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In Brief
Proteomics faces the challenge
of reproducibly comparing the
protein expression profiles
across large sample cohorts.
Here, we combined two hitherto
opposing analytical strategies,
DIA and isobaric labeling to
generate highly reproducible,
quantitative “proteome
signatures”. These signatures
decouple peptide identification
from quantification to
quantitatively compare hundreds
of samples. DIA-TMT data
provides complete quantitative
signatures independent of
peptide identification that
distinguish cell types down to
single protein knockouts in high-
throughput even at ultralow
input.
Highlights

• DIA-TMT provides reproducible, quantitative proteome signatures at high throughput.

• Proteome signature inferred cell type characterization is highly accurate.

• Proteome signatures accurately highlight underrepresented cell types.

• ID-independent DIA-TMT is more reproducible than standard DDA acquisition strategies.
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TECHNOLOGICAL INNOVATION AND RESOURCES
Comparative Proteome Signatures of Trace
Samples by Multiplexed Data-Independent
Acquisition
Claudia Ctortecka1 , Gabriela Krššáková1,2,3, Karel Stejskal1,2,3, Josef M. Penninger2,4,
Sasha Mendjan2, Karl Mechtler1,2,3, and Johannes Stadlmann2,5,*
Single-cell transcriptomics has revolutionized our under-
standing of basic biology and disease. Since transcript
levels often do not correlate with protein expression, it is
crucial to complement transcriptomics approaches with
proteome analyses at single-cell resolution. Despite
continuous technological improvements in sensitivity,
mass-spectrometry-based single-cell proteomics ulti-
mately faces the challenge of reproducibly comparing the
protein expression profiles of thousands of individual
cells. Here, we combine two hitherto opposing analytical
strategies, DIA and Tandem-Mass-Tag (TMT)-multi-
plexing, to generate highly reproducible, quantitative
proteome signatures from ultralow input samples. We
developed a novel, identification-independent proteomics
data-analysis pipeline that allows to quantitatively
compare DIA-TMT proteome signatures across hundreds
of samples independent of their biological origin to identify
cell types and single protein knockouts. These proteome
signatures overcome the need to impute quantitative data
due to accumulating detrimental amounts of missing data
in standard multibatch TMT experiments. We validate our
approach using integrative data analysis of different
human cell lines and standard database searches for
knockouts of defined proteins. Our data establish a novel
and reproducible approach to markedly expand the
numbers of proteins one detects from ultralow input
samples.

Single-cell proteomics aims at assessing protein expression
within individual cells with far-reaching opportunities for a
better understanding of fundamental biology or disease
states. Currently, protein analysis at single-cell resolution is
still largely antibody based, therefore relying on the availability
of such. This not only greatly limits the throughput of
these techniques, but also requires preformed hypotheses
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(i.e., flow cytometry and mass cytometry). At present, mass-
spectrometry-based proteomics is the only viable technol-
ogy for discovery and hypothesis-free protein analysis.
While the comprehensive proteomic characterization of in-

dividual mammalian cells is still limited by the sensitivity of
current MS/MS-based workflows, the concept of multiplexed
shotgun proteomics analyses of individual cells in conjunction
with a highly abundant, congruent carrier proteome has been
seminal to the field (1). The use of established in vitro stable-
isotope labeling techniques (e.g., TMT) not only increases
precursor- and fragment-ion abundances for peptide identifi-
cation and quantification from ultralow input samples, but also
increases sample throughput. Currently, such multiplex
single-cell proteomics workflows have allowed for the quan-
titative analysis of up to 13 barcoded single cells in one
analytical run (2).
Nevertheless, paralleling state-of-the-art transcriptomic

datasets, single-cell proteomics ultimately faces the challenge
to comparatively analyze hundreds or even thousands of
ultralow input proteomics samples (3–5). Such sample sizes
vastly exceed the capacities of any currently available MS
multiplexing technology (6). Merging large numbers of indi-
vidual quantitative shotgun proteomics files into one dataset
often entails that a considerable number of peptides are not
reliably identified in all analytical runs (7). This method-intrinsic
accumulation of “missing values” greatly limits the use of such
data-dependent acquisition (DDA) strategies for the compar-
ative analysis of protein levels in large sample numbers, as are
necessary for reproducible single-cell proteomics, which is
currently addressed by various computational data imputation
or “match-between runs” methods (8–10).
By contrast, data-independent acquisition (DIA) regimes,

which subject all precursor ions within a defined m/z window
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Proteome Signatures by DIA-TMT
to MS/MS analysis, have been shown to allow for the robust
quantification of protein expression, even across extremely
large sample cohorts (11). Recently, DIA strategies were
further extended to sequentially windowed DIA schemes
(SWATH), specifically designed to cover all theoretical mass
spectra and to thereby provide deep proteome coverage
(12, 13). To develop a scalable high-throughput data-acqui-
sition strategy for comparative single-cell proteomics, we
combined in vitro multiplexing strategies for MS/MS-based
quantification (i.e., TMT10-plex Isobaric Label Reagent Set)
and small window DIA data-acquisition regimes (i.e., m/z = 6
Th) for the analysis of ultralow protein amounts.
EXPERIMENTAL PROCEDURES

