferroni-adjusted p-values. Pearsons’ 
correlation test was also performed to examine the rela-
tions between each two replicated plasma proteins.

Results
Characteristics of subjects
The characteristics of the study population were shown 
in Table  1. Mean age was 57.5  years, 60% were women, 
and prevalence of smoking was 22.4% in men and 21.0% 
in women. The distribution of RDW is illustrated in 
Additional file  8: Figure S3. The results from the prot-
eomics analysis and a list of the proteins are presented in 
Additional file 1: Table S1.

RDW in relation to plasma proteins
Discovery sample
Thirty-one of 88 plasma proteins were significantly asso-
ciated with RDW in the discovery cohort (n = 3151, 
random 2/3) (p < 5.68 × 10–4), with adjustments of age 
and sex (Additional file  6: Figure S1). Thirteen of 88 
plasma proteins showed significant associations with 
RDW in the discovery population (n = 3151, random 
2/3) (p < 5.68 × 10–4), after adjustments for age, sex, 
BMI, HGB, LDL, HDL, diabetes and smoking. The sig-
nificant proteins were stem cell factor (SCF, inverse 
association), growth differentiation factor 15 (GDF-15), 
SIR2-like protein 2 (SIRT2), melusin (ITGB1BP2), matrix 

metalloproteinase-7 (MMP-7), hepatocyte growth factor 
(HGF), chitinase-3-like protein 1 (CHI3L1), interleukin-8 
(IL-8), CD40 ligand (CD40-L), urokinase plasminogen 
activator surface receptor (U-PAR), matrix metallo-
proteinase-3 (MMP-3), prolactin (PRL) and myoglobin 
(MB). (Fig. 1, Additional file 2: Table S2).

Fig. 1  Red cell distribution width in relation to plasma proteins in 
discovery cohort. The beta coefficient and 95% confidence interval 
(CI) were obtained from multiple linear regression performed 
separately for each protein. Adjustments: age, sex, BMI, HGB, LDL, 
HDL, diabetes, smoking. P < 5.68 × 10–4 is significant

http://www.spss.com
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Replication sample
Thirteen proteins were assessed for significance in the 
remaining 1/3 replication sample (n = 1575). Eleven of 
them were significantly associated with RDW (p < 0.05) 
(Fig.  2, Additional file  3: Table  S3), which included 
SIRT2, SCF, ITGB1BP2, GDF-15, CHI3L1, CD40-L, 
MMP-7, IL-8, HGF, U-PAR and MMP-3, respectively. 
Among them, GDF-15 showed the most significant 
associations with RDW (beta = 0.46, 95%CI: 0.29–0.63, 
p = 7.97 × 10–8). SCF was inversely associated with RDW 
(beta = − 0.36, 95% CI: − 0.52— − 0.21), p = 5.59 × 10–6). 
Scatterplots of RDW and four of the significant proteins 
(GDF-15, SIRT2, CHI3L1, SCF) are presented in Addi-
tional file 9: Figure S4.

Protein–protein correlations
We analysed the correlations between the plasma pro-
teins with significant relationships with RDW (Fig.  3, 
Additional file 4: Table S4). We found moderate correla-
tions between most of the proteins and all correlations 
were statistically significant (p < 0.01).

Sensitive analysis in never smokers
Eleven of 13 plasma proteins were significantly associated 
with RDW in never smokers, after multivariate adjust-
ments. Significant proteins in never smokers were ITG-
B1BP2, SIRT2, PRL, CHI3L1, GDF-15, MMP-7, CD40-L, 
MMP-3, IL-8, HGF and SCF. The most significant nega-
tive associations among them was SCF (beta = −  0.34, 
95% CI: −  0.48— −  0.20, p = 2.38 × 10–6) (Additional 
file 5: Table S5, Additional file 7: Figure S2).

Discussion
Previous studies have linked RDW to a wide range of car-
diovascular outcomes and adverse prognosis in patients 
with CVD [15] and with incidence of CVD in studies from 
the general population [2, 4–7]. However, the underlying 
mechanisms by which elevated RDW levels were associ-
ated with adverse outcomes remain unclear. The present 
results show that several proteins with possible associa-
tions to CVD are associated with RDW. Eleven proteins 
(GDF-15, SIRT2, ITGB1BP2, MMP-7, SCF (inversely), 
CHI3L1, MMP-3, HGF, IL-8, U-PAR, and CD40-L) were 
significantly associated with RDW after adjustment for 
possible confounding factors, both in the discovery and 
replication sample.

High RDW reflects a high heterogeneity of the volumes 
of RBCs. There could be some principally different rea-
sons for increased RDW values. A high production of large 
immature erythrocytes, e.g., after major bleeding, is asso-
ciated with high RDW. Similarly, if the RBCs are hetero-
geneous already when released into the circulation, this 
could also cause high RDW. After the reticulocytes have 
been released, they rapidly develop into smaller erythro-
cytes, and the volumes of the RBCs then gradually shrink 
and become smaller over their life span. The average sur-
vival time for erythrocytes in the circulation is approxi-
mately 120 days, however, it has been shown that there is 
substantial variations between individuals [16]. Therefore, 
a high proportion of old and small RBCs could also result 
in high RDW. Patel et  al. [17] proposed that high RDW 
is a result of delayed elimination of RBCs from the circu-
lation, beyond the average survival time of 120 days. The 
delayed elimination of erythrocytes could be a physiologi-
cal response to stress or poor health, with the purpose to 
save energy and iron to the body [18], and thereby a non-
specific marker of disease. This view is supported by the 
fact that RDW has been positively correlated to haemo-
globin A1c (HbA1c), which is influenced by the life-span 
of the RBCs, but not with plasma glucose [11, 17]. It is not 
possible to examine the possible reasons for high RDW in 
this study. However, it is likely that both individuals with 
a delayed elimination of old erythrocytes and individuals 
with a high production of large RBCs could be present in 
this large study from the general population.

