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Diffusion tensor imaging is widely used in research and clinical

applications, but this modality is highly sensitive to artefacts.
We developed an easy-to-implement extension of the original

diffusion tensor model to account for physiological noise in dif-
fusion tensor imaging using measures of peripheral physiology
(pulse and respiration), the so-called extended tensor model.

Within the framework of the extended tensor model two types
of regressors, which respectively modeled small (linear) and

strong (nonlinear) variations in the diffusion signal, were
derived from peripheral measures. We tested the performance
of four extended tensor models with different physiological

noise regressors on nongated and gated diffusion tensor imag-
ing data, and compared it to an established data-driven robust

fitting method. In the brainstem and cerebellum the extended
tensor models reduced the noise in the tensor-fit by up to
23% in accordance with previous studies on physiological

noise. The extended tensor model addresses both large-ampli-
tude outliers and small-amplitude signal-changes. The frame-

work of the extended tensor model also facilitates further
investigation into physiological noise in diffusion tensor imag-
ing. The proposed extended tensor model can be readily com-

bined with other artefact correction methods such as robust
fitting and eddy current correction. Magn Reson Med 70:358–
369, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Diffusion tensor imaging (DTI) allows for noninvasive
imaging of water diffusion (1–4), which is an important
marker for brain anatomy and physiology. Because of its
sensitivity to microstructural and physiological changes,
DTI has not only become a wide spread imaging method
in neuroscience research (5–7) but also an essential diag-
nostic tool after stroke or in detecting neurodegenerative
disease (8–14).

Despite its ubiquitous use in research and clinical
application, artefacts can occur during data acquisition,

which reduce the reliability of DTI data (15–17). One
group of artefacts that is still not sufficiently addressed
in diffusion MRI results from contamination introduced
by normal human physiological processes such as
breathing and heartbeat. The diffusion sensitization
makes the diffusion MRI sequence susceptible to any
kind of movements (18–21). As a result, not only the
desired microscopic Brownian movement of water mole-
cules affects the diffusion signal but also the undesired
macroscopic movement of brain tissue originating, e.g.,
from the human physiological processes. In the extreme,
the latter kind of movement can even lead to signal-loss
(18,22,23).

Physiological artefacts can be reduced by confining the
acquisition to the relatively quiet diastolic period of the
cardiac cycle using cardiac triggering (22,23). However,
triggering increases the scanning time. Recently, new
promising data-driven approaches (here denoted as ro-
bust fitting model) were suggested to retrospectively
detect artefacts associated with physiological noise
directly from the DTI data (15,17,24,25). Estimating
physiological artefacts directly from the data, however,
can be complicated in the presence of other noise sour-
ces. Examples of other noise sources are residual vibra-
tion and eddy current artefacts, which could not be fully
corrected by the respective retrospective correction meth-
ods (19,26–28). An alternative method to estimate and
reduce the effect of physiological artefacts is known
from investigations into fMRI, where additional regres-
sors, based on estimates of head and peripheral measure-
ments of cardiac pulsation and respiration, are included
in the fMRI general linear model (29–37).

We translate and adapt this approach to DTI with the
goal to introduce an easy-to-implement, retrospective
correction method for physiological artefacts using pe-
ripheral measurements. For this, we propose a novel
extended diffusion tensor model that incorporates regres-
sors to explain physiological effects. We applied varia-
tions of our physiological noise correction models to
nongated and gated DTI data, and compared the correc-
tion results with the results of a data-driven robust
fitting model of Zwiers (38).

METHODS

Theory

In the original diffusion tensor representation of Basser
et al. (39), the diffusion-weighted (DW) signal Si that is
generated by applying a diffusion gradient along the ith
direction is given by:
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Si ¼ S0 expð�bADCiÞ and ðbADCiÞ ¼
X

l;k¼fx;y ;zg
DklBkl;i; ½1�

where S0 is the non-DW signal, b summarizes the extent
of diffusion sensitization as described by Mattiello et al.
(40), and the apparent diffusion coefficient, ADCi, is
related to the diffusion tensor, D, via the Bi matrix
[Basser et al. (39)]. The elements of the B matrix
Bkl;i ¼ bgk;igl;i are functions of the diffusion gradient
vector components gi ¼ gx;igy ;igz;i

� �
, with i 2 f1; :::;Ng,

and N equals the number of diffusion gradient direc-
tions. The diffusion tensor, D, can be calculated from the
ADCs in Eq. [1] using, e.g., a least-square fit:

y ¼ Xd þ e; with y ¼
ADC1
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where X is the tensor design matrix, i.e., an N � 6 matrix
that is constructed from the B matrix elements (39),
dT ¼ DxxDyyDzzDxyDxzDyz

� �
, and e is the tensor-fit error.

