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Altered substrate metabolism 
in neurodegenerative disease: new insights 
from metabolic imaging
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Abstract 

Neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and multiple sclerosis 
(MS), are relatively common and devastating neurological disorders. For example, there are 6 million individuals living 
with AD in the United States, a number that is projected to grow to 14 million by the year 2030. Importantly, AD, PD 
and MS are all characterized by the lack of a true disease-modifying therapy that is able to reverse or halt disease pro‑
gression. In addition, the existing standard of care for most NDs only addresses the symptoms of the disease. There‑
fore, alternative strategies that target mechanisms underlying the neuropathogenesis of disease are much needed. 
Recent studies have indicated that metabolic alterations in neurons and glia are commonly observed in AD, PD and 
MS and lead to changes in cell function that can either precede or protect against disease onset and progression. 
Specifically, single-cell RNAseq studies have shown that AD progression is tightly linked to the metabolic pheno‑
type of microglia, the key immune effector cells of the brain. However, these analyses involve removing cells from 
their native environment and performing measurements in vitro, influencing metabolic status. Therefore, technical 
approaches that can accurately assess cell-specific metabolism in situ have the potential to be transformative to our 
understanding of the mechanisms driving AD. Here, we review our current understanding of metabolism in both neu‑
rons and glia during homeostasis and disease. We also evaluate recent advances in metabolic imaging, and discuss 
how emerging modalities, such as fluorescence lifetime imaging microscopy (FLIM) have the potential to determine 
how metabolic perturbations may drive the progression of NDs. Finally, we propose that the temporal, regional, and 
cell-specific characterization of brain metabolism afforded by FLIM will be a critical first step in the rational design of 
metabolism-focused interventions that delay or even prevent NDs.
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Background
Despite being only 2% of the body’s mass, the brain con-
sumes 20% of the body’s oxygen intake and 25% of its 
glucose intake [1]. This energy utilization is not uniform, 
with 70–80% of total energy consumed via neurons, and 
microglia, astrocytes and oligodendrocytes using the 

remaining portion [2–4]. Although the brain primarily 
consumes glucose to meet its energy demands, in disease 
states or starvation energy utilization can shift to other 
substrates [5–9]. During aging, glucose metabolism in 
the brain is impaired, a phenomenon that is exacerbated 
in neurodegenerative (ND) and neuroinflammatory dis-
eases (NID) such as Alzheimer’s disease (AD), Parkinson’s 
disease (PD) and multiple sclerosis (MS). Specifically in 
AD, several changes to overall brain metabolism have 
been observed, including dysregulated oxidative metab-
olism, amino acid metabolism and creatine degradation 

Open Access

*Correspondence:  Kimberley.bruce@cuanschutz.edu
1 Endocrinology, Metabolism and Diabetes, Division of Endocrinology, 
Metabolism and Diabetes, Department of Medicine, University 
of Colorado Anschutz Medical Campus, Aurora, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5656-1534
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12974-021-02305-w&domain=pdf


Page 2 of 18Cleland et al. J Neuroinflammation          (2021) 18:248 

[10], and impaired glucose transport [11]. In particular, 
the pathogenesis of AD is complex, and despite major 
research efforts, successful therapeutics that can prevent, 
or delay AD are lacking. Since perturbed brain metabo-
lism has been repeatedly implicated in AD, understand-
ing changes in substrate utilization prior to and during 
the development and progression of AD may highlight 
critical mechanisms that can be exploited to diagnose or 
treat AD.

Despite changes in brain metabolism being a potential 
mechanism driving the development of NDs, the field 
has been stymied by the lack of techniques that can accu-
rately measure brain metabolism with sufficient tempo-
ral, spatial, and cell-specific resolution. On one hand, it 
is becoming widely appreciated that both neurons and 
glial cells, which have very different metabolic needs, 
contribute to disease pathology. Recent methodological 
advances have facilitated the identification of microglial 
subpopulations with defined metabolic phenotypes that 
may protect against or precede AD [12, 13]. However, 
these measurements have been made in isolated cells that 
have been subjected to mechanical or enzymatic stress, 
which likely modifies their metabolic state, underscoring 
the need for methodologies that can determine cell-spe-
cific metabolic changes in situ.

