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ABSTRACT

DNA methylation is the most widely studied epige-
netic mark in humans and plays an essential role in
normal biological processes as well as in disease
development. More focus has recently been placed
on understanding functional aspects of methyla-
tion, prompting the development of methods to
investigate the relationship between heterogeneity
in methylation patterns and disease risk. However,
most of these methods are limited in that they
use simplified models that may rely on arbitrarily
chosen parameters, they can only detect differen-
tially methylated regions (DMRs) one at a time, or
they are computationally intensive. To address these
shortcomings, we present a wavelet-based method
called ‘Wavelet Screening’ (WS) that can perform an
epigenome-wide association study (EWAS) of thou-
sands of individuals on a single CPU in only a matter
of hours. By detecting multiple DMRs located near
each other, WS identifies more complex patterns that
can differentiate between different methylation pro-
files. We performed an extensive set of simulations to
demonstrate the robustness and high power of WS,
before applying it to a previously published EWAS
dataset of orofacial clefts (OFCs). WS identified 82
associated regions containing several known genes
and loci for OFCs, while other findings are novel and
warrant replication in other OFCs cohorts.

INTRODUCTION

In mammals, DNA methylation (DNAm) is an epigenetic
mark which is essential for normal development and regu-
lates processes such as gene expression, genomic imprinting,
X inactivation and the maintenance of genomic integrity.
The majority of DNAm is in the form of 5-methylcytosine
in a CpG dinucleotide. In the past decade, there has been
considerable interest in identifying associations between
DNA methylation variation and human disease. Typically,
epigenome-wide association studies (EWAS) measure levels
of DNAm at CpG sites and compare these between case and
control groups. The rationale for conducting an EWAS is
that this may identify loci associated with a disease, and thus
provide insights into the biological mechanisms involved.

Over the past 30 years, numerous methods have been de-
veloped to measure DNAm, varying in resolution from sin-
gle CpGs to whole-genome coverage (1). In the last decade
by far the most common is the Illumina BeadChip array, ini-
tially as the 450K (∼450 000 sites) and now the EPIC array
(∼850 000 sites). The EPIC array has good genome-wide
coverage, covering all RefSeq genes, as well as regions regu-
lating gene expression (ENCODE open chromatin and en-
hancers, DNase hypersensitive sites and miRNA promoter
regions).

Despite these advances, the EPIC 850K still covers only
about 3% of the total estimated number of CpGs in the
human genome (∼28 million) (2). Furthermore, the use of
even sparser methylation platforms, such as 450K, makes it
challenging to integrate associations between distant CpGs.
Hence, there is a growing need to develop methods that are
both robust and versatile in handling DNAm data gener-
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ated on these sparse platforms that are widely used in many
consortia-led epigenome-wide meta-analyses.

Compared to earlier investigations in which CpGs were
typically interrogated one at a time, the focus of newer stud-
ies is moving toward investigating multiple CpGs simulta-
neously through testing larger regions of the genome (3–5).
This has spurred the development of various approaches
to modeling multiple CpGs at a time (4,6,7). One such ap-
proach, proposed by Jenkinson and colleagues (8), involves
performing regional modeling of blocks of 1 kb of DNA.
They showed that blocks of DNAm with high entropy are
efficient predictors of important genetic features, for exam-
ple, topologically associating domains (TADs) (9,10). Even
before the work of Jenkinson et al. (8), several authors had
already suggested applying regional tests to detect system-
atic differences in DNAm profile (3,11) or P-value enrich-
ment (12).

Despite these advances in modeling multiple CpGs simul-
taneously, a limitation of these methods is that they use a
fixed region size of 1 kb and do not take the CpG density
of the region and the spacing between the CpGs into ac-
count (4,13,14). Such approaches to modeling might over-
look more complex effects of CpGs, both within and out-
side of a given CGI, as highlighted by Irizarry et al. (6).
A new hybrid approach to modeling DNAm profile called
‘methylated CpGs Set Enrichment Analysis’ (mCSEA) (5)
combines the direct estimation of DMRs with a reweight-
ing procedure from a powerful analytical method called
Gene-Set Enrichment Analysis (GSEA). Despite a signifi-
cant improvement in power, there is still the possibility of
bias due to the reliance of mGSEA on external information
(see Geeleher et al. (15) for additional details).

To address some of these methodological shortcomings,
Lee and Morris (16) introduced a method for modeling
DNAm profile based on the use of wavelets (17) in a func-
tional mixed-modeling approach. This was a follow-up to
the initial work by Morris and Carroll (18). Wavelets are
useful mathematical functions for conducting a Fourier-like
transform, which, in the current context, can be used to treat
an individual’s DNAm profile as a ‘signal’. Importantly,
compared to Fourier transform, which requires the signal to
be periodic, wavelets (and wavelet transform) can represent
a wider variety of signals and can easily be adapted to repre-
sent an individual’s DNAm profile. In their paper, Lee and
Morris (16) showed that association testing using wavelet
transform enables the detection of smaller variations within
the DNAm profile compared to previous methods (3,11,12).

Wavelets have been used to analyze different types of
omics data, for example, to identify genetic variants associ-
ated with chromatin accessibility (19), to investigate DMRs
in DNAm data (16) and to screen for risk-conferring vari-
ants in genome-wide association studies (GWASes) (20,21).
However, the methods described by Jaffe et al. (22) and
Lee and Morris (16) are based on a preassigned significance
threshold for detecting a difference in DNAm profile across
groups of individuals. As this threshold is set a priori by the
analyst, it is difficult to compare findings across studies in
which different predetermined thresholds have been used.
Moreover, such methods fail to take advantage of the joint
effects of DMRs that individually do not pass a set signif-
icance threshold. Finally, the methods mentioned thus far

are computationally intensive and have only been applied
to limited datasets (e.g. 141 individuals in Lee and Morris
(16)).

To address these shortcomings, we introduce a new
wavelet-based approach called Wavelet Screening (WS) for
the efficient analysis of data generated on different methy-
lation platforms, irrespective of their probe density. To
achieve this, we drew inspiration from the work of Lee and
Morris (16) and adapted the analysis criterion of Jenkinson
et al. (8) using the Jensen-Shannon distance. To illustrate
the utility of WS, we analyzed a previously published EWAS
comprising 412 orofacial clefts (OFCs) cases and 456 con-
trols (14). OFCs are relatively common congenital malfor-
mations that often require extensive follow-up and treat-
ment from childhood through adolescence (23,24). They are
characterized by a strong genetic predisposition based on
estimates of heritability and familial recurrence (25–29). It
is thus intriguing that the genetic variants identified thus far
have only been able to explain a small fraction of the total
heritability of OFCs (30).

The phenomenon of missing heritability is not unique to
OFCs but has plagued the vast majority of studies aimed
at unraveling the genetic underpinnings of complex traits.
As environmental factors can induce epigenetic changes,
with reported associations between specific genotypes and
DNAm levels at CpG sites (i.e. methylation quantitative
trait loci (mQTLs); (31,32)), it is conceivable that part of
the unexplained causality of OFCs could be accounted for
by epigenetic mechanisms (13,33,34). This calls for the de-
velopment of more flexible and powerful analytic tools to
handle different types of omics data (35) in order to cap-
ture a greater proportion of the genetic variants potentially
missed by conventional methods.