Sample Preparation

Tryptic digests were obtained from Promega (K562, catalogue
number: V6951) and Thermo Fisher (HeLa, catalogue number: 88328)
and were TMT10-plex-labeled according to manufacturer’s in-
structions. Briefly, samples were labeled in 100 mM TEAB and 10%
ACN for 1 h at room temperature and subsequently quenched with 5%
hydroxylamine/HCl for 20 min at room temperature and subsequently
mixed corresponding to each TMT10 plex. To exclude any label
specific effects, three mixes were compiled as follows: Mix 1:
K562 cell lysate channels: 126, 127N, 127C, 128N, 128C – HeLa cell
lysate channels: 129N, 129C, 130N, 130C, 131; Mix 2: inverted Mix 1;
Mix 3: K562 cell lysate channels 126, 127C, 128C, 129C, 130C - HeLa
cell lysate channels: 127N, 128N, 129N, 130N, 131. Prelabeled Pierce
TMT11-plex Yeast Digest Standard (catalogue number: A40938) was
resuspended in 0.1% TFA and diluted to 0.5, 1, 5 and 10 ng total
peptide input.

LC MS/MS Analysis

Samples were measured on an Orbitrap Exploris 480 Mass Spec-
trometer (Thermo Fisher Scientific) with a Dionex UltiMate 3000 high-
performance liquid chromatography RSLCnano System (Thermo
Fisher Scientific) coupled via a Nanospray Flex ion source (Thermo
Fisher Scientific) equipped with FAIMS Pro (Thermo Fisher Scientific).
Reversed-phase chromatographic separation was performed on a
μPAC (50 cm, PharmaFluidics) column or nanoEase M/Z Peptide BEH
C18 Column (130 Å, 1.7 μm, 75 μm × 150 mm, Waters) developing a
two-step solvent gradient ranging from 2 to 20% over 47 min and from
20 to 32% ACN in 0.08% formic acid within 15 min, at a flow rate of
250 nl/min.

For both, DIA and DDA experiments, the FAIMS Pro device was
constantly operated at a compensation voltage of −50. In DDA LC-
MS/MS experiments, full MS data were acquired in the range of 370
to 1200 m/z at 120,000 resolution. The maximum automatic gain
control (AGC) and injection time were set to 3e6 and automatic
maximum injection time. Multiply charged precursor ions (2–5) were
isolated for higher-energy collisional dissociation MS/MS using a 2 Th
wide isolation window and were accumulated until they either reached
an AGC target value of 2e5 or a maximum injection time of 118 ms.
MS/MS data were generated with a normalized collision energy (NCE)
of 34, at a resolution of 60,000, with the first mass fixed to 100 m/z.
Upon fragmentation precursor ions were dynamically excluded for
120 s after the first fragmentation event.

DIA experiments were acquired in the most densely populated
precursor range of 400 to 800 m/z at a resolution of 45,000, based on
multiple analytical runs of human whole cell digests. The AGC was set
2 Mol Cell Proteomics (2022) 21(1) 100177
to 2e5 and the maximum injection time was automatically determined
for each scan. DIA windows were constructed under the premise of
sampling every chromatographic peak at least twice, yet limiting
intentional coisolation of multiple precursors to a minimum. With an
average full width at half maximum of all chromatographic peaks of
8 s, a corresponding average DIA cycle time of 8 s allowed the defi-
nition of 80 DIA windows per cycle, acquired with a 5 Th isolation
windows (5 Th windows, 1 Th overlap) with stepped NCE 35, 37.5,
and 45.

Data Analysis

TMT10-plex reporter ion (RI) quantification was performed within
the Proteome Discoverer environment (version 2.3.0.484) using the in-
house developed, freely available PD node “IMP-Hyperplex”
(pd-nodes.org) with a reporter mass tolerance of 10 ppm. The soft-
ware extracts raw RI intensities from respective spectra for
quantification.