Specific brain regions have different cellular com-
position, functions, and therefore metabolic needs. 
Hence metabolic perturbations in certain regions may 
have a greater impact on disease state and severity. 
Nonetheless, existing “metabolic imaging” modalities, 
such as magnetic resonance imaging (MRI), magnetic 
resonance spectroscopy (MRS), and positron emission 
tomography  (PET), have provided important insights 
regarding regional changes in metabolic processing 
that occur preceding and during NDs, such as AD [14]. 
Although these techniques are becoming increasingly 
advanced, they cannot discriminate between regional 
and cell-specific metabolic aberrations. In contrast, the 
development of two-photon imaging and fluorescence 
lifetime imaging microscopy (FLIM), enables direct 
measurement of the endogenous metabolic fluoro-
phores, such as reduced nicotinamide adenine dinucle-
otide (NADH) and flavin adenine dinucleotide (FAD), 
which have very distinct lifetimes in free and bound-
to-enzyme forms [15]. The ratio of free and bound-to-
enzyme NADH or FAD can be determined within an 
individual cell or on a cell cluster in tissue, and there-
fore has the potential to measure cell and region-spe-
cific changes in brain metabolism that may precede or 
drive AD onset and progression. Here, we revisit our 
understanding of brain metabolism and review recent 
findings suggesting that changes in brain metabolism 
may be a potential target for the treatment of ND. We 

also highlight recent advances in metabolic imaging 
that enable precise monitoring of brain metabolism, 
guiding the design of interventions that may prevent 
or improve outcomes for individuals with NDs such as 
AD.

Metabolism in the homeostatic brain
Overview of metabolic processes in the brain
Energy usage is dependent on a given cell’s microenvi-
ronment, the substrates available for metabolism, and 
the role the cell has in maintaining homeostasis or 
fighting off disease. Generally, the pathways available 
for energy production are glycolysis, the tricarboxylic 
acid cycle (TCA cycle), and oxidative phosphoryla-
tion (OXPHOS). Glycolysis takes 1 glucose molecule, 2 
nicotinamide adenine dinucleotide (NAD+) molecules, 
2 adenine diphosphate (ADP), and 2 phosphate groups 
to yield 2 pyruvate molecules, 2 reduced nicotinamide 
adenine dinucleotide (NADH) molecules, 2 water 
(H2O) molecules, and 4 adenine triphosphate (ATP) 
molecules. These pyruvate molecules are converted to 
two acetyl coenzyme A (acetyl-CoA) before entering 
TCA cycle, where they undergo a series of reactions 
yielding either 2 guanosine triphosphate (GTP) or ATP 
molecules, 6 NADH molecules, 2 ubiquinone (QH2) 
molecules, 2 FADH2 molecules, and 4 carbon dioxide 
(CO2) molecules. The reducing agents generated by 
these pathways are used in oxidative phosphorylation 
to break covalent bonds in molecular oxygen (O2), con-
verting chemical energy into a proton gradient. ATP 
synthase, an enzyme found in the mitochondrial inner 
membrane, then uses the proton gradient to phospho-
rylate ADP to ATP, a form of chemical energy that can 
be used throughout the cell.

Another pathway important in homeostasis and cell 
repair is the pentose phosphate pathway (PPP). This 
pathway is a parallel of glycolysis and converts glucose-
6-phosphate to pentoses, and ribulose-5-phosphate 
which can be used in the synthesis of nucleotides. The 
PPP can be broken up into an oxidative phase where 2 
nicotinamide adenine dinucleotide phosphate (NADP+) 
are reduced to NADPH via the oxidation of glucose-
6-phosphate, and a non-oxidative phase where pentoses 
are generated. Unlike glycolysis, the function of the PPP 
is anabolic rather than catabolic.

The brain is composed of neurons and glial cells. Glial 
cells can be further categorized as ependymal cells, oli-
godendrocytes, microglia, and astrocytes. Below we will 
examine the preferred substrate utilization within neu-
rons, astrocytes, microglia, and oligodendrocytes and 
metabolic cross-talk between them. We will also evaluate 
how alterations in these processes may contribute to ND.
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Astrocytes and neurons
Neuronal activity, which involves action potentials and 
synaptic transmission, accounts for the majority of neu-
ronal energy usage [3, 16]. At baseline, neurons are 
capable of generating ATP through complete oxidation 
of glucose to CO2 via glycolysis, but in a healthy state, 
were found to favor oxidative pathways, like the TCA 
cycle and OXPHOS [8, 17–19]. This stems from their 
inability to increase their glycolytic activity in response 
to cellular stress, which would lead to the generation 
and buildup of toxic glycation byproducts, ultimately 
causing apoptosis [8, 20, 21]. The substrate for neuronal 
OXPHOS is a source of controversy, with some reports 
pointing towards the existence of an astrocyte-neuronal 
lactate shuttle (ANLS) where astrocytes provide neurons 
with lactate to fuel the TCA cycle [8, 16, 17, 22–25] (see 
Fig. 1). Opponents of this theory base their opposition on 
theoretical and modeling studies that found neurons to 
have a larger capacity for glucose transport than astro-
cytes, supporting the view that glucose and not lactate is 
the primary substrate for neuronal oxidative metabolism 
[26–28]. Magistretti et al. rebuts these claims citing that 
glucose phosphorylation by hexokinase, not transport of 
glucose into the cell, is the rate-limiting step in glycoly-
sis [16]. In addition, haploinsufficiency in neuron-specific 
glucose transporters (GLUT3) does not result in a patho-
logical phenotype, whereas haploinsufficiency in astro-
cyte-specific glucose transporters (GLUT1) does [16, 29, 
30]. Cultured neurons have also been found to prefer lac-
tate over glucose when both are available [6].