To account for the effects of physiological noise within
the diffusion signal, we assumed that the noise can be
modeled as a time-dependent multiplicative term
f ðqnoise

i Þ with respect to the DW signal:

S�i � f ðqnoise
i ÞSi; ½3�

where f ðqnoise
i Þ is a dimensionless, time-dependent func-

tion of the noise varying with diffusion gradient direc-
tions, gi. Because the diffusion gradients are applied
sequentially, each diffusion gradient direction, gi, can be
represented by a point on a time axis ðti 2 ft1; :::; tNgÞ,
counting in steps of volume repetition time, Dt ¼ TR. It
follows from Eq. [3] that the perturbed ADC 

ADC�i � 1
b ln S0

�
S�i

� �!
is:

ADC�i ¼ ADCi �
1

b
logðf ðqnoise

i ÞÞ: ½4�

To calculate the corrected diffusion tensor, Dcor, from
the perturbed ADC in Eq. [4], the columns of X must be
extended by additional regressors, which account for the
perturbations:

y� ¼ ½XQ�
dcor

p

� �
þ ecor; with
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In Eq. [5], the elements of the diffusion tensor are sum-
marized as a vector dcor, Q is given by an N � m matrix
including physiological noise regressors (m regressors
with the length N), the components of the p vector are
the weighting factors of each regressor, and ecor is the
error of the new tensor-model fit in Eq. [5].

In the following, the columns of X are denoted as ten-
sor regressors and the columns of the Q matrix as physi-
ological noise regressors or in short noise regressors. The
model in Eq. [5] for estimating the tensor and noise com-
ponents will be named the extended tensor model. In
the case of using no noise regressors, i.e., setting the Q
matrix to zero, the extended tensor model reduces to the
standard tensor model of Basser et al. (39).

Noise Model with Linear Regressors

If the noise is assumed to vary linearly with respect to
the regressor qi, Eq. [3] can be written as:

S�i � ð1� qnoise
i ÞSi ¼ S�0 expð�bADCiÞ; ½6�

where f ðqnoise
i Þ � 1� qnoise

i and S�0 ¼ S0 � qnoise
i S0.

In Eq. [6], the noise has been modeled by a time-depend-
ent additive term with respect to the T2-weighted signal,
which is similar to the assumption that has been success-
fully used to model physiological noise in fMRI (41).

For this model, the linearized Q-matrix in Eq. [5]
becomes:

Q ¼ � 1

b

q1;1 � � � qm;1
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where the following approximation has been used
logðf ðqnoise

i ÞÞ � �qnoise
i . Note that the same formalism as

derived in Eq. [6] can also be used to model linear noise,
which is directly related to the diffusion tensor (by replac-
ing S�0 ¼ S0 � qnoise

i S0 with D� ¼ Dþ DDnoiseðiÞ in Eq. [6]).

Noise Model with Nonlinear Regressors

An alternative noise model is based on observations in
previous diffusion MRI studies on cardiac pulsation arte-
facts (22,23,42). It has been suggested that the bias in the
diffusion signal can be explained by a shift of the
k-space centre that depends on the tissue motion
induced by cardiac pulsation and the amplitude of the
diffusion gradients vector in the z-direction (42). This
signal-bias depends also on the image reconstruction
(19) and in particular on the k-space apodization func-
tion (28,43). We modeled the apodization function by a
Gaussian function multiplied with a Heaviside function:

S�i ¼
Si if qnoise

i Gz;i < q0

Si expð�ðqnoise
i Gz;i � q0Þ2Þ if qnoise

i Gz;i � q0

�
; ½8�

where Gz,i is the z-component of the ith diffusion gradi-
ent vector, q0 is a constant which depends on the image
reconstruction details (i.e., on shape of the apodization
function). We empirically determined that q0 ¼ 0.5
results in a good detection of the physiological noise
artefacts within the basal region of interest (ROI; for defi-
nition of the basal ROI see Fig. 1) for our acquisition
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protocols. Note that the value of q0 might change for dif-
ferent types of diffusion acquisition protocols.

For this model, the Q-matrix in Eq. [5] becomes:

ðQÞi;j ¼
1

b

0 if qnoise
i Gz;i < q0

ðqnoise
i;j Gz;i � q0Þ2 if qnoise

i Gz;i � q0

(
: ½9�

Note that this approximation does not include cross-terms of

the form 2 qnoise
i;k Gz;i

� �
qnoise

i;l Gz;i

� �
(with k 6¼ l; k; l ¼ 1; � � � ;m

and i 2 f1; :::;Ng ). Including them would increase the con-
dition number of the extended diffusion tensor substantially,
which can deteriorate the tensor fit (see methodological con-
siderations). In simulations (data not shown), we observed
that the effect of the perturbations could be largely corrected
even if the cross-terms were neglected.

Subjects

Six healthy adult volunteers (one female, five male) par-
ticipated in the study approved by the local ethics com-
mittee after giving written informed consent.

Data Acquisition and Preprocessing

Experiments were performed on a TIM Trio 3 T scanner
(Siemens Healthcare, Erlangen, Germany) operated with

an RF body transmit coil and a 32-channel receive-only
head coil. DTI data were acquired with an in-house devel-
oped DTI sequence (44,45) based on the twice-refocused
spin echo diffusion scheme of (46,47) and using the fol-
lowing parameters: 60 DW images with spherically dis-
tributed diffusion-gradient directions (48) (b ¼ 700 s/
mm2), six low-DW images (b ¼ 100 s/mm2), 96 � 96 ac-
quisition matrix, 256 mm field of view, 50 slices, 2.7-mm
isotropic resolution, asymmetric echo shifted forward by
25 phase-encoding lines, echo time of TE ¼ 81 ms.