In the present study, DNAm data from babies born with
OFCs (cases) and those born without such malformations
(controls) were available from a population-based study
of OFCs in Norway (14,36). We divided the genomes of
the cases and controls into smaller regions and modeled
the DNAm profile of each individual using wavelets. Our
method enables studying complex effects of DNAm, includ-
ing the combined effect of several DMRs, instead of only
screening for simple systematic differences in DNAm pro-
files (19). We provide a brief description of the wavelet trans-
form in the Materials and Methods section before outlin-
ing the statistical framework for WS and its adaptation to
DNAm data.

The remainder of this paper is structured as follows. We
first provide a detailed account of each step involved in the
modeling scheme of WS in the ‘Materials and Methods’ sec-
tion, followed by the section ‘Application of Wavelet Screen-
ing’ where we present two applications of WS: the first to
an existing case-control DNAm dataset of OFCs and the
second to a simulated DNAm dataset that mimics a previ-
ous study of colon cancer by Irizarry and colleagues (6). In
the ‘Results’ section, we present the output of our analyses
and the visualization of the results. Finally, in the ‘Discus-
sion’ section, we contrast our findings with another EWAS
that used the same OFCs dataset as here (14) and additional
studies that have examined other OFCs DNAm datasets.

Application note: WS is distributed as an R pack-
age on GitHub (https://github.com/william-denault/

https://github.com/william-denault/WaveletScreening
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WaveletScreening). A comprehensive example of a typical
WS run is provided in the description of the main function
in the R package.

MATERIALS AND METHODS

Even though WS was originally designed for GWAS, it can
easily be adapted to other types of omics data (see Denault
et al. (21) for details). In the subsections below, we describe
how WS processes DNAm data and explain the functional
modeling aspects of the analysis. Before detailing the WS
approach itself, we first describe the general principles of
wavelets and how wavelets can represent individual DNAm
profiles.

WS takes advantage of a property of wavelet decompo-
sition to build a powerful test for detecting DMRs. This
property, coined ‘grapes pattern’, was first introduced by
Donoho and Johnstone in the early 1990s (37). Notably,
the authors observed that large wavelet coefficients tend to
cluster in a pattern resembling a string of grapes. Further,
Crouse et al. (38) and Ma and Soriano (39) showed that this
pattern could be exploited in the context of wavelet regres-
sion to efficiently detect variables that modify an individual
function (e.g. DNAm profile in the current context).

However, the approaches of Crouse et al. (38) and Ma
and Soriano (39) do not scale well for genome-wide screen-
ing because of the need for Markov chain Monte Carlo
(MCMC) or complex posterior distributions. To address
this, we developed WS (21), a heuristic approach for detect-
ing DMRs that takes advantage of the grapes pattern in a
computationally efficient manner. In essence, WS extracts
two summary statistics from the wavelet regression of each
region, as follows:

• The first summary statistic quantifies the global amount
of association between the trait and the wavelet coeffi-
cients (see Equation 4).

• The second summary statistic quantifies the strength of
grapes pattern within the regression coefficients in Equa-
tion 2.

Figure 1 highlights the differences in the joint distribution
of the two summary statistics between DMRs and regions
that are not associated (called ‘not DMR’ in the figure).
Finally, WS combines these two summary statistics into a
global test statistic. Figure 2 provides a simplified schematic
overview of the WS approach and highlights the different
steps involved in the analytic pipeline.

Wavelet transformation and wavelet regression

WS tests for regional associations between a trait � and a
signal. We start here by describing step 1 in Figure 2. Sup-
pose that we observe T CpG sites at base-pair positions bpt,
t = 1, ..., T in a given region for N individuals and that there
is a positive integer J such that T = 2J. Each individual’s
DNAm profile in this region is treated as a signal, measured
with an error. More precisely, M0, i(bp) denotes the ‘true’
DNAm value of individual i at physical position bp (base
pair), and Mi(bp) is the observed version of M0, i(bp).

Figure 1. Bivariate plot of Lh (x-axis) and min (ph, pv) (y-axis). Each dot
corresponds to a DNA region. The y-axis is square-root transformed to
make is easier to see small values of min (ph, pv). The displayed observa-
tions were generated using the simulated dataset in the paper by Lee and
Morris (16).

We assume that

Mi (bp) = M0,i (bp) + εi (bp), (1)

where, for a fixed bp, the �i(bp) are independent and identi-
cally distributed over N individuals.

The wavelet transform performs local integrals to rep-
resent the DNAm profile. In principle, wavelet transform
is analogous to Fourier transform, but instead of esti-
mating the signal/function by performing global integrals,
wavelet transform performs local integrals. Wavelet trans-
form can thus identify signal modifications for different
time points/locations and frequencies, which are commonly
referred to as the time/frequency localization property of
wavelet transform.

For a given region and individual i, we decompose the re-
spective DNAm profile using Haar wavelet (simply referred
to as wavelet transform in the rest of the paper). In essence,
Haar wavelet estimates a function within an interval by gen-
erating local integrals at each step of the function (here, the
DNAm profile). The integrals are called wavelet coefficients
and are calculated for gradually smaller regions, half the
size at each step. The wavelet coefficients are indexed using
a two-digit code (s, l), where the first number, s, corresponds

https://github.com/william-denault/WaveletScreening
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Figure 2. A schematic overview of WS. The upper part of the figure represents the DNAm profiles of three randomly selected individuals for illustration
purposes. The curved arrows represent the corresponding wavelet transformations. The bottom diagram represents the modeling of each wavelet coefficient.
Each of these steps (1–4) is explained in greater detail in the main text.

to the scale, while the second number, l, corresponds to the
location. For example, (3,4) refers to the coefficient at the
third scale, located at the step 4

23 within the region.
The first step in the above calculation is an integration

of the function over the entire selected region, which corre-
sponds to the first wavelet coefficient, i.e. coefficient (0,0).
The second step consists of calculating the integral twice:
(i) over the first half of the interval (coefficient (1,1)) and
(ii) over the second half of the interval (coefficient (1,2)).
Thus, each subsequent step performs the integration over
twice the number of intervals. Each of these steps defines a
scale, which is also known as resolution or frequency. In our
case, this process is repeated J times up to the scale J, given
that our defined region has T CpGs, where T = 2J.

In addition to the above time/frequency localization
property, wavelet transform is an efficient signal-denoising
tool. This is because smaller wavelet coefficients capture
more of the noise in the measured function. Shrinking the
small wavelet coefficients enables the removal of noise from
the observed signal, a process known as wavelet shrinkage
(17). In the current WS framework, we use the approach of
Kovac and Silverman (40) to handle heteroscedastic noise
in the wavelet shrinkage as well as to account for unevenly-
spaced CpGs.