Peptide identification was performed using the standard parame-
ters in SpectroMine 2.0 against the human reference proteome
sequence database (UniProt; version: 2018-11-26 accessed April
2019; 20,253 entries) and the yeast reference proteome sequence
database (Uniprot; version: 2019-07-25; accessed November 2019;
6049 entries). Specific tryptic enzymatic cleavages with maximum two
missed cleavages were allowed and limited to 7 to 52 amino acids per
peptide. We included carbamidomethlylation on cysteine, TMT10-plex
on lysine, and all N-termini as fixed modifications, while acetylation on
protein N-terminal peptides and methionine oxidation were set to
variable. SpectroMine by default automatically calculates the optimal
mass tolerances at the MS and MS/MS levels and performs a mass
calibration for each feature. Identifications are then filtered for 1% FDR
on the peptide-to-spectrum match (PSM), peptide and protein group
level (Supplemental Data S1–S4).

TMT10-plex spectral libraries for Spectronaut were generated from
the 10 ng DDA files (HeLa/K562 including 8030 and TKO11-yeast with
6511 precursors) and adapted using a customized script, kindly pro-
vided by Oliver Bernhard from Biognosys (deposited on GitHub
ctorteckac/DIA-TMT). In brief, the script adds the defined RI masses of
the TMT10-plex reagents per modified peptide as additional fragment
ion to each MS/MS scan. This modified library allows Spectronaut to
search the DIA runs against the provided TMT library including all TMT
fragment ions. Only spectra scoring above the 1% FDR cutoff as
described in the SpectroMine search parameters were included into
the TMT library. For the library searches, Spectronaut calculates the
ideal mass tolerances similarly for library generation and spectral
matching, based on extensive automated mass calibration. For this
the most intense peak within the previously defined mass tolerance is
selected and matched with a minimum of three matching fragment
ions per MS/MS scan. Retention time (RT) referencing was performed
based on the iRT Reference Strategy using Deep Learning Assisted
iRT Regression with minimum R2 of 0.8. Decoy spectra are generated
in a “mutated”manner, where the amino acid positions are scrambled,
which were then used for FDR filtering of 1% on precursor and protein
levels (Supplemental Data S5–S8).

Peptide-based data aggregation was performed using standard
parameters via Spectronaut or SpectroMine for DIA or DDA, respec-
tively (Fig. 1A). By default, global median normalization is performed
across all experiments. RI intensities were directly imported into R for
further processing. PSMs were filtered to unique peptides using the
best scoring (Q-value) PSM for subsequent analysis. Venn Diagrams
are based on unique peptide sequences and were calculated using
BioVenn (Supplemental Data S2, S4, S6, and S8) (14).

Identification (ID)-independent RT alignment was based on the
elution time points of eight doubly charged precursors (466.7743,
660.3674, 464.779, 437.2732, 587.3539, 587.864, 706.4723)

http://pd-nodes.org


Proteome Signatures by DIA-TMT
observed in all runs and was performed prior to ID-independent data
aggregation using a “dual indexing approach” (illustrated in Fig. 1B). In
detail, DIA MS/MS scans were indexed according to isolation window
(m/z = 1, …, m) and RT (RT = 1, …, n), resulting in a unique index (dID)
per MS/MS in each analytical run.

⎡
⎢⎢⎣
RI1,1 ⋯ RI1,m
⋮ ⋱ ⋮
RIn,1 ⋯ RIn,m

⎤
⎥⎥⎦

Based on the dID and the prescheduled acquisition scheme, all MS/
MS scans are classified into a complete matrix. Each matrix presents
quantitative values of all RIs present in the scan (i.e., scan Nr.: 1, dID =
1:1, quantitative values for 126, 127N,… 131N; Fig. 1B). Each TMT10-
plex analytical run therefore gives rise to ten unique quantitative
matrices based on dID, which subsequently allow to aggregate mul-
tiple analytical runs without the accumulation of missing data (Fig. 1C).
Multibatch ID-independent datasets were normalized by scaling to
equal signals per channel. If indicated, missing value imputation was
performed based on random numbers from normal distribution shifted
into the noise by 1.8 in log10 space (15). For both, peptide-based and
ID-independent analysis, a ComBat-based batch correction was
performed within the R environment using the sva package (16, 17).

Fragments Per Kilobase of transcript per Million mapped reads
(FPKM) values were extracted directly from the publicly available
ENCODE project (GEO accession: GSE33480) from HeLa and K562
datasets, from which fold changes were calculated. For both DIA and
DDA data, PSMs were grouped according to their Master Protein
Accession, RI intensities were averaged across replicates, and fold
changes in protein expression between HeLa and K562 were calcu-
lated. Using the Uniprot database “Retrieve/ID-mapping” web inter-
face, protein accessions were converted to gene names, which were
then intersected with the transcriptome-derived FPKM fold changes.
Remaining proteins/transcripts were plotted according to their tran-
script fold change, and the top 300 protein fold changes are indicated
with the respective color. Gene names are indicated for the top 30
transcripts.