For each subject two sets of DTI data were acquired,
using a gated (DTIg) and normal, nongated (DTIn) diffu-
sion sequence. The gated data were acquired in blocks of
three slices per cardiac cycle. The total volume repetition
time of the cardiac gated DTI data depended on the heart
rate but was 17 s on average. The repetition time of the
nongated DTI data was 8.5 s. Because of technical prob-
lems one gated DTI dataset was discarded, yielding five
gated and six nongated DTI data sets.

During scanning sessions peripheral measurements of

the subject’s pulse and breathing were recorded together

with scanner slice synchronization pulses [similar to

Hutton et al. (29)] using the Spike2 data acquisition sys-

tem (Cambridge Electronic Design Limited, Cambridge,

UK). The cardiac pulse signal was measured using an

MRI compatible pulse oximeter (Model 8600 F0, Nonin

Medical, Inc. Plymouth, MN) attached to the subject’s

finger. The respiratory signal, thoracic movement, was

monitored using a pneumatic belt positioned around the

abdomen close to the diaphragm.
The DTI datasets were preprocessed by correcting for

motion and affine whole-brain eddy current image dis-
tortions [Mohammadi et al. (26)]. After preprocessing,
the ADCs were estimated using the standard tensor
model of Basser et al. (39). Then, the models in Table 1
were used to estimate the diffusion tensor, the tensor-fit
error (e), and the fractional anisotropy (FA) as defined in
Ref. 4. The data-driven robust fitting model (vi) was
based on the method of Zwiers (38). The basic idea of
the robust fitting method is to down-weight outliers in
the data that fall far outside the expected spread of the
nonoutlier residuals C, which is proportional to the me-
dian of the tensor-fit error C ¼ 1:48�median rmsðeÞð Þ
(49,50). Note that our in-house implementation of the ro-
bust-fitting approach did not correct for severe subject-
motion artefacts (i.e., signal-loss across whole slices),
because we did not observe those kinds of artefacts in
our data. All analysis steps were performed using SPM8

FIG. 1. ROI in the lower basal area (in red) is projected on the custom-
ized FA template. The choice of this region was motivated by results of

previous investigation into physiological noise in DTI data, which indi-
cated an increased level of noise in this area (17). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 1

Models for Diffusion Tensor Estimation

Model (m) Tensor estimation
Linear noise

regressors (number)
Nonlinear

regressors (number)
Total number of
regressors p(m)

(i) Standard tensor model n.a. n.a. 6
(ii) Extended tensor model Cardiac phase (4) None 10
(iii) Extended tensor model Cardiac and respiratory phase (8) None 14

(iv) Extended tensor model None Cardiac phase (2) 8
(v) Extended tensor model Respiratory phase (4) Cardiac phase (2) 12

(vi) Robust fitting n.a. n.a. 6

The different models that were used to estimate the diffusion tensor are depicted. The total number of regressors p(m) consists of the

six tensor regressors and m noise regressors. Note that although the total number of regressors is six for the robust fitting model the
effective degrees of freedom can be reduced by more than 6 because of the down-weighting of outliers.
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[http://www.fil.ion.ucl.ac.uk/spm, (51)], the EC and
motion correction SPM toolbox [http://www.fil.ion.ucl.a-
c.uk/spm/ext, (26)], and in-house software written in
MATLAB (version 7.11.0; Mathworks, Natick, MA).

Estimating the Noise

To estimate the noise regressors, the peripheral measure-
ments (thoracic movement representing respiration and
pulse) were preprocessed and the cardiac and respiratory
phases were calculated using an in-house developed
Matlab toolbox (29). This toolbox uses models for cardiac
and respiratory phases and their aliased harmonics
which are based on RETROICOR (30) and similar, earlier
methods (52). Physiological noise regressors were con-
structed from basis sets of sine and cosine Fourier series
components extending to the second harmonic for both
the cardiac and the respiratory phase. The total number
of regressors included in each extended tensor model are
summarized in Table 1. The high temporal resolution of
the peripheral measurements of the subject’s pulse and
breathing allowed us to calculate slice-dependent respi-
ratory and cardiac phase regressors. Because of the slice-
dependent noise regressors the Q matrix will change
from slice-to-slice, resulting in a slice-dependent design
matrix in Eq. [5].

Assessment of Physiological Noise Correction

Spatial Characteristics of Noise Models

To visualize the spatial characteristics of the noise cor-
rection models, the root-mean-square (rms) map of the
tensor-fit errors was calculated for each model as listed
in Table 1. To this end, the difference image between the
adjusted rms-tensor-fit errors of the correction models
(ii)–(vi) and the standard model (i) was calculated:

Drms eðmÞ
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�pðmÞ�1
p rms eðmÞ

� �
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�pðiÞ�1
p rms eðiÞ

� �
, where

N is the number of DW directions and p(m) is the total
number of regressors used in the tensor model m (see
Table 1). Note that for the robust fitting model, the
effective number of DW directions might differ from N
¼ 60 and vary from voxel-to-voxel. The effective number
of DW directions is given by the number of directions
for which the residual error is smaller than the expected
spread of the nonoutlier residuals C.