We now proceed with a description of step 2 in Figure 2.
We first shrink each individual’s coefficients to obtain a set

of wavelet coefficients based on the observed CpGs, which
we call Ws, l. The scale s is between 1 and J, and the location
l is between 1 and 2s. We model the effect of each coefficient
on the trait � by reverse-regressing each wavelet coefficient.
The model is

Ws,l = β
s,l
0 + β

s,l
1 � + β

s,l
C C + ε, (2)

where C is a set of confounders, and � is normally dis-
tributed noise with mean 0 and unknown variance. For con-
ciseness, we dropped the individual index i in Equation (2).
This model can handle either continuous or discrete traits.
Lastly, as the shrunken wavelet coefficients are not normally
distributed, we quantile-transform each wavelet coefficient
across all the individuals, which reduces the number of false-
positive findings due to distributional issues (41). To find all
the � coefficients, we use Bayesian linear modeling with a
Normal prior on β

s,l
1 (42), which gives the estimation β̂

s,l
1 .

In practice, we use a vague prior, i.e. with a large standard
deviation, centered at zero. Our software implementation
also allows the use of the standard frequentist linear model.

Extracting summary statistics

In step 3 in Figure 2, we extract additional information
from the estimations performed in step 2 and use it to
build the test statistic in step 4. We model β̂

s,l
1 as being
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generated from two normal distributions, each representing
the following hypotheses: H0 : β

s,l
1 = 0 and H1 : β

s,l
1 �= 0.

We estimate the coefficients of the mixture model using an
expectation-maximization (EM) algorithm (43). Then, us-
ing the coefficients of the mixture model, we compute the
posterior probability of H1 knowing β̂

s,l
1 , which is referred

to as π̂s,l . We use the EM algorithm instead of the posterior
distribution of β

s,l
1 to compute these posterior probabilities

because the β
s,l
1 are not independent and tend to have the

same sign when the scanned region is associated with the
trait of interest (39). Thus, using the EM algorithm allows
taking advantage of such clustering, whereas using individ-
ual β

s,l
1 posterior probability distributions would lower the

estimation of the probability of |βs,l
1 | > 0.

As π̂s,l can be considered to be noisy wavelet coefficients,
we shrink π̂s,l to reduce the noise from the estimation pro-
cedure. Rebuilding a signal using these coefficients would
reconstruct an unscaled/dilated version of the proportion
of association. As the quality of these estimates is a func-
tion of the sample size and the number of coefficients in the
wavelet transform, we impose a thresholding approach that
is a function of the sample size and the analysis scale. Simi-
lar to Donoho and Johnstone (44), we suggest the following
thresholding:

π̃alt,l,s = max

(
π̂l,s − 1√

2log(n)
√

2s
, 0

)
. (3)

Other thresholding approaches can also be used, such as
those described by De Canditiis et al. (45) or Nason (17),
but the above shrinkage is computationally fast and does
not require any additional computation or modeling.

Next, we construct the two summary statistics that will
subsequently be combined in step 4. The first summary
statistic (Lh, see Equation 4) quantifies the degree of asso-
ciation between the trait and the wavelet coefficients.

Lh =
J∑

s=0

1
2s

2s∑
l=1

π̃alt,s,lφ
(
β̂

s,l
1 ; μ̂alt, σ̂

2
alt

)
(4)

− (1 − π̃alt,s,l ) φ
(
β̂

s,l
1 ; 0, σ̂ 2

null

)
. (5)

Here, �(x; �, �2) is the density of a normal distribution
N(�, �2), with mean � and variance �2 at the point x. The
terms μ̂alt and σ̂ 2

alt correspond to the estimated parameters
of the distribution of β̂

s,l
1 under the alternative hypothesis

H1, whereas the term σ̂ 2
null corresponds to the estimated pa-

rameter of the distribution of β̂
s,l
1 under H0. In our previous

work (21), we suggested using the average of the weighted
difference between the likelihood taken under H1 and H0
for each β̂

s,l
1 as a test statistic. In our current analyses, the

weights are the estimated posterior probability of H1 know-
ing β̂

s,l
1 and the estimated posterior probability of H0 know-

ing β̂
s,l
1 , respectively.

We now construct the second summary statistic min (pv,
ph) (see Equation 6) that quantifies the amount of grapes
pattern. Following the works of Crouse et al. (38), Ma and
Soriano (39) and our own (21), we assumed that, if a region

is associated with �, then the posterior probability of H1
(i.e., π̃alt,s,l ) exhibits a grapes pattern (see Figure 4). In other
words, the associated β̂

s,l
1 would tend to be within the same

region. Next, we extract two summary statistics, ph and pv,
corresponding to the proportion of association per scale
(i.e. horizontally) and subset (i.e. vertically), respectively.

ph =
J∑

s=0

1
2s

2s∑
l=1

π̃alt,s,l (6)

pv =
J−1∑
k=1

1
nk

J∑
s=1

� 2J k
J−1 �∑

l=� 2J (k−1)
J−1 �

π̃alt,s,l (7)

nk = Card
(

(s, l), ∀s ∈ [1, J] , l ∈
[⌊

2J (k − 1)
J − 1

⌋
,

⌊
2J k

J − 1

⌋])
(8)

In our previous work (21), we observed that the minimum
of (pv, ph) is only marginally correlated with Lh under H0
but exhibits a clear correlation with Lh when a region is as-
sociated with � (see Figure 1). To increase the power for
detecting a DMR, we take advantage of this difference in
correlation between Lh and min (pv, ph).

Combining the summary statistics

Finally, we build the combined test statistic TSλ∗ (step 4 in
Figure 2) using the above summary statistics and the hyper-
parameter � (see Equation 9).

TSλ
= Lh + λ · min(ph, pv) (9)

We select the hyperparameter � via a data-driven proce-
dure described in our original WS paper (21). In brief, we
assume that Lh is normally distributed, and select a value of
�, denoted as �*, that is as large as possible and that matches
a fitting normal distribution criterion for TSλ∗. We then use
this TSλ∗ as a test statistic. We illustrate the result of this pro-
cess in Figure 3. The distribution of TSλ∗ for the ‘not differ-
entially methylated region’ ‘not DMR’ remains close to the
distribution of Lh for the ‘not DMR’, while the distribution
of TSλ∗ for the DMR shifts away from the null distribution.

We assess the significance of each regional test statistic
(TSλ∗) by simulating it under H0. This can easily be done
using the null distribution of β̂

s,l
1 (for additional details, see

page two of the Supplementary Data in Servin and Stephens
(46)). Simulating a million observations of TSλ∗ under H0
can be executed in <5 min on an ordinary laptop.

Handling low-scale regions

L h tends to be normally distributed within the high-scale
regions (scale ≥6). Therefore, the normality assumption can
be used when analyzing large regions that are more densely
populated with observations, as would be the case with an
imputed GWAS dataset containing over 8 million SNPs,
a high-density DNAm dataset generated on the CHARM
platform (47), or data generated using whole-genome bisul-
phite sequencing (WGBS). However, most DNAm datasets
tend to have low probe density, especially those emanating
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Figure 3. Distribution of the test statistic TSλ∗. The observations displayed
here were generated using the simulated dataset from the Lee and Morris
paper (16). The upper panel shows the distribution of Lh (� = 0). The lower
panel shows the distribution of TSλ∗ = Lh + λ × min(ph , pv) (� = 15).

from array-based measurements. Under such conditions,
the scale of our analysis would be low a priori (e.g. below
5), and the Lh statistics may not be normally distributed be-
cause only a few coefficients would be available to compute
this average. For instance, a scale of 3 corresponds to only
16 coefficients, a scale of 8 to 512 coefficients, a scale of 9 to
1024 coefficients, and so forth.