Experimental Design and Statistical Rationale

In the present study, TMT10-plex labeled HeLa and K562 dilution
mixes (channel distributions detailed in the sample preparation sub-
section) at 0.5, 1, 5, and 10 ng peptide input were acquired with one
technical replicate per mix, three technical replicates per peptide
input, and a total of 12 analytical runs (i.e., 120 samples). The TKO11
yeast samples were acquired with one technical replicate per peptide
input and a total of four analytical runs (i.e., 44 samples). We did not
acquire multiple technical replicates per peptide input to mimic lower
numbers of “underrepresented” cell types in comparison to the HeLa/
K562 samples. In this benchmarking study, we only compare sample
dilutions and therefore do not present standard controls or biological
replicates. Protein expression correlation is calculated via Pearson
correlation with 95% confidence.

RESULTS

DIA-TMT Provides Reproducible, Quantitative Proteome
Signatures

We hypothesized that DIA of multiplexed ultralow input
samples would overcome detrimental, DDA-inherent missing
data points in multibatch TMT datasets, similarly to what has
been reported previously (13, 18). To reduce precursor inter-
ference, we performed small window DIA (i.e., 6 Th, detailed in
Experimental Procedures) of TMT10plex-labeled tryptic
digests derived from two human cell lines (i.e., HeLa and
K562), serially diluted to total peptide amounts similar to those
expected for single mammalian cells (i.e., 0.3 ng and lower)
(19). Based on the prescheduled acquisition schemes of our
DIA-TMT datasets, we aimed at generating comprehensive,
quantitative “proteome signatures” rather than sparse
peptide-identification-based profiles to detect subtle expres-
sion changes in trace samples. For this, all datasets were first
RT aligned, based on the elution timepoints of eight doubly
charged peptide precursor ions, evenly distributed across the
entire analytical gradient and consistently detected in all
samples. The RT-aligned data was then aggregated using our
“dual indexing approach,” based on the central m/z of the
respective isolation window and the acquisition cycle number
as indices. These two characteristics (i.e., m/z and RT) gave
rise to unique identifiers (dID) for each MS/MS scan and, in
conjunction with the sample-specific RI intensities, resulted in
an abstract 3D map of the respective samples, which we refer
to as “proteome signatures” (Fig. 1B; detailed in Experimental
Procedures). Importantly, these “proteome signatures”
comprise the quantification of a consistent set of in bona fide
peptide signals across all analytical runs.
To evaluate the immediate applicability of our “proteome

signatures” in an ID-independent cell type specific clustering
approach, the extracted raw TMT RI intensities from all
aggregated MS/MS spectra, irrespective of peptide identifi-
cation (using the in-house developed PD-Node IMP-Hyper-
plex), were analyzed by PCA. This consistently yielded more
than 25,000 datapoints from each DIA-TMT run and resulted in
successful clustering of the expected cell populations, for all
samples, even at 0.5 ng total protein input (Fig. 1D). In detail,
the first principal component (PC), which is displayed on the
x-axis, separates the cell lines with over 95% explained vari-
ance, while the second PC, representing only 2% of the
variance, discriminates between the individual analytical runs
(y-axis) (Fig. 1D). This confirms that the ID-independent anal-
ysis of DIA-TMT data facilitates cell-type-dependent clus-
tering down to 50 pg peptide input per sample. Additionally,
we demonstrate that the chance of coisolating two precursors
in the same cycle and m/z window with exact opposing
expression patterns, which would nullify the respective
quantitative differences, is very unlikely.
We next assessed the scalability of our ID-independent DIA

approach. To evaluate whether large sample cohorts would
impact the proposed data completeness of our “proteome
signatures,” we merged all 12 DIA datasets based on their dID.
Intriguingly, we observed mix-independent cell type clus-
tering, with over 95% explained variance in PC1 (Fig. 1E).
Additionally, DIA afforded the consistent accumulation of
31,602 datapoints across all samples measured (Fig. 1E). This
data highlights that DIA does indeed generate robust and
highly congruent “proteome signatures” from larger sample
sizes, even at ultralow input. Most importantly, the anticipated
coisolation and cofragmentation of multiple precursors and
Mol Cell Proteomics (2022) 21(1) 100177 3