Fig. 2  The associations between red cell distribution width and 
plasma proteins in replication cohort. The beta coefficient and 95% 
confidence interval (CI) were obtained from multiple linear regression 
performed separately for each protein. Adjustments: age, sex, BMI, 
HGB, LDL, HDL, diabetes, smoking. P < 0.05 is significant
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It is widely acknowledged that low grade inflamma-
tion and chronic disease is associated with anaemia [19] 
and that several pro-inflammatory cytokines, such as 
IL-6 and tumor necrosis factor-α (TNF-α) could inhibit 

erythropoiesis and the actions of erythropoietin [20]. 
Inflammation includes the production of a wide range 
of pro-inflammatory cytokines as well as proteins with 
compensating and regulating effects [21]. It is noteworthy 

Table 1  The characteristics of the study population

Values are expressed as mean ± standard deviation (SD) for continuous variables or percentages (%) for categorical variables

Variables Whole cohort (n = 4726) Discovery cohort (n = 3151) Replication cohort (n = 1575)

RDW (fL) 40.42 ± 3.28 40.42 ± 3.26 40.40 ± 3.31

BMI (kg/cm2) 25.70 ± 3.90 25.71 ± 3.99 25.67 ± 3.72

Haemoglobin (g/L) 141.84 ± 11.44 141.95 ± 11.51 141.62 ± 11.28

HDL (mmol/L) 1.39 ± 0.37 1.38 ± 0.37 1.41 ± 0.38

LDL (mmol/L) 4.17 ± 0.98 4.17 ± 0.98 4.15 ± 0.97

Age (years) 57.51 ± 5.96 57.47 ± 5.99 57.58 ± 5.90

Sex (%) M (40); F (60) M(40.4); F (59.6) M (39); F (61)

Diabetes (%) M (10.8); F (5.6) M (10.9); F (5.5) M (10.4); F (5.6)

Smoking (%) M (22.4); F (21.0) M (23.0); F (21.3) M (21.0); F (20.4)

Fig. 3  Pair-wise correlations between plasma proteins with significant relationships with RDW. Correlations were assessed between each two 
proteins using Pearson’s correlation test. Stronger correlation corresponding to darker colour
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that several of the proteins associated with RDW in this 
study can be regarded as markers of inflammation (e.g. 
GDF-15, CD40-L, IL-8, MMP-3, MMP-7, U-PAR and 
CHI3L1), and it is possible that they were related to 
erythropoiesis, either directly, or through other proteins 
in the inflammatory cascade. It is also noteworthy that 
many of these plasma proteins have been associated with 
increased risk of CVD [22–28].

GDF-15 is a protein with many functions, which has 
been reported to be elevated in various anaemic con-
ditions [29]. GDF-15 has a role in regulation of iron 
homeostasis [30] and it has been shown that GDF-15 
expression is regulated by hypoxia [31] and iron deple-
tion [32]. This could potentially explain its relationship 
with RDW in our study. It is also noteworthy that GDF-
15 has been repeatedly associated with all-cause mortal-
ity [33] and CVD [22].

HGF has multiple pleiotropic effects on cardiovascular 
system [34, 35] and is involved in activation of hemat-
opoietic progenitor cells. It has been shown that HGF 
is produced by human bone marrow stroma cells and 
promotes proliferation, adhesion and survival of human 
haematopoietic progenitor cells [36–38]. It was recently 
shown that HGF is associated with progression of ath-
erosclerosis, which perhaps could reflect a compensatory 
and repairing function of HGF in atherosclerosis [35].

By contrast, there was negative association between 
RDW and SCF. SCF is a major stimulator of erythropoie-
sis and works synergistically together with erythropoietin 
[39]. It could be speculated that low levels of SCF might 
be an indicator of reduced renewal of erythrocytes in 
the circulation and an increased population of older and 
smaller RBCs, which in turn, could explain the negative 
correlation between RDW and SCF [40, 41]. It is note-
worthy that low SCF was associated with increased risk of 
CVD in a recent study from the MDC-cohort [42].

Strengths and limitations
We used a well-defined population-based cohort with 
extensive information about plasma proteins as well as 
potential confounding factors. The sample size was big 
enough to allow analysis of a random discovery and rep-
lication sample. The PEA technology is known to be very 
specific, however, the concentrations are given as arbi-
trary units and not in International System of Units (SI 
units), which is a limitation. The present study included 
88 plasma proteins which could be linked to CVD. How-
ever, we have no information about protein biomark-
ers for other diseases. Whether RDW is associated with 
biomarkers for other diseases should be examined in 
future studies. Another limitation is that the analysis was 

performed in a cross-sectional design and we can only 
speculate about causality.

Conclusions
In our prospective cohort study, eleven of 88 plasma pro-
teins showed significant associations with RDW which 
were replicated successfully in validation sub-cohort. 
These proteins could be related to the increased cardio-
vascular risk in individuals with high RDW.
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