To handle the issue of non-normality, we apply a Box-
Cox transform (48) to the −Lh statistics, based on the em-
pirical observation that Lh is negative. We simulate Lh 106

times under H0 and use the simulated value to optimize
the choice of �BC, which is the parameter of the Box-Cox
transform on −Lh. We select the λ̂BC that maximizes the
likelihood function and transform the observed lh (called l ′h
and L′

h , respectively) using the transformation fλ̂BC
: x −→

− (−x)λ̂BC . Finally, we apply the procedure described in the
previous subsection on ‘Combining the summary statistics’
to the equation below:

T′
Sλ

= L′
h + λ · min(ph, pv) (10)

When we applied the above method to our OFCs DNAm
dataset, the simulations yielded λ̂BC = 0.595 and �* = 26.
These values were subsequently used to assess the signif-

icance of each region. Supplementary Figures S1 and S2
confirm that the transformed test statistic has a good fit.

Post-processing of the WS output

Mapping procedure for subregions. Although most of the
associations detected by WS covered an entire region, a few
of the associations only covered a region partially. We call
such partially associated regions ‘subregions’. One may de-
tect a subregion when analyzing larger regions that are more
likely to contain several distinctly associated subregions, as
illustrated in Figure 4. For downstream analyses, we focus
on subregions that showed an association with OFCs (see
the subsection below on ‘Procedure for selecting DNAm re-
gions’). We thus implement the following mapping strategy
in our WS R package: for each associated region, we select
the β̂

s,l
1 with a non-thresholded posterior probability of be-

longing to H1 (π̃alt,s,l ). These β̂
s,l
1 correspond to the over-

laid regions (highlighted as colored rectangles in Figure 4).
We then extract the coordinates of the associated subregions
that contribute to the wavelet coefficient s, l, using the map-
ping function in our WS R package.

GSEA in combination with an over-representation analysis.
GSEA is a widely used computational tool for analyzing the
output of a genetic association study (49–51). It can be used
to determine whether an a priori defined set of genes shows
statistically significant and concordant differences between
two biological states (for further details on the method, see
the paper by Subramanian et al. (52) and http://software.
broadinstitute.org/gsea/index.jsp).

For a given set of genes G of length l, and for each item
in the Molecular Signatures Database (MSigDB) of anno-
tated gene sets for the GSEA, the over-representation anal-
ysis compares the number of genes in G that are annotated
with a specific term to the expected number of genes anno-
tated with this term if l genes were selected at random from
the entire genome. Figure 7 explains the rationale behind
the overrepresentation analysis. The P-values for each gene
annotation are obtained using Fisher’s exact test for hyper-
geometric distributions. Owing to its simplicity and robust-
ness compared to other methods for GSEA, we used the
online-based GSEA platform, WebGestalt (50), to query a
large list of gene-annotation databases simultaneously and
to perform an over-representation analysis in each of these
databases. It is well-documented that a GSEA may be bi-
ased due to differences in the number of CpG sites associ-
ated with different classes of genes and gene promoters (15).
However, since they require a P-value for each CpG, the
published implementations of unbiased GSEAs for DNAm
(e.g. (51,53)) cannot be applied directly to the output of WS.

APPLICATION OF WAVELET SCREENING

OFCs dataset

The main dataset for the current analyses comes from
the Norway Facial Cleft Study (36), a large Norwegian
population-based case–control study of OFCs comprising
750 cases and 1100 controls. DNAm data were only avail-
able on a subset of the infants (418 OFCs cases and 480

http://software.broadinstitute.org/gsea/index.jsp
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Figure 4. Region containing multiple subregions associated with OFCs. The differently colored rectangles highlight the regions with non-thresholded π̂s,l .
The dots represent the estimated β̂

s,l
1 , with the size of a dot being proportional to its absolute value. Different colors are used to indicate the sign of β̂

s,l
1

(blue for negative, red for positive). β̂
s,l
1 close to zero are shown in white within a colored rectangle.

controls). The OFCs cases comprised 167 cases with cleft
lip and cleft palate (CLP), 144 cases with cleft palate only
(CPO) and 107 cases with cleft lip only (CLO) (14). DNAm
was measured on the Illumina 450K platform using DNA
derived from heel-prick blood samples from the infants. In-
formation on known confounders was collected via self-
administered questionnaires (36).

The criteria for quality control have been described in
the original EWAS by Xu et al. (14). Briefly, low-quality
methylation data were filtered out using Illumina’s bisul-
phite internal control, and probes with >5% low-quality
data were excluded (Illumina detection P-values ≤10−6, n =
23 264 CpGs). Probe outliers and samples with ambiguous
sex were also removed. To avoid confounding of effects by
common SNPs, 53 247 CpGs that had a neighboring SNP
with a minor allele frequency ≥0.05 (for a European pop-
ulation) were removed. Finally, n = 1488 CpGs with mul-
timodal DNAm level distributions were removed using the
ENmix R package (54). The data were also corrected for sex
and plate number.

After the above quality control, 868 individuals (456 con-
trols and 412 OFCs cases (i.e. 167 CLP, 140 CPO and 105
CLO)) and 407 513 CpGs from the original 497 513 CpGs
were left for the current analyses. We focused only on the au-
tosomes and analyzed all three cleft subtypes together (n =
412) against the controls.

Procedure for selecting DNAm regions

In their investigation, Jenkinson et al. (8) considered 3 kb-
long stretches of DNA containing at least 10 CpGs. In the

Figure 5. Overview of the selection of DNAm regions.

worst-case scenario, this would result in an average distance
of 500 bp between any two adjacent CpGs. We use a simi-
lar criterion and analyze regions containing at least 9 CpGs
separated by a maximum distance of 500 bp. We choose 9
instead of 10 CpGs for practical reasons. First, this leads
to the inclusion of more CpGs in our analyses. Second, in
order to use the interpolation scheme of Kovac and Silver-
man (40) for analyzing unevenly-spaced signals at scale J,
one needs to have at least 2J + 1 observations. Using a scale
of 3 (i.e. J = 3) would entail having at least 23 + 1 = 9 CpGs
per analyzed region.

Figure 5 provides a schematic overview of the procedure
for selecting DNAm regions. In contrast to all the previ-
ously mentioned methods and analytic approaches, we do
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not analyze regions of a fixed size but instead consider re-
gions of variable sizes (see Figure 6).

The 407 513 CpGs remaining after the original 497 513
CpGs were subjected to quality control and were subse-
quently used to define DNAm regions according to the two
main criteria mentioned above: (i) a given region must con-
tain at least 9 CpGs and (ii) any pair of adjacent CpGs must
not be separated by >500 bp. This resulted in a total of
10 984 distinct regions, which we refer to as our discovery
set. Collectively, these regions represent approximately 31%
of the assayed CpGs on the Illumina 450K platform.