FIG. 1. ID-independent DIA-TMT analysis creates cell type specific clusters. A, peptide-based data aggregation of DIA-TMT results in a
decrease overlap between replicates without computational generation of quantitative data. B, all MS/MS scans from the DIA-TMT files are
indexed using the dual indexing (dID) = [RT1,2,…,m × m/z1,2,…,n] according to the RT (RT 1, 2, …, m) and central mass (m/z 1, 2, …, n). In
conjunction with the quantitative RI values, a grid-like 3D map or proteome signature is created, which is used for (C) ID-independent data
aggregation theoretically resulting in a complete overlap of all MS/MS scans. PCA of (D) three DIA-TMT runs (30 multiplexed samples) at 0.5 ng
total peptide input or (E) 12 DIA-TMT runs (120 multiplexed samples) at four peptide inputs (0.5, 1, 5, 10 ng) ID-independently aggregated.
Samples are colored according to channel loadings and the respective peptide inputs are indicated with different symbols. H = HeLa cells, K =
K562 cells. n, number of MSMS scans included in PCA.

Proteome Signatures by DIA-TMT
background ions are therefore identical across analytical runs
and do not result in batch effects (Fig. 1, D and E). Further, the
acquisition scheme facilitates uniform sampling of the noise
but capitalizes quantitative differences via the RI quantifica-
tion. While even with small isolation windows, coisolation of
multiple precursors is inevitable in DDA, the static sampling
schemes in DIA result in uniform signal and noise ratios (7).

Proteome Signatures of Single-Protein Knockouts by
ID-Independent Data Aggregation

Numerous approaches aim at correcting batch effects in
multibatch data sets, either pre- or postacquisition (7, 20, 21).
Most importantly, however, using such statistical correction
methods, peptides that were only identified in a subset of all
analytical runs are extremely prone to overnormalization or
exclusion. The need for such data-correction procedures thus
critically limits the detection of underrepresented or unex-
pected cell types (e.g., infiltrated tumor samples).
We therefore investigated whether the DIA strategy in

conjunction with ID-independent data aggregation would
allow discriminating between highly similar single protein
knockout cell lines without the need for such “data correction”
4 Mol Cell Proteomics (2022) 21(1) 100177
strategies. Therefore, we generated DIA datasets using the
yeast TKO11 standard at four input levels, i.e., 10, 5, 1, and
0.5 ng total peptide in technical triplicates. This commercially
available TMT11-plex labeled tryptic TKO11 yeast standard,
comprising three different single knockout (met6, his4, ura2)
and wild-type yeast strains, has frequently been used for TMT
benchmarking experiments (22).
While the combination of multiple analytical DIA runs of

human cell lines capitalizes on their substantial biological
differences (Fig. 1, D and E), the minimal disparity between the
TKO11 single-protein knockout yeast strains results in a less
clear separation (Fig. 2B). More specifically, clusters 1 and 2
only comprise the WT strain and the met6 knockout, respec-
tively; however, cluster 3 combines his4 and ura2 knockouts
with a trend toward cell-type-dependent separation. Eventu-
ally, to determine the drivers of the observed cell-line clus-
tering displayed in Figure 2B, we subjected the DIA TKO11
runs to a standard database search using Spectronaut. We
identified met6 and ura2 proteins down to 1 ng total peptide
input. We then intersected the identified MS/MS scans with
the loadings of our proteome signature clustering and
confirmed these scans as drivers of separation. Even though



FIG. 2. Proteome signatures are input, batch, and species-independent across large sample cohorts. A, overview of isobaric labeled
mixes. PCA of (B) four and (C) 16 DIA-TMT runs ID-independently aggregated at four peptide inputs (0.5, 1, 5, 10 ng). D, zoom into TKO11 cluster
displayed in panel C. E, PCA of 16 DIA-TMT runs at four peptide inputs (0.5, 1, 5, 10 ng) with standard peptide-based aggregation and (F) zoom
into TKO11 cluster displayed in panel E. Samples are colored according to channel loadings and the respective peptide input is indicated with
different symbols. H = HeLa cells, K = K562 cells and the respective TKO11 strains (i.e., WT, knockouts: met6, his4, ura2). n, number of unique
peptides included in PCA.

Proteome Signatures by DIA-TMT
we did not identify any of the ablated proteins in the 0.5 ng
DIA-TMT data, our ID-independent data aggregation strategy
still allowed for cell-type-dependent clustering (supplemental
Fig. S1). Most importantly, this suggests that DIA-TMT re-
covers relevant quantitative differences between cell types of
low abundant precursors, otherwise excluded by peptide-
based analysis. Additionally, our findings demonstrate that
standard database searches can be used to infer hypothesis
free cell type identifications to the ID-independent proteome
signatures of underrepresented cell types.