ROI Analysis to Assess Performance
of the Correction Models

To compare the performance of the different models (see
Table 1), ROI analyses were performed. To this end, a
customized FA template and low-DW contrast template
(b ¼ 0 template) was constructed in the subjects’ native
space using the FA-VBS normalization toolbox [http://
www.fil.ion.ucl.ac.uk/spm/ext/, (53)]. The first b ¼ 0
image of each subject from both datasets, DTIg and DTIn,
were registered to the b ¼ 0 template using a 12-paramet-
ric affine registration. Based on the FA template a ROI
mask was constructed in the lower region of the brain-
stem and cerebellum (see Fig. 1).

The reduction in the tensor-fit error with respect to
the standard tensor model (i) was calculated within the

brainstem ROI (see Fig. 1) and within the whole brain
using the models m ¼ (ii)–(vi):

drms eðmÞ
� �

¼ 100

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�pðmÞ�1
p P

r2ROl rmsðeðmÞðrÞÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�pðiÞ�1
p P

r2ROl rmsðeðiÞðrÞÞ
1ffiffiffiffiffiffi

N�
p

pðiÞ�1

P
r2Rol rmsðeðmÞðrÞÞ ;

(10)

where N is the number of DW directions and p(m) is the
total number of regressors used in the tensor models m
(see Table 1).

Effect of gating

To investigate the effect of gating and its interaction
with the correction models (see Table 1), the histogram
of the adjusted rms-tensor-fit error was calculated within
the whole brain for the gated and nongated DTI data. To
quantify the distribution of the rms-tensor-fit error, a
Rician distribution was fitted to the normalized histo-
gram. The mode of the distribution was used to quantify
the effect of the different models on the rms-tensor-fit
error.

Spatial Characteristics of the Correction Models
with Respect to the FA

The spatial characteristics of the correction models with
respect to the FA were investigated. For this purpose,
the FA difference maps between the standard model and
the noise correction models were calculated
DFAðmÞ ¼ FAðmÞ � FAðiÞ (m ¼ (ii)–(vi), see Table 1).

Performance of the Correction Models
with Respect to the FA

The performance of the correction model was assessed
in two steps. First, the magnitude of the voxel-wise dif-
ference in the FA values before and after correction was
calculated within the brainstem ROI (Fig. 1) for models
m ¼ (ii)–(vi):

dFAðmÞ ¼ 100�
P

r2ROl FAðiÞðrÞ � FAðmÞðrÞ


 

P

r2ROl FAðiÞðrÞ
: ½11�

In the second analysis, we assessed whether the
extended tensor models (ii)–(v) increased or reduced the
difference in FA relative to the results of the robust fit-
ting method (vi). To this end, the normalized cross-corre-
lation between the DFAðmÞ maps of the extended tensor
models [models m ¼ (ii)–(v)] and the robust fitting
model DFAðviÞ was calculated:

ncFAðmÞ ¼
P

r2ROl DFAðrÞðviÞ
DFAðrÞðmÞ

� �
P

r2ROl DFAðrÞðviÞP
r2ROl DFAðrÞðmÞ

: ½12�

Note, that we implicitly used the robust-fitting model
as a reference. However, it should be regarded a silver
standard rather than a gold standard, because it only cor-
rects outliers but not small amplitude perturbations [see,
e.g., (38), Fig. 4]. Furthermore, it corrects not only
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physiological-noise-induced outliers but also outliers of
different origin, such as eddy currents (26), vibration
(19,28), and subject motion (26,38).

RESULTS

Spatial Characteristics of Noise Models

Figures 2 and 3 show the spatial characteristics of the
noise correction models (ii)–(vi) in the nongated and
gated DTI data respectively using the rms-tensor-fit error.
For both datasets, the physiological noise was most
apparent in the basal brain areas, cerebellum, at the edge
of the cortex, and at boundaries between tissue and cere-
bral spinal fluid, e.g., next to the ventricles. The noise
correction did not always reduce the tensor-fit error. For
the nongated DTI data (Fig. 2), the spatial pattern of the
linear-regressor models (ii) and (iii) differed from the
nonlinear-regressor models (iv) and (v): the corrected
noise highlighted by the dashed circle was better
explained by linear-regressor models (ii) and (iii),
whereas the noise highlighted by the solid circle was
better explained by the nonlinear-regressor models (iv)
and (v). Altogether, the noise in both highlighted regions

in Figure 2 was most effectively corrected using the
robust fitting model (vi). For the gated data (Fig. 3), the
nonlinear-regressor models (iv) and (v) corrected
the least amount of noise over the whole brain,
while the other correction models (ii), (iii), and (vi)
reduced the noise very effectively.