Based on the rationale above, we use a scale of 3 to an-
alyze each region. Applying a Bonferroni correction leads
to a significance level of 0.05

10 984 = 4.5 × 10−6 for the 10 984
above-defined regions. In the Results section, we describe
the outcome of this analysis and provide further details re-
garding the regions detected by WS.

Permutation

We perform permutations for each run of WS to demon-
strate its reliability. The observed trait (here, OFCs) and the
CpG sites are used to estimate the proportion of false posi-
tives per run. An EWAS is first performed using a permuted
phenotype to assess the type I error, and the P-value for
each region (for the permuted phenotype) is subsequently
computed. The proportion of P-values below the Bonfer-
roni threshold of 4.5 × 10−6 provides an empirical estimate
of the proportion of false positives per run. The above per-
mutation is repeated 100 times to obtain a reliable estimate
of the proportion of false positives.

Simulated dataset

To further investigate the power of WS, we applied it to a
simulated dataset that can be found at http://odin.mdacc.
tmc.edu/∼jmorris/simulated data.Rdata. This dataset was
generated on the CHARM platform (47) and consists of 26
methylation profiles on chromosome 3 containing a total
of 75 069 probes. The phenotype (�) is a binary indicator
corresponding to either a cancer cell (� = 1) or a control cell
(� = 0). The simulations are designed to ensure that the two
groups have the same DNAm profile for all CpGs, except
for the 1901 loci reported to be differentially methylated in
Irizarry et al. (6). More details on the simulated dataset can
be found in the Supplementary Data of the paper by Lee
and Morris (16).

As explained in the subsection ‘Procedure for selecting
DNAm regions’, we divided the DNAm profile into regions.
To evaluate the performance of WS on denser platforms, we
used a stricter criterion to divide the region, i.e. each region
must contain at least 17 CpGs (1 + 24), with any two adja-
cent CpGs separated by a maximum distance of 500 bp. This
pre-processing resulted in a total of 1213 regions, which in-
cluded 1875 of the 1901 loci reported by Irizarry and col-
leagues (6), distributed between 89 of the 1213 defined re-
gions. For each region, we investigated whether the CpG
patterns varied in the cancer (n = 13) versus control (n =
13) cells. As each region contains at least 17 CpGs, we used
a depth of analysis of 4. The script for these analyses is pro-
vided in the Supplementary Data.

To contrast the performance of WS against other popular
software for DMR detection, we analyzed the 1213 defined
regions using Bumphunter (3) and ‘Wavelet-based Func-
tional Mixed Models’ (WFMM) (16,18). Note that a com-
parison with DMRcate (11) was not possible because the
implementation of DMRcate does not support the analysis
of data from the CHARM array. WFMM is a wavelet-based
functional modeling that can be used to detect DMRs (16).
It uses an empirical Bayes approach to perform a regular-
ization of the estimated effect, and the modeling can take
into account a large range of correlations between the ob-
served DNAm profiles. WFMM can thus handle repeated
measures of DNAm.

When applied to the simulated dataset of repeated
measurements available at http://odin.mdacc.tmc.edu/∼
jmorris/simulated data.Rdata, WFMM processed all
75 069 CpG sites in one go and computed the posterior
probability of each CpG site being above a set threshold
(here 0.1 and 0.05) for being associated with cancer. As the
data are measured twice on each patient (once in control
cells and once in cancer cells), we ran WFMM by specify-
ing the correlation structure between paired observations.
Next, following the approach by Lee and Morris (16), we
transformed the posterior probabilities of the CpGs into
Bayesian FDR values (16).

Furthermore, in order to compare WFMM with WS, we
first needed to assign a regional significance criterion for
WFMM. To do this, we used the minimum Bayesian FDR
value for all the CpGs within a region of interest. After run-
ning WFMM on the entire dataset, we used the minimum
Bayesian FDR values for each of these regions as a measure
of significance.

Like WFMM, Bumphunter (3) can also be used to de-
tect a DMR based on a given threshold. However, unlike
WFMM, Bumphunter starts by estimating the effect of can-
cer on the methylation level at each CpG site and then
smooths the estimated effects using ‘locally estimated scat-
terplot smoothing’ (Loess) (55). If the smoothed effects con-
tain several adjacent CpGs that have an effect above the set
threshold, Bumphunter declares this set of CpGs as being a
DMR. Finally, the significance of each DMR was assessed
using a permutation procedure. Bumphunter was run using
the same threshold as for WFMM (0.1 and 0.05). We used
the Bumphunter implementation in the Minfi package (56),
which requires re-running the method for each considered
threshold. Similarly, as with WFMM, we used each DMR
p-value to compute its corresponding FDR.

Finally, for each method and threshold, we saved the ac-
tual running time as a measure of efficiency. All the com-
putations were performed on a laptop equipped with an In-
tel(R) i7-700HQ 2.80 GHz processor and 8 GB of RAM.

RESULTS

Testing the power of WS using a simulated dataset

Despite the application of a more stringent criterion to de-
fine the regions of the discovery set on the CHARM plat-
form, we still managed to analyze 98% of the available
CpGs. This is a substantial increase in coverage compared
to the sparser platforms (450K and EPIC 850K). We de-
tected 90 regions with a P-value below 10−5 (Bonferroni-

http://odin.mdacc.tmc.edu/~jmorris/simulated_data.Rdata
http://odin.mdacc.tmc.edu/~jmorris/simulated_data.Rdata
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Figure 6. Distribution of the number of CpGs per region for the 82 associated regions (upper panel) and for a total of 10 984 analyzed regions (the discovery
set; lower panel).

Figure 7. Schematic overview of the over-representation analysis. The left panel displays the expected overlap between a set of annotated genes and the
genes associated with OFCs. The right panel displays an over-represented annotated set of genes for OFCs.
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Table 1. Number of regions detected by WS, WFMM, and Bumphunter
according to different correction criteria. NA: not applicable

Method Threshold FDR Number Number Run
level of detected of true time (s)

regions regions

WS NA 5% 95 89 61
WS NA 1% 92 89 61
WFMM 0.1 5% 86 86 23 521
WFMM 0.1 1% 77 77 23 521
WFMM 0.05 5% 89 89 23 521
WFMM 0.05 1% 89 89 23 521
BH 0.1 5% 64 64 3 948
BH 0.1 1% 64 64 3 948
BH 0.05 5% 86 85 11 449
BH 0.05 1% 86 85 11 449

corrected for 1000 tests) out of the regions that contained all
the differentially methylated CpGs. These 90 regions con-
tained two false positives. Similarly, we detected 86 out of
the 89 regions with a P-value below 10−6, which, again, con-
tained two false positives (Bonferroni-corrected for 10 000
tests). This corresponds to a power of 98.8% and 94.2%, re-
spectively.

When using a false-discovery rate (FDR) of 0.01, we de-
tected 92 associated regions. These 92 regions contained
three false positives. By contrast, we detected 95 regions
with an FDR = 0.05. Those regions contained the 89 truly
associated regions and six false-positive regions (this corre-
sponds to a false discovery proportion of ≈ 6%, which is
close to the expected proportion of false discovery (5%)).