Astrocyte end-feet cover much of the capillary sur-
face and reside at every synapse, allowing them to both 
control the neuronal uptake of blood-borne nutrients 
and take in more glucose than other brain cells [31]. A 
key role of astrocytes in maintaining brain homeostasis 
is the removal of neurotransmitters from the synaptic 
cleft. The removal of neurotransmitters like glutamate 
is crucial for neurons as it can cause excitotoxicity. 
Glutamate is then converted to glutamine before being 
shuttled back to the neuron. This recycling and neu-
roprotective role of astrocytes is energetically expen-
sive and requires a large amount of ATP [23, 32]. Like 
neurons, astrocytes can oxidize glucose to CO2; how-
ever, they have high glycolytic activity and low oxygen 
metabolism [7, 8, 32–34]. Increased glycolytic rates 
along with increased lactate export in astrocytes have 
been found to be markedly upregulated in response 
to glutamate stimulation. The lactate released into 
the extracellular environment can then be taken in by 
neurons and used in oxidative metabolism, as per the 
ANLS hypothesis. Astrocytes also possess a glyoxalase 
system that provides them with a pathway to detoxify 

the otherwise toxic byproducts of glycolysis [35]. With 
this, astrocytes are able to significantly upregulate 
and rely on glycolysis as a means of ATP production 
in a way that is inaccessible to neurons, while simul-
taneously providing substrates for the TCA cycle in 
neurons.

In hypoglycemia, astrocytes and neurons are forced 
to turn to alternative substrates. In the early stages of 
hypoglycemia in a healthy brain, astrocytes can utilize 
stored glycogen to produce lactate via glycogenolysis, 
which in turn can fuel neuronal metabolism [36]. This 
pathway is only available to astrocytes as they are the 
only location of glycogen storage in the brain, with total 
brain stores ranging from 3 to 12 μmol/g of tissue [37]. 
When these stores run out, astrocytes and neurons 
must then turn to ketone bodies (KBs), such as acetoac-
etate, acetone, and β-hydroxybutyrate. KBs are made in 
the adult liver in states of hypoglycemia and cross the 
blood–brain barrier (BBB), where they are converted 
to acetyl-CoA and used in the TCA in neurons and 
glial cells [7] (see Fig. 1). In various disorders including 
some neurodegenerative diseases like Lafora disease, 
there is aberrant glycogen metabolism that can lead to 
neuronal damage [38]. Recent studies have also found 
evidence of glycogen accumulation in the brain in gly-
cogen storage disease type II, also known as Pompe dis-
ease [39].

Fatty acid (FA) metabolism is used for energetic and 
signaling purposes in glial cells and plays a signaling 
role in neurons. However, the contribution of fatty 
acids to substrate metabolism in neurons and glia is 
debatable and remains an emerging area of investiga-
tion. Recent research on neuronal fatty acid metabolism 
has focused on a brain-specific carnitine palmitoyl-
transferase 1 C (CPT1C). Unlike other CPT1 isoforms 
found predominantly in peripheral metabolic tissues, 
CPT1C is not involved in the β-oxidation of fatty acids 
and is not found in mitochondria [40]. Instead, CPT1C 
appears to play a regulatory role via its interaction with 
malonyl-coenzyme A (malonyl-CoA) [9, 41, 42]. Malo-
nyl-CoA is the first product in the process of de novo 
fatty acid synthesis [9]. In hypothalamic neurons of 
the arcuate nucleus, the inhibition of malonyl-CoA by 
CPTC1C can regulate food intake [9].