ROI Analysis to Assess Performance
of the Correction Models

Figure 4 summaries the relative performance of the cor-
rection models within the whole brain (Fig. 4a,b) and
brainstem ROI defined in Figure 1 (Fig. 4c,d). For the
nongated data (Fig. 4a,c), the reduction in noise was
greatest when the robust fitting model (vi) was used and
all models explained more noise within the ROI than
over the whole brain. For the gated data (Fig. 4b,d), the
linear-regressor models (ii) and (iii) explained more
noise than the other models. Moreover, for the gated
data the linear-regressor models (ii) and (iii) explained
less noise in the brainstem ROI than in the whole brain.
No significant additional noise was explained when the
respiratory regressors were added [i.e., when using mod-
els (iii) and (v)].

FIG. 2. The spatial noise characteristics of the nongated (DTIn) data using the extended tensor models (a and b) with linear regressors

[model (ii) and (iii)], (c and d) with nonlinear regressors [model (iv) and (v)], and (e) the robust fitting model (vi) (for an overview of the
models, see Table 1). To determine how much noise can be explained by each model, the difference map of the adjusted rms of the
tensor-fit errors before and after correction [Drms(e(m)), m ¼ (ii)–(vi)] is depicted for one representative subject. For easier anatomical

localization the corresponding FA image is depicted in (f). The effect of the noise correction was most pronounced in the basal brain
regions and the brainstem (dashed circle). The robust fitting correction performs best [model (v)]. The spatial noise characteristics differ

between the linear-regressor [model (ii)–(iii)] and the nonlinear-regressor [model (iv)–(v)] extended tensor models (solid circles). Note that
the noise correction sometimes increases the adjusted tensor error due to a reduction in degrees of freedom.
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FIG. 3. Spatial noise characteristics of the gated data (DTIg) using the extended tensor models (a and b) with linear regressors [model
(ii) and (iii)], (c and d) with nonlinear regressors [model (iv) and (v)], and (e) the robust fitting model (vi). For explanation, see caption of
Figure 2. The noise correction is most pronounced in the basal brain regions and the brainstem (dashed circle). The linear extended ten-

sor models (ii) (a) and (iii) (b) and the robust fitting model (vi) (e) showed the highest performance.

FIG. 4. Quantitative comparison of the physiological noise correction within the whole brain (a and b) and the brainstem ROI (c and d)
using the extended tensor with linear regressors [model (ii) and (iii)], with nonlinear regressors [model (iv) and (v)], and the robust fitting

model (vi) (for an overview of the models, see Table 1). The relative improvement of the adjusted rms of the tensor-fit error [�drms(e(m)),
m ¼ (ii)–(vi)] with respect to the standard tensor model (i) is depicted. For the nongated data (DTIn, top row), the reduction in the tensor-
fit error was maximal when the robust fitting model (vi) was used (about 18%). For the gated data (DTIg, bottom row), the reduction in

the tensor-fit error was maximal for the extended models (ii) and (iii) (about 23%). Note that the negative of drms(e(m)) (Eq. [10]) is
depicted, i.e., the reduction of the tensor-fit error is presented as positive percentage value.
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Effect of Gating

Figures 5 and 6 compare the adjusted tensor-fit error
between gated and nongated DTI data. Figure 5 shows
the histogram of the rms-tensor-fit error for five subjects
using the standard tensor model (i). Figure 6 shows a
groupwise comparison of the modes of the fitted Rician
distributions for the models (i)–(vi). When using the
standard tensor model (i), the mode of the Rician distri-
bution was always larger for the gated than for the non-
gated data (Figs. 5 and 6a). For the nongated data, the
largest reduction of the mode of the Rician distribution
was achieved when using the robust fitting model (vi)
(Fig. 6f). For the gated data, linear-regressor models (ii)

and (iii) resulted in the largest reduction (Fig. 6b,c).
Moreover, the modes of the Rician distribution were
most similar between gated and nongated data when lin-
ear-regressor model (ii) or (iii) was used (b and c).

Spatial Characteristics of the Correction
Models with Respect to FA

The maps in Figures 7 and 8 show how noise correction
changed FA estimates for the nongated and gated DTI
data, respectively. For the nongated data (Fig. 7), all cor-
rection models mostly affect basal regions of the FA
map. The highlighted region in Figure 7 shows a region
where the FA differences obtained the nonlinear-regres-
sor models (iv) and (v) resemble those of the robust fit-
ting model (vi). For the gated data (Fig. 8), the nonlinear-
regressor models (iv), (v), and the robust fitting model
(vi) lead to FA differences within basal regions, whereas
the linear-regressor models (ii) and (iii) affect the white
matter structures over the whole brain.

Performance of the Correction Models
with Respect to the FA

Figure 9 shows the effect of the correction models (ii)–
(vi) (see Table 1) on the FA averaged over the brainstem
ROI depicted in Figure 1. The greatest FA difference was
obtained for the gated data when using the linear-regres-
sor model (iii) and for the nongated data when using the
nonlinear-regressor model (iv). The smallest FA differ-
ence was obtained for the robust fitting model (vi) for
both the gated and nongated data. The FA difference for
the nongated data showed higher interindividual varia-
tion (i.e., higher standard deviation) than for the gated
data.