Table 1 summarizes the results of the analyses by WS,
WFMM, and Bumphunter. Overall, WS is significantly
faster than WFMM and Bumphunter, and has higher
power for detecting DMRs. The results of the analysis
by WS contain a few more false positives than those by
WFMM and Bumphunter. However, the number of false
discoveries with WS remains in the range of expected false
discoveries at each nominal level of FDR. Assessing power
is easier with WS, as this does not need a predefined thresh-
old for detecting DMRs. By contrast, WFMM and Bum-
phunter search for DMRs at a given threshold, and their
power can therefore only be evaluated at a given threshold.
The thresholds we used (0.05 and 0.1) are somewhat conser-
vative, especially when compared to the standard threshold
of 0.25 used in the Minfi package (56) for Bumphunter.

Taken together, the high coverage of the analysis (98.11%
of the CpGs) coupled with the high power (100% with an
FDR = 0.01) demonstrate the versatility and robustness of
WS for denser platforms. We provide a script in the Supple-
mentary Data to allow other researchers to reproduce the
results of our analysis here based on the simulated dataset
by Lee and Morris (16).

Applying WS to a DNAm dataset of OFCs

We used WS to screen for associations between DNAm pro-
files and OFCs, and conducted additional analyses to assess
the reliability of the method. The permutations showed that
94 regions were below the Bonferroni threshold of 4.5 ×
10−6, which corresponds to one false discovery per run. In
addition, the calibration of the test statistic confirmed that

there was a good fit, as indicated by the normal Q-Q plot
of the observed test statistics in Supplementary Figures S1
and S2.

Based on this calibration, 82 regions were found to be as-
sociated with OFCs. These regions are highlighted in bold in
Supplementary Table S2. Even though a variable region size
was used to analyze the selected regions, WS did not appear
to be biased towards any specific region size. Figure 6 shows
that the distribution of the discovery set (10 984 regions)
was similar to that of the associated regions (Kolmogorov–
Smirnoff test P-value =0.53). Furthermore, WS did not ap-
pear to be biased towards any specific type of CpG site
(CpG island, shore or open sea).

We applied the mapping procedure outlined in the sub-
section ‘Post-processing of the WS output’ to the 82 re-
gions found to be associated with OFCs, and identified a
further 120 associated subregions. We specified the coordi-
nates of the subregions in the UCSC Table Browser (57)
(http://genome.ucsc.edu) to determine whether the subre-
gions contained any genes. This led to the identification
of 84 genes within the subregions (Supplementary Table
S2). To explore the relevance of these genes, we used We-
bGestalt (50) to perform GSEA. A total of 84 genes were
enriched for 53 traits/biological processes at an FDR be-
low 5%, and 166 traits/biological processes were enriched
at an FDR below 10% (Supplementary Table S1).

The list of genes and loci showing an association with
OFCs and other craniofacial anomalies is provided in Sup-
plementary Table S2. Strikingly, WS found associations
with several genes previously implicated in OFCs and other
craniofacial anomalies (highlighted in bold in Supplemen-
tary Table S2 and described in more detail in Table 2). In
addition, our GSEA revealed several biological processes
known to be involved in the morphogenesis of craniofa-
cial features. These include ‘positive regulation of cellular
biosynthetic processes’ (FDR = 0.0037), ‘negative regula-
tion of developmental processes’ (FDR = 0.0136), ‘regu-
lation of cell migration’ (FDR = 0.0154) and ‘regulation
of cell differentiation’ (FDR = 0.0274) (see also Supple-
mentary Table S1). Furthermore, in line with the criti-
cal roles played by cellular adhesion and junction organi-
zation in the spatio-temporal fusion of the primary and
secondary palates, GSEA identified a link with ‘regula-
tion of cell adhesion’ (FDR = 0.042), ‘regulation of cell
junction assembly’ (FDR = 0.0462), ‘cell junction assem-
bly’ (FDR = 0.0779), and ‘adherents junction organiza-
tion’ (FDR = 0.0896). It also identified several abnormal-
ities associated with OFCs (58–60), including ‘congenital
malformation of the left heart’ (FDR = 0.0274), ‘smooth
philtrum’ (FDR = 0.0416), ‘abnormality of dental mor-
phology’ (FDR = 0.0483), ‘abnormality of the dental root’
(FDR = 0.0531), and ‘abnormality of brain morphology’
(FDR = 0.0951).

DISCUSSION

This paper presents a fast and powerful wavelet-based ap-
proach for analyzing DNAm data from different platforms,
irrespective of their probe density. To showcase the util-
ity of WS, we applied it to the largest EWAS dataset of
OFCs to date. Only a handful of studies have investigated

http://genome.ucsc.edu
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Table 2. Genes identified by WS that have previously been linked with OFCs and craniofacial anomalies

Gene symbol Comments Reference(s)

ATP6V0A2 Connected to OFCs via a study of a consanguineous family afflicted with the rare congenital
disorder Autosomal recessive Cutis laxa type IIA (ARCL2A). Two of the affected individuals
in this family had cleft lip and palate along with several other clinical features.

(71)

CBFB Encodes a co-factor of the RUNX family of transcription factors and is part of the
RUNX1/CBFB-STAT3-TGFB3 signaling axis. Both RUNX1 and TGFB3 are known to play
central roles in the fusion of the primary and secondary palatal shelves. In humans,
haploinsufficiency for CBFB results in cleft palate, among several other clinical
manifestations (72), and, in mice, a nonfunctional Cbfb disrupts the formation of the anterior
palate.

(72,73)

DRD2 Encodes the D2 subtype of the dopamine receptor. The combination of a specific DRD2
polymorphism (the Taq1 A1 allele) and OFCs is associated with fewer inattentive ADHD
symptoms.

(74)

EVC,
MSX1 and
STK32B

Located in the 4p16 locus. MSX1, EVC and STK32B have been associated with OFCs, which
suggests that several genes at the 4p16 locus might be influencing the risk of OFCs. MSX1 has
long been recognized as a major gene for OFCs. For example, knocking out MSX1 in mice
causes a complete cleft of the secondary palate and several other craniofacial defects.
Furthermore, a nonsense mutation in MSX1 in a Dutch family was found to segregate with
tooth agenesis and mixed clefting, pointing to an important role for MSX1 in normal facial
morphogenesis.

(75–78)

F3 Identified by investigating DNAm and genetic influences on the liability to isolated CL/P.
Despite an extensive literature search, however, we were unable to find other connections
between F3 and OFCs. It would, nevertheless, be premature to discard this gene as a false
positive until other independent OFCs cohorts have run their EWASes and are able to provide
a more definitive answer.

(34)

LDB1 Transcription co-factor. Almaidhan and co-workers demonstrated that Ldb1 is essential for
normal development of the secondary palate in mouse embryos. This gene is involved in
pathways that mediate epithelial–mesenchymal interactions during palatogenesis.

(79,80)

SENP2 Involved in a post-translational modification called sumoylation, which has a well-documented
function in palatogenesis. A patient with isolated CLP had a balanced reciprocal translocation
resulting in haploinsufficiency for SUMO1. The protein product of this gene belongs to the
small ubiquitin-like modifier (SUMO) protein family. Mice carrying a Sumo1-hypomorphic
allele were reported to develop cleft palate.