ID-Independent DIA-TMT Data Highlights
Underrepresented Cell Types

Furthermore, the prospect of species- and cell-type-
independent analysis would allow to postacquisitively recog-
nize and characterize underrepresented cell types in an
otherwise homogeneous dataset. To evaluate the sensitivity of
our method, we merged the analogous datasets of our HeLa
and K562 data with the yeast TKO11 standard. Strikingly, our
ID-independent DIA data analysis retained critical cell type
specific characteristics based on 32,363 quantitative MS/MS
scans across 164 samples without the need for any imputa-
tion whatsoever (Fig. 2C). Thus, PC1 with 70% explained
variance separates the main three cell types (i.e., HeLa, K562,
yeast), and PC2 with 22% explained variance further differ-
entiates the two species. Of note, despite the large variance
between two species and the two human cell lines, a zoom
into the TKO11 cluster of ID-independent DIA data showed
that we readily separate between the single yeast mutant
strains (Fig. 2D).
To again determine the driver of the cell-type-dependent

clustering, we performed standard database searching of
the aggregated dual-proteome dataset using Spectronaut.
The low sequence overlap between yeast and human
drastically decreased complete peptide identifications to
merely 16 unique peptides. We therefore performed “missing
data” imputation based on commonly used Perseus pa-
rameters and aggregated all datasets (23). Missing values
were replaced with random numbers from a normal distri-
bution shifted into the noise. Based on the largely compu-
tationally generated quantitative data, yeast and human
species could be separated via the first PC (Fig. 2E; with
71% explained variance). Importantly, however, separation
of the individual single protein knockouts was exclusively
observed in the ID-independent strategy (Fig. 2D). This
contrasts with the peptide-based and noise-imputed data
where species and cell types are successfully clustering
apart (Fig. 2E) but single protein knockouts do not (Fig. 2F).
Mol Cell Proteomics (2022) 21(1) 100177 5



Proteome Signatures by DIA-TMT
Thus, our DIA acquisition scheme results in a homogeneous
dataset, which can detect such small differences within
highly similar and distinct samples and precludes “missing
data”.

Proteome Signature Inferred Cell Type Characterization Is
Highly Accurate

To validate that our workflow faithfully distinguishes cell
types (i.e., HeLa and K562), we reanalyzed the merged data
sets using Spectronaut, projected the resulting peptide iden-
tifications onto the data tables and calculated fold changes in
protein abundance between clusters A and B (displayed in
Fig. 1E). This data analysis allowed us to compare the protein
expression levels of 1741 proteins across the 12 analytical
runs. To align differential protein expression to transcriptome
data, we then calculated fold changes of FPKM values of
HeLa and K562 cells, which are publicly available via the
ENCODE project (GEO accession: GSE33480) (24). Using the
Uniprot database, Ensembl GeneIDs from the transcript data
and Protein Accession numbers from Spectronaut, we map-
ped the expressed genes to our proteomics analysis (1707
proteins/transcripts). Transcript levels of HeLa and K562 were
plotted against protein expression; the top 300 protein fold
changes of cluster A and B shown in Figure 1E. We observed
FIG. 3. DIA-TMT accurately reflects cell type specifics with increas
proteome data, top 300 and 60 proteins are colored according to cluster c
sequences identified across three technical replicates at indicated peptid
3 = blue). D, peptide-based DDA (purple) and DIA (blue) or ID-independen
MS/MS scans, respectively across 12 analytical runs at decreasing pep
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reduced protein fold changes as compared with the tran-
scriptomics data (protein-level: ranging from −2.5 to 4.1,
transcript-level ranging from −27.3 to 27.4 in log2 space), as
expected (Fig. 3A) (25). Importantly, however, fold changes of
the transcriptomics results paralleled our proteomics data,
confirming that our ID-independent data analysis approach
can indeed identify cell type specific clusters (Fig. 3A). This
suggests that our proteome signatures allow for robust
clustering and discrimination of cell types, while database
reanalysis of these clusters reveals their cellular identity.

DIA-TMT Identifications Are More Reproducible Than
Standard Acquisition Strategies