Figure 10 depicts the cross-correlation between FA dif-
ference maps obtained from the extended tensor models
(ii)–(v) and the robust fitting model (vi). For the non-
gated data (Fig. 10a), there is a slightly positive correla-
tion between the nonlinear-regressor models (iv) and (v),
and the robust fitting model (vi). For the gated data,
there is no correlation between the extended tensor mod-
els (ii)–(v) and the robust fitting model (vi) (i.e., error
bars greater than effect, Fig. 10b), and even a possible

FIG. 5. Comparison of the tensor-fit error between gated and

nongated DTI data for five subjects (s1–s5). To this end, the histo-
gram of the adjusted rms of the tensor-fit error (adjusted for effec-
tive degrees of freedoms) is shown for the gated (blue solid line)

and nongated (red solid line) data using the standard tensor
model (i). The histogram of the adjusted rms-tensor-fit error was

fitted by a Rician distribution function (dashed lines) and the
mode of the distribution was identified (vertical lines). Unexpect-
edly, the tensor-fit error (i.e., the mode of the histogram of the

adjusted rms-tensor-fit error) was always smaller for the nongated
than for gated data.

FIG. 6. Group comparison of tensor-fit error of gated (DTIg) and nongated (DTIn) data using (a) the standard tensor model (i), the

extended tensor models (b and c) with linear regressors [model (ii) and (iii)], (d and e) with nonlinear regressors [model (iv) and (v)], and
(f) the robust fitting model (vi). To this end, first the mode of the Rician fit of the adjusted rms-tensor-fit error histogram was determined
for each subject (see Fig. 5). Then, the median and the standard error of the mean of the modes were calculated. The mode of the

Rician fit was most similar between gated and nongated data when the correction model (ii) or (iii) was used (b and c). The mode of the
Rician fit was smallest when model (vi) was used for the nongated data (f).
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anticorrelation might exist between the linear-regressor
models (ii) and (iii) and the robust fitting model (vi).

DISCUSSION

We developed a new method to retrospectively correct
for physiological noise in DTI and compared it with the
data-driven robust tensor fitting approach (38). The
noise correction methods are motivated by the conjec-
ture that, even after perfect retrospective correction of
spatial misalignments, artefacts will remain in the diffu-
sion signal, e.g., as a result of local cardiac pulsation.
We introduced different noise models and showed that
adding physiological noise regressors (in short noise
regressors) to the standard linear tensor model resulted
in better tensor fits with reduced error for both gated
and nongated data. Compared to the robust fitting
model, the physiological noise models explained more
noise, if gated DTI data were used but not if nongated
DTI data were used. Moreover, for the nongated DTI
data we found a correlation between the FA bias correc-
tion of the robust fitting model and the FA bias correc-
tion of a specific set of extended tensor models, which
model nonlinear effects.

Physiological Noise Model for DTI

Cardiac pulsation can lead to severe signal-loss artefacts
in the diffusion signal and bias the tensor estimates as
shown, e.g., in Refs. 22 and 23. In addition to the signal-
loss (i.e., nonlinear signal changes), physiological proc-
esses can also lead to small and less obvious changes in
the diffusion signal, which we approximated by a linear
error term in the diffusion signal. We introduced two
types of noise regressors for the extended tensor model,
the linear (Eq. [7]) and the nonlinear (Eq. [9]) regressor,
which respectively modeled small (linear) and more
severe (nonlinear) signal changes. For this purpose, the
standard tensor model in DTI [Basser et al. (39)] has
been extended in such a way that noise regressors mod-
eling physiological effects in the diffusion signal are
added to the original six tensor regressors.

We showed that the tensor fit of the extended tensor
model outperformed the standard tensor model fit for
both gated and nongated data. The highest noise reduc-
tion was achieved by the extended tensor models (ii)
and (iii) that used linear regressors, whereas it was low-
est for the extended tensor models (iv) and (v) that used
nonlinear regressors (Fig. 4). Accounting for both respira-
tory and cardiac effects together [models (iii) and (v)]

FIG. 7. Effect of noise correction models on FA maps for the nongated DTI data using the extended tensor models (a and b) with linear
regressors [model (ii) and (iii)], (c and d) with nonlinear regressors [model (iv) and (v)], and (e) the robust fitting model (vi) (for an overview

of the models, see Table 1). To this end, FA difference images before (FA(i)) and after [FA(m), m ¼ (ii)–(vi)] correction were calculated
(DFA(m)¼FA(m)�FA(i)) using the same subject as in Figure 2. For easier anatomical localization the corresponding FA image is depicted in
(f). Within the highlighted region (solid circle), the FA difference maps obtained from the nonlinear-regressor models [(iv) and (v)] were

similar to those from robust-fitting [model (vi)]. No evident similarities were visible between the maps obtained from the linear-regressor
models [(ii) and (iii)] and those from the robust fitting model (vi). Note that the highlighted regions in the FA difference maps resemble

the same regions that were highlighted in Figure 2 by solid lines.
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did not explain more noise than when respiratory effects
were neglected [models (ii) and (iv)]. In keeping with
previous studies using fMRI (30,54–56) and DTI (17), we
found that the physiological noise was most prominent
in the basal brain areas, cerebellum, at the edge of the
cortex, and at boundaries between tissue and cerebral
spinal fluid, e.g., next to the ventricles.