(81,82)

SHOX2 Belongs to the homeobox family of genes. There is a large body of evidence demonstrating an
intrinsic requirement for SHOX2 in normal palatogenesis. In humans, mutations in SHOX2
are associated with idiopathic short stature. Shox2 deficiency in mice results in the
development of an incomplete cleft affecting the anterior (hard) region of the palate.

(83–89)

SYT14 Member of the synaptotagmin gene family. Among a multitude of functions, synaptotagmins
regulate the release of neurotransmitters stored in synaptic vesicles in response to a rise in the
level of intracellular calcium. Mutations in SYT14 have been linked to several human
neurodegenerative disorders. A GWAS of 144 cleft palate trios from a Western Han Chinese
population showed evidence of a gene-by-gene interaction between a SNP in SYT14, and
another SNP located 37 kb from the gene ‘UTP25 small subunit processor component’
(UTP25).

(90)

TBX5 Belongs to the T-box gene family containing a DNA-binding motif called the T-box domain
that binds to DNA in a sequence-specific manner. Several members of this gene family have a
well-established role in human developmental syndromes. For example, mutations in TBX22
cause a syndromic form of clefting known as ‘X-linked cleft palate with or without
ankyloglossia’ (CPX). Ak-Qattan et al. reported a novel missense mutation in TBX5 in a Saudi
infant with Holt–Oram syndrome. In a more recent study of a Chinese population of isolated
CL/P trios, a gene-by-gene interaction was reported between a SNP in TBX5 and another SNP
in ‘fibroblast growth factor 10’ (FGF10). The connection between TBX5 and FGF10 is
particularly noteworthy given previous evidence of a strong association between isolated CL/P
and a common genetic variant in FGF10, as well as the importance of the FGF10–FGFR2
pathway in human orofacial development.

(91–93)

WDR19 (alias
IFT144)

Mutations in genes comprising the IFT machinery, of which IFT144 is a key component,
underlie a pleiotropic group of diseases and syndromic disorders known as ciliopathies. Cilia
are motile hairlike structures on the surface of eukaryotic cells that enable the cells to move
around through fluids. Consistent with the phenotypes in humans, mutations in Ift144 lead to
several phenotypes in mice that closely resemble the skeletal and craniofacial anomalies
observed in patients with ciliopathies.

(94)

NPAT/ATM Identified by investigating genotypic differences between cases with non-syndromic CL/P and
controls in a Polish cohort.

(95)
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CpGs in the context of OFCs (13,14,34,61,62), and they
were either based on single-CpG modeling or regional tests
using the software Comb-p (12) or Bumphunter (3). Fur-
thermore, they were limited by the relatively small sample
sizes (typically, 50–70 OFCs cases) and the lack of statisti-
cal power and flexibility of the methods in handling more
complex DNAm profiles. The high coverage of the analy-
sis with WS (98.11% of the CpG sites) coupled with its high
power (100% with an FDR = 0.01) demonstrate the robust-
ness of WS for denser platforms.

The enhanced flexibility and statistical power of WS in
modeling different types of omics data is an important step
forward in addressing the issue of missing heritability in
OFCs and other complex traits (63). Although WS does not
provide any direct estimates of heritability, its downstream
analyses, such as the GSEA and the accompanying over-
representation analysis, may assist in identifying genes that
might have been overlooked by conventional methods. This
makes WS a particularly versatile and attractive tool for an
initial screening of a given DNAm dataset in order to un-
cover additional genes and loci that are associated with the
trait.

GSEA analysis

Our GSEA of the OFCs dataset revealed several key bio-
logical processes known to be involved in the morphogen-
esis of craniofacial features. These include the regulation
of developmental processes, cell migration, cellular differ-
entiation and cellular adhesion (64–66). Non-isolated (syn-
dromic) OFCs are accompanied by other abnormalities,
including congenital heart defects, hypodontia and other
dental anomalies, and abnormal brain morphology, among
others (58–60). Our OFCs sample included non-isolated
cases to enable an exploration of comorbidities that might
share a common genetic background with isolated clefts.
Hence, it is not surprising to observe an enrichment for sev-
eral congenital malformations in our gene set of 84 genes.

In particular, the links between OFCs and dental anoma-
lies are noteworthy, given the known connections between
these phenotypes (67–69). Furthermore, in line with the
results of a recent Mendelian randomization analysis by
Howe et al. (61), our GSEA also showed an enrichment
for the phenotype ‘smooth philtrum’ (FDR = 0.0416), fur-
ther supporting the hypothesis that OFCs and the philtrum
share a common genetic pathway owing to their physical
proximity (70).

Genes identified by WS in OFCs

Identifying 11 genes that have previously been linked with
OFCs and other craniofacial anomalies (Table 2), either di-
rectly or indirectly through their involvement in key molec-
ular circuits regulating craniofacial development, under-
scores the robustness and validity of WS. These connections
also point to the potential involvement of a large number of
genes acting in concert to orchestrate the many delicate pro-
cesses that contribute to the morphogenesis of the human
face (70). It would thus be premature to dismiss the veracity
of the remaining genes and loci displayed in Supplementary
Table S2 merely on the basis of the absence of a published

link with OFCs in the literature. We have thus opted to pub-
lish the entire list of genes and loci detected by WS to enable
other OFCs researchers to contrast their findings with ours
after having run their analyses using WS (or a comparable
method).

Comparison with previous studies

A previous analysis of the same OFCs dataset consisted of
three separate epigenome-wide analyses (14). The first was a
logistic regression carried out on each CpG, while the other
analyses were regional tests conducted using the software
DMRcate (11) and Comb-p (12). Xu et al. (14) defined a
DMR as a region containing at least two CpGs separated
by ≤1 kb, with a Šidák multiple testing-corrected P-value
of <0.05. They used a fixed window size of 1 kb in both
the DMRcate and Comb-p analyses. Compared to our ap-
proach, however, they only considered regions of a fixed size
and did not take CpG density into account. Their analy-
ses detected only two significant differentially methylated
CpGs, one with CL/P and the other when CPO was com-
bined with CLP. No DMRs were detected by DMRcate for
any of the cleft subtypes, but 37 DMRs were detected by
Comb-p when all the cleft subtypes were analyzed together.
In the DMRs detected by Comb-p, only five had >9 CpGs
(one on chromosome 1 and four on chromosome 6). Even
though these DMRs were not present in our discovery set,
WS nonetheless detected four associated regions on chro-
mosome 6 that are near the DMRs detected by Xu et al. (14)
and Phan et al. (68) (see Supplementary Table S2 for more
details).