Next, we evaluated the reproducibility of DIA-derived
peptide identifications in ultralow input data. For this, we
only considered peptides that were repeatedly identified in
all three technical replicates at a given total peptide input
level. As expected, at 10 ng total peptide input, we observed
that DIA indeed provides highly consistent peptide identifi-
cations across multiple analytical runs (i.e., >90% central
overlap) (Fig. 3B). Importantly, this key benefit of DIA stra-
tegies was gradually lost with decreasing peptide input,
presumably because of decreasing total ion current (Fig. 3B).
Such reduction in peptide identification overlaps within
ed replicate overlap. A, intersection of transcriptome (FPKM) with DIA
ontributions or labeled, respectively. Venn Diagrams of unique peptide
e input of (B) DIA and (C) DDA data (mix 1 = purple, mix 2 = gray, mix
t DIA (turquoise) accumulation of nonoverlapping peptides or indexed
tide input (i.e., 0.5, 1, 5, 10 ng).
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replicates we expected to observe from stochastic DDA, but
not DIA data. To determine whether this was sample intrinsic
or indeed more pronounced in standard DDA strategies, we
generated analogous datasets of HeLa and K562 mixes or
TKO11 yeast samples at indicated total peptide input (i.e.,
0.5, 1, 5, 10 ng). We subjected those to standard database
searching using SpectroMine and again only included unique
peptides consistently identified in three technical replicates
at indicated peptide inputs. As expected, this data shows
that, already at 10 ng total peptide input, DDA fails to provide
consistent peptide identifications across multiple replicates
(Fig. 3C). Further, across all inputs we observed a drastic
reduction in peptide identifications of up to 50% when
intersecting only two replicates for DDA analysis without
data imputation (Fig. 3D). This is partially recovered in DIA
data, despite total peptide identifications being generally
much lower when compared with DDA data (Fig. 3D). In
contrast to the standard peptide-based data analysis work-
flows, for both acquisition strategies, the ID-independent
approach for DIA-TMT consistently yielded more than
30,000 datapoints across all replicates and peptide input
(Fig. 3D). Our findings suggest that despite the reduction in
peptide sequence overlap at ultralow input, the ID-
independent data analysis strategy indeed also recovers
quantitative data from ultralow abundant precursors. Addi-
tionally, the universal RT alignment and postprocessing
strategy subsequently poses the chance of recovering
peptide identification of sparse MS/MS scans and to char-
acterize the cell type in detail.

DIA-TMT Outperforms Standard DDA in the
Characterization of Cell Types

Finally, to directly compare state of the art peptide-based
DDA strategies to our ID-independent DIA-TMT data, we
merged triplicates of HeLa and K562 mixes at 0.5 ng total
peptide input and subjected them to standard database
search using SpectroMine. Due to the strong reduction of
datapoints available for postprocessing, we performed noise
imputation for both peptide-based datasets, as described
above. Although different numbers of data points (i.e., DDA:
4810, DIA: 1822) were used for PCA, both unique peptide
sets allowed a distinction between the two human cell lines
via the first two PCs, even at 0.5 ng total peptide level
(Fig. 4, A and B). Additionally, despite the slightly com-
pressed fold changes in DIA compared with the DDA,
quantification of common proteins positively correlates
(Fig. 4, C and D). Importantly, like DIA-TMT data, the
peptide-based analysis of ultralow input DDA data paralleled
published RNAseq data of HeLa and K562 cells (Fig. 4D).
However, despite noise imputation, the merged DDA data-
set only yields 1147 protein groups to intersect with RNA-
seq data, which contrasts with 1707 protein groups for DIA-
TMT data (Figs. 3A and 4D). This suggests that the peptide-
based analysis of both DIA and DDA data recapitulates
expected protein abundance and fold changes between cell
lines (Figs. 3A and 4D).
Further, despite higher identifications in DDA, the precursor

stochasticity reduces replicate overlap to less than 40% of
unique peptides identified per analytical run or requires
computational generation of quantitative data. For example, at
0.5 ng total peptide input, we identified 1302 and 3843 PSMs
or 1202 and 3348 unique peptides in the DIA and DDA
acquisition modes, respectively (supplemental Fig. S2, A–D).
Peptide-based data aggregation of three 0.5 ng total peptide
input samples constrains the dataset to 1471 and 503 unique
peptides for DIA and DDA data, respectively. The 10 ng total
peptide input samples yielded 6308 and 8030 PSMs or 5598
and 7144 unique peptides from DIA and DDA data, respec-
tively. After merging three replicates at 10 ng total peptide
input, the dataset was reduced to 4371 or 5418 unique pep-
tides DIA and DDA data, respectively (Fig. 3, B and C). This
data indicates that despite higher numbers of initial peptide
identifications in DDA, the majority are not identified across
replicates. This contrasts with DIA-TMT where down to 500 pg
per sample more than 70% of all unique peptide identifica-
tions are identified across multiple replicates without the need
to computationally generate quantitative data (Fig. 3C).
Next, we assessed if peptide-based and noise-imputed