Physiological artefacts not only increase the noise in
the tensor fit but also can bias tensor estimates
(15,22,23,57). The improved fits using the extended ten-
sor model and robust fitting suggested that physiologi-
cal-noise-related bias in FA in the brainstem was
between 3 and 5% (Fig. 9).

Effect of Gating

A diffusion sequence that is triggered to the heartbeat
can reduce outliers in the diffusion signal [i.e., signal-
loss due to cardiac pulsation (22,23,42)]. Our results sup-
ported this observation. We found that the robust fitting
model (vi) explained less noise if gated DTI data were
used. Presumably, this is due to the fact that it specifi-
cally targets large outliers and the gated data were
affected by less severe outliers. In contrast to the robust
fitting model (vi), all extended tensor models [(ii)–(v)]
explained more noise for the gated data. One possible ex-

planation could be that the artifacts in the gated data are
better modeled by a linear approximation and thus better
described by the extended tensor approach. Another rea-
son why the extended tensor model explained more
noise for the gated DTI data could be due to the fact that
the tensor-fit error was on average greater in the gated
than in the nongated data (Figs. 5 and 6a). The higher
tensor-fit error level of the gated data, which in turn is
another unexpected finding, could be related to the fact
that artefacts (e.g., due to vibration, eddy currents, gradi-
ent heating, and signal relaxation) depend on the tempo-
ral gap between slice acquisitions. In cardiac gating, the
temporal gap between every first slice in each slice ac-
quisition block (acquired during one cardiac cycle) is
much longer than for the other slices, disturbing the
steady state. Interestingly, the noise level of gated and
nongated data became most similar when the extended
models (ii) and (iii) with linear regressors were used
(Fig. 6).

Cross-Validation of Extended Tensor Models Using
Robust Fitting Model as a Reference

As there is no gold standard reference available for DTI,
the results of the data-driven robust fitting model were
used as a reference to approximately estimate the bias in

FIG. 8. Effect of noise correction models on FA maps for the gated DTI data using the extended tensor models (a and b) with linear
regressors [model (ii) and (iii)], (c and d) with nonlinear regressors [model (iv) and (v)], and (e) the robust fitting model (vi). For details see
legend of Figure 7. While the correction models (iv)–(vi) mostly affected structures within basal regions (see solid circle), the correction

models (ii) and (iii) affected the FA within the white matter over the whole brain. Note that the data were acquired with an interleaved
slice acquisition order; this might explain the alternating structure in the DFA maps that is particularly visible in models (ii) and (iii), which

varied between subjects.
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the tensor fits. Note that the robust fitting approach has
its own limitations such as: (a) it only corrects outliers
but not small-amplitude changes in the MR signal [see,
e.g., Zwiers (38), Fig. 4], (b) it is unspecific, i.e., corrects
for any type of outlier (e.g., subject motions, vibration
artefacts, and eddy current effects), and (c) its perform-
ance will vary with computational parameters, which
were determined empirically for some specific sets of
data only. Furthermore, it should be kept in mind that
the diffusion tensor approach is generally limited in
terms of modeling the underlying anatomical structures,
e.g., it cannot appropriately represent crossing or kissing
fibre tracts [see, e.g., (58)]. Therefore, it may be difficult
to find a gold standard at all.

The robust fitting model accounted for more noise
than the extended tensor models when applied on the
nongated DTI data (Figs. 4a,c and 6). Similar to the ro-
bust fitting model, the nonlinear-regressor extended ten-
sor models [(vi) and (v)] explained less noise in the
whole brain (Fig. 4c,d) than in the brainstem and cere-
bellum (Fig. 4a,b), which is probably more affected by
physiological-noise-induced outliers. This finding is in
accordance with results from previous DTI studies inves-
tigating physiological noise (22,23). Moreover, the FA
changes obtained from the nonlinear-regressors models
[(iv) and (v)] showed a correlation to those from the ro-
bust fitting model when using nongated data (see Figs. 7
and 10a). For the gated data, the linear-regressors
extended tensor models [(ii) and (iii)] explained more
noise than the other models (Fig. 4b,d). Unexpectedly,
the FA change due to the noise correction of the linear-
regressors extended tensor models (ii) and (iii) showed

an anticorrelation to the results of the robust fitting
model (Fig. 10b) most prominently in the white matter
(Fig. 8). The differences in FA estimates of robust fitting
and the extended tensor models may be due to errors in
either method or correcting different sources of noise.

Potential Applications of Noise Correction in Diffusion MRI

With more time points, i.e., diffusion sensitizing direc-
tions, the performance of the noise correction should
improve due to the increase in degrees of freedom. We
found such a trend for the nongated DTI data (results not
shown). Thus, the proposed correction will particularly
benefit HARDI-like DTI studies [e.g., (59,60)], where a
large number of DW images are acquired. The difference
map of the tensor-fit errors (Figs. 2 and 3) could be used
to assess DTI data quality for each subject, e.g., in longi-
tudinal and multicentre studies. That information could
be incorporated in group statistics, e.g., by removing sub-
jects with particularly strong physiological artefacts from
the group analysis.