Our discovery set did not overlap with the 11 methy-
lation variable positions (MVPs) reported by Alvizi et al.
(62). In that paper, the authors performed an EWAS of
CLP cases versus controls in a Brazilian OFCs sample and
selected eleven of the top MVPs from a total of 578 de-
tected MVPs for replication in a British cohort. Only three
of the 578 MVPs from the Brazilian study overlapped with
our discovery set. These contained the CpGs cg07949612,
cg21284370 and cg26420824, located in the genes ‘NFU1
iron-sulfur cluster scaffold’ (NFU1), ‘Diacylglycerol kinase
eta’ (DGKH) and ‘ATP synthase inhibitory factor subunit
1’ (ATP5IF1), respectively. The lack of overlap in findings
could be attributed to the relatively small sample size of
the Brazilian discovery sample (68 cases and 59 controls)
compared to ours. Moreover, the authors specifically stud-
ied CpGs related to CLP alone, and not to the combined
sample of all the OFCs subtypes.

Similar to the Brazilian study, our results showed little
overlap with those of Howe et al. (34), except for the Coag-
ulation factor III, tissue factor (F3) gene. Howe et al. inves-
tigated whether genetic risk variants influenced DNAm as-
sociated with all the OFCs subtypes combined versus con-
trols. Several scenarios were investigated using Mendelian
randomization to explore which CpGs were associated with
the combined sample of all the OFCs subtypes versus the
controls. In all the considered scenarios, Howe et al. first
performed a ‘forward selection’. In this first step, 21 CpGs
were found to be associated with the combined sample of all
OFCs subtypes. In particular, an association was detected
with cg09549015 located in F3. However, when Howe et al.
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investigated more complex causal scenarios based on the
forward selection, the association with F3 disappeared. As
already mentioned, F3 also showed up in our discovery set.

Methodological considerations

We opted to showcase our method by applying it to the com-
bined sample of all three cleft subtypes. However, cases with
isolated OFCs, i.e. those without any accompanying con-
genital anomalies, are routinely split into three main sub-
types: CLO, CLP and CPO, with CLP often collapsed with
CLO to form the cleft lip with or without cleft palate (CL/P)
category. We analyzed all the cleft subtypes together, but a
more comprehensive application to each subtype separately
could potentially unravel additional insights into the genetic
heterogeneity across these cleft subtypes, especially when a
large enough sample size has accrued to allow such subanal-
yses with adequate power.

Another important methodological consideration is that
our regional test models the effect of the DNAm profile for a
given region directly. This differs from previous approaches
to regional modeling of DNAm data, where single-CpG as-
sociations were processed into a regional test (3,5,11,12,16).
WS initially decomposes the individual regional DNAm
pattern into wavelet coefficients (i.e. into a functional rep-
resentation of the DNAm profile) and then uses these coef-
ficients to perform the regional test. Compared to the ap-
proach by Morris and Carroll (18), we model the effect
of each wavelet coefficient independently, which results in
higher computational efficiency because a sampling algo-
rithm such as MCMC is no longer required. Thus, WS has
a markedly lower computational burden than traditional
methods for EWAS, and it is possible to perform a full
genome-wide analysis of 1000s of individuals on a single
CPU in a matter of 2−3 h.

Another major advantage of WS is that it allows the use
of principal components to adjust for population stratifi-
cation and other confounding factors. Given that WS does
not require a preassigned threshold (as is, for example, the
case with Bumphunter (3) and WFMM (16)), it enables a
more straightforward comparison of results across studies.
When using the simulated dataset from the study by Lee and
Morris (16), WS showed higher power and was significantly
faster than both Bumphunter and WFMM. The large dif-
ference in run time between the three methods can be ex-
plained by the different procedures used by each method to
assess the significance of a DMR (i.e. bootstrap by Bum-
phunter, MCMC by WFMM, and Monte-Carlo by WS).

• Bumphunter tests for systematic differences in DNAm
profiles between cases and controls. When Bumphunter
detects a difference larger than a set threshold between
cases and controls, it evaluates its significance using a
bootstrapping procedure. Therefore, Bumphunter per-
forms a bootstrap for each potential DMR. As the num-
ber of potential DMRs increases when the threshold is
lowered, the run time of Bumphunter increases accord-
ingly. Table 1 illustrates this phenomenon.

• WFMM estimates the change in DNAm profile between
cases and controls along the entire genome using a
wavelet-based approach that requires the use of MCMC.

WFMM then uses the draws from the posterior distribu-
tion of the change in DNAm profile to detect a DMR.
The MCMC in WFMM carries most of the computa-
tional burden.

• WS computes regression coefficients between the wavelet-
transformed DNAm profile and then applies an EM algo-
rithm to detect clusters of associations. The main advan-
tage of WS is that the test statistics of all the screened re-
gions (TSλ

) have the same null distribution and can thus be
simulated quickly. Hence, WS only needs to simulate the
null distribution once, as opposed to Bumphunter where
each potential DMR has a different null distribution that
needs to be simulated separately.

Finally, the analysis coverage of WS increased to 98%
with data from the CHARM platform. The current Illu-
mina EPIC platform contains approximately 850K CpG
sites, which is almost twice the number of probes than the
former 450K platform. If the next generation of DNAm
platform doubles the number of interrogated CpG sites,
its density will increase to a level similar to that of the
CHARM platform, which means that WS would be able
to analyze a similar percentage of CpG sites (roughly 98%).
In addition, the recent introduction to whole-genome bisul-
fite sequencing (WGBS, see the application note at https:
//www.illumina.com/) at reduced cost (96) will contribute to
substantially larger EWASes and thereby higher power for
WS analyses.

CONCLUSION

We analyzed a discovery set of 10 984 DNAm regions cover-
ing approximately 30% of the CpGs on the 450K platform
and used extensive simulations to demonstrate the robust-
ness and reliability of WS. The percentage of CpGs cov-
ered is expected to rise with the application of significantly
denser platforms, such as the EPIC 850K and CHARM.
Our analyses of the OFCs dataset identified 82 associated
regions containing a large number of genes and loci previ-
ously reported to influence the risk of OFCs, while others
are novel and await replication in other cohorts. Although
our primary focus was on EWAS, WS is highly versatile
and easily amenable to the analysis of other types of omics
data. It has now become relatively straightforward to gain
access to the results of a large number of publicly avail-
able EWASes through various data repositories around the
world (e.g. the GEO database (97)). We thus envisage WS
to become an attractive tool for re-analyzing these datasets,
enabling the discovery of additional genes and loci that
might have been missed by previous efforts.
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Lasota,A., Dunin-Wilczyńska,I., Lianeri,M. and Jagodziński,P.P.
(2014) Genetic variants in BRIP1 (BACH1) contribute to risk of
nonsyndromic cleft lip with or without cleft palate. Birth Defects Res.
Part A: Clin. Mol. Teratol., 100, 670–678.

96. Suzuki,M., Liao,W., Wos,F., Johnston,A.D., DeGrazia,J., Ishii,J.,
Bloom,T., Zody,M.C., Germer,S. and Greally,J.M. (2018)
Whole-genome bisulfite sequencing with improved accuracy and cost.
Genome Res., 28, 1364–1371.

97. Barrett,T., Wilhite,S.E., Ledoux,P., Evangelista,C., Kim,I.F.,
Tomashevsky,M., Marshall,K.A., Phillippy,K.H., Sherman,P.M.,
Holko,M. et al. (2013) NCBI GEO: archive for functional genomics
data sets––update. Nucleic Acids Res., 41, D991–D995.