DDA data would perform similarly to DIA-TMT data in
defining and characterizing underrepresented cell types. For
this, all 16 HeLa and K562 or TKO11 yeast datasets were
merged and subjected to standard database search using
SpectroMine. Peptide-based aggregation yielded only 18
peptides shared across all 16 analytical runs, which is partially
due to the stochastic precursor sampling but again mainly a
result of low sequence overlap between yeast and human. We
therefore performed noise imputation and included all 15,423
peptide identifications in the PCA. Interestingly, similar to
both, the ID-independent and peptide-based DIA-TMT anal-
ysis, the three main cell types cluster based on PC1 with 68%
explained variance and the two cell types (i.e., yeast and hu-
man) are separated on PC2 with 31% explained variance
(Figs. 2, C and E and 4E). However, in contrast to ID-
independent DIA-TMT analysis (Fig. 2D), the peptide-based
DDA data does not separate the single protein knockouts
(Fig. 4F). This shows that while peptide-based and noise-
imputed datasets mostly recapitulate the expected cellular
identity, in large homogeneous datasets, only the ID-
independent DIA-TMT analysis successfully identifies single
protein knockouts.
DISCUSSION

Taken together, we here demonstrate that ID-independent
DIA is scalable and yields meaningful clusters of both,
closely related cell types (HeLa versus K562), different com-
posites of distinct species (human versus yeast), and even
single protein knockout cell lines (TKO11 yeast). Our
Mol Cell Proteomics (2022) 21(1) 100177 7



FIG. 4. Identification-independent data aggregation allows for the analysis of closely related cell types. PCA of three analytical runs with
standard peptide-based data aggregation at 0.5 ng total peptide input and missing value imputation of (A) DDA or (B) DIA acquisition schemes.
n = number of unique peptides included in PCA. C, correlation of the average log2 fold change of proteins identified in DDA and DIA experiments
displayed in Figures 3A and 4C. r = Pearson correlation estimate. D, intersection of transcriptome (FPKM) with DDA proteome data with top 300
proteins colored according to cluster contributions and top 60 proteins are labeled. n = protein identifications across all analytical runs after
missing value imputation. PCA of 16 DDA runs based on peptide-based data aggregation with missing value imputation runs at four peptide
inputs (0.5, 1, 5, 10 ng). F, zoom into TKO11 cluster displayed in panel E. Samples are colored according to channel loadings and the respective
peptide input is indicated with different symbols. H = HeLa cells, K = K562 cells and the respective TKO11 strains (i.e., WT, knockouts: met6,
his4, ura2). n, number of unique peptides included in PCA.

Proteome Signatures by DIA-TMT
combination of isobaric multiplexing in DIA acquisition mode
allows to generate comprehensive proteome signatures in-
dependent of sample origin or input level. We demonstrate
that DIA in conjunction with our ID-independent data aggre-
gation strategy averts the accumulation of “missing data” and
retains quantitative data across multiple TMT batches without
the need to impute computationally generated values (Figs. 1,
D and E and 2, B–F). This is in stark contrast to the standard
peptide-based method, which drastically reduces quantitative
information even in combination with data imputation in the
analysis of ultralow input samples (Fig. 4, A and B).
Our ID-independent multiplexed DIA anticipates coisola-

tion, cofragmentation, or ratio compression and takes
advantage of the unique sample profile generated through
the conjunction of noise, background, and precursor ions.
While ratio compression in general is a well-known drawback
of RI-based quantification (even in DDA approaches with
small isolation windows) (20, 25, 26) with numerous ap-
proaches to characterize and address this issue (22, 27–32),
we here show that the intentional coisolation of precursors in
8 Mol Cell Proteomics (2022) 21(1) 100177
DIA does not impair sample classification. The uniform
measurement of all ions irrespective of their origin (i.e.,
sample or background) allows for a complete signature of
the sample, reflecting on even slight expression changes
between the samples.
Similarly, underrepresented cell populations and their

identity can be identified postacquisition using our method,
which is increasingly important when analyzing limited and
complex biological samples other than homogeneous cell
lines. The prospect of species- and cell-type-independent
analysis will allow for studying diverse samples without a
priori knowledge about the specimen. Even though the
analysis of real single cells will expectedly dramatically in-
crease noise and background ions, we are confident that
multiplexed DIA will facilitate the generation of hypothesis-
free single cell proteome signatures. Our novel DIA
ID-independent analysis of large numbers and low concen-
tration input samples might thus contribute to a universally
applicable workflow for the study of protein expression
across large cohorts.
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DATA AVAILABILITY

All mass-spectrometry-based proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD023574. The
conversion script to generate TMT libraries and all R-scripts
are deposited via GitHub (ctorteckac/DIA-TMT). The reporter
ions for DIA_TMT analysis within Spectronaut will only be
visible from Spectronaut version 15 and higher. This in
combination with the TMT library generator provided via
GitHub allows to export the quantitative information from
the report perspective. This workflow is not fully supported by
Biognosys at this point. For questions or support, please
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