Methodological Considerations

The physiological noise correction requires peripheral
measurements, which are usually not recorded during
DTI scans. However, modern scanners offer the possibil-
ity to record peripheral measurements and such methods
are well established for fMRI (29).

Although this article discusses the noise correction in
the context of the standard second-order diffusion tensor

FIG. 9. The effect of the correction models (ii)–(vi) within the

brainstem ROI (defined in Fig. 1) on the magnitude of the FA
image for nongated (a) and gated (b) DTI data. To this end, the
relative change (dFA(m), Eq. [11]) between the FA before and after

correction was calculated when using the extended tensor models
with linear regressors [model (ii) and (iii)], with nonlinear regressors

[model (iv) and (v)] and the robust fitting model (vi). For an over-
view of the models, see Table 1. The correction models changed
the FA by 3–5%. The effect on the FA was minimal when the ro-

bust fitting model (vi) was used on gated DTI data.

FIG. 10. Comparison of FA difference maps obtained from either
of the extended tensor models (ii)–(v) with the FA difference
obtained from the robust fitting model (vi). For this purpose, the

normalized cross-correlation (ncFA(m), Eq. [12]) between DFA(vi)

and DFA(m) [m ¼ (ii)–(v)] was calculated for the DTIn (top row) and

DTIg (bottom row) data within the brainstem ROI shown in Figure
1. A slight correlation between the extended tensor model and ro-
bust fitting was observed for the nongated data when the

extended tensor models with nonlinear regressors [(iv) and (v)]
were used. Correlations were not observed for the gated data.
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model, the approach can be easily adapted to higher-
order tensor models (61).

Note that the presented results cannot be necessarily
extrapolated to diffusion MRI data using high b-values,
because at high b-values the SNR is usually reduced and
it is known from investigations into fMRI that the per-
formance of physiological noise correction is best at high
SNR (29).

To compare the tensor-fit error for the different
extended tensor models and the robust fitting model, we
had to adjust the tensor-fit error by the degrees of free-
dom. However, we would like to highlight that our
model-adjustments are only simple approximations,
since they, e.g., assume a Gaussian distribution of the
error. More sophisticated adjustment methods are avail-
able (51) but were beyond the scope of this article. Also
note that in general, no simple one-to-one relation exists
between the tensor-fit error and the bias in the tensor
estimates.

The proposed models (see Table 1) should be seen as
initial developments, which can be further finessed and
complemented by other models. Future work might
introduce more principled, physiological noise models
and thus improve the performance of the extended ten-
sor model, in a similar way to the development of the
physiological noise models in fMRI over the last 15 years
[e.g., (29–31,52,55)].

In theory, the extended tensor model can also account
for instrumental noise effects such as eddy currents
(62,63) or vibration artefacts (19,28,64), using eddy cur-
rents distortion parameters (26) or the absolute value of
the x diffusion gradient amplitude (|Gx|) (28) as noise
regressors. However, those noise regressors might not be
sufficiently orthogonal with respect to the tensor regres-
sors to improve the fidelity of tensor estimates. It is
known that nonorthogonal regressors in general linear
models increase the variance of the parameter estimates
(51). In the extreme case, if a noise regressor was added
to the extended tensor model that is parallel to one of
the columns of the design matrix, the solution would
become unstable, i.e., the condition number of the
extended design matrix can approach infinity [see, e.g.,
(65,66)]. In simulations (not shown), we observed that an
extended tensor model that uses |Gx| as a noise regres-
sor will not improve the fidelity of the tensor estimates
but bias the tensor estimates, although it might reduce
the tensor-fit error. Therefore, the noise model approach
will always have the drawback that poorly conditioned
regressors might exist which fit anatomical structures
that cannot be modeled by the tensor model and thus
bias the tensor estimates. We recommend a careful
design of the noise models included in the extended ten-
sor model.

CONCLUSION

In this study, we developed an easy to implement exten-
sion of the original tensor model of Basser et al. (39) to
account for physiological noise in the DTI data and com-
pared it with an established data-driven robust fitting
method (38). We demonstrated that the effect of cardiac-
pulsation-induced physiological noise in the diffusion

signal is relevant and can be corrected using the
extended tensor model. The extended tensor model
addresses both large-amplitude outliers and small-ampli-
tude signal-changes unlike the robust fitting method.
The approach will facilitate the investigation of physio-
logical noise in DTI by providing a robust linear model-
ing framework. In turn, the approach will benefit from
finessed and novel noise models. Furthermore, the
extended tensor fit can be combined with the robust fit-
ting method and other retrospective correction methods
such as motion and eddy current distortion [e.g., (26)],
vibration [e.g., (19,28)], susceptibility [e.g., (67)], and
local perturbation field corrections [e.g., (16)]. The com-
bination of these different approaches is an important
step toward providing robust DTI with minimal artefacts.
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