In addition to the liver, astrocytes are also capable of 
making KBs from fatty acids [7, 43]. This process starts 
with β-oxidation of the fatty acid to make acetyl-CoA 
which can enter either the TCA cycle or ketogenesis. 
The role that KB production has in brain metabolism is 
not fully understood, but it has been hypothesized that 
it may provide metabolic support in states of starva-
tion or ischemia and provide substrates for anaplerotic 
replenishment of neurotransmitters [7, 44].
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Oligodendrocytes
Oligodendrocytes (OL) are chiefly associated with the 
synthesis of lipid-rich myelin to form the myelin sheath 
that supports neuronal health and signal transmis-
sion. Oligodendrocytes have been demonstrated to use 

glycolysis and the TCA cycle to generate ATP to fuel 
biological processes, as well as the PPP for pyruvate car-
boxylation [45] (see Fig. 1). They have been also found to 
have the highest rate of oxidative metabolism of all brain 
cells [46]. It is likely that their metabolic requirements 

Fig. 1  The metabolism of astrocytes (yellow), microglia (blue), neurons (pink), and oligodendrocytes (green) are intricately linked and change 
depending on substrate availability. The neuron relies primarily on glycolysis, the TCA cycle, and OXPHOS to meet metabolic needs. In times of 
low glucose, it receives lactate from astrocytes and oligodendrocytes to fuel its TCA cycle and generate reducing agents for OXPHOS via the ANLS. 
Neurons and astrocytes can also turn to ketone bodies produced by the liver and secreted into the blood in times of hypoglycemia. A key role of 
astrocytes is removal and conversion of glutamate from the synaptic cleft into glutamine which can be used in the TCA cycle by microglia and 
neurons
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are tightly linked to the need for myelin synthesis. For 
example, recent studies using fatty acid synthase (FASN)-
depleted OLs, have shown that endogenous FA synthe-
sis is required for myelination during development and 
for efficient remyelination in adulthood [47]. Although 
it remains to be experimentally determined, this would 
suggest that increased NADPH recycling via the PPP 
and citrate production via the TCA cycle in OLs may be 
required to provide intermediates for FASN to drive mye-
lin synthesis. While OL substrate requirements require 
further study, it is of note that provision of a high-fat diet 
can partially rescue myelin deficits OL-specific FASN KD 
mice [47].

Microglia
Microglia, the brain resident macrophages have pleio-
tropic roles in the central nervous system (CNS). To 
perform a variety of functions, they express numerous 
cell surface receptors, including but not limited to toll-
like receptors (TLRs), CD11b, and triggering receptor 
expressed by myeloid cells 2 (TREM2) [48–50]. The roles 
of these receptors in microglial function and how they 
could be harnessed for clinical diagnosis and treatment 
of CNS disorders continues to be a subject of intense 
research. However, it is becoming fairly well established 
that in response to invasion or injury microglia can phe-
notypically switch in response to specific environmental 
cues, and take on several changes including cell surface 
receptor expression, release of inflammatory cytokines, 
generation of reactive oxygen species (ROS), and changes 
in substrate utilization and metabolic requirements [48, 
51, 52].

Transcriptomic studies suggest that microglia can use 
glucose, FAs, lipoproteins and glutamine as substrates for 
metabolism [51, 52]. Recent studies using CPT1 inhibi-
tors to block mitochondrial fatty acid oxidation (FAO) 
in microglia showed increased microglial ramification 
and reduced motile surveillance and damage sensing 
capabilities, suggesting that FAO occurs in microglia 
and may drive function [53]. However, these studies are 
complicated by the fact that CPT1a is only expressed in 
astrocytes, implicating that mitochondrial β-oxidation 
is unlikely in microglia. It remains to be determined 
whether FAO could occur in microglial peroxisomes, but 
recent findings showing that inactivation of multifunc-
tional protein-2 (MFP2), a pivotal enzyme in peroxisomal 
β-oxidation, leads to fatal neurological disorder charac-
terized by microglial dysfunction suggest that peroxiso-
mal β-oxidation may be an important and understudied 
facet of microglial metabolism [54]. Functional metabolic 
studies, particularly to determine whether FAs are uti-
lized for fuel in microglia, either by mitochondrial or pos-
sibility peroxisomal β-oxidation, or rather intermediates 

for structural components or signaling molecules are 
much needed.

Under homeostatic, anti-inflammatory conditions 
microglia are believed to rely primarily on glucose and 
OXPHOS to meet their energy demands whereas pro-
inflammatory ‘activated’ microglia have been found to 
rely more heavily on glycolysis [51, 52, 55]. In support, in 
homeostatic conditions microglia only express the glu-
cose transporters GLUT3 and GLUT5. However, upon 
stimulation by lipopolysaccharide (LPS) and interferon 
gamma (IFNγ), microglia upregulate the expression of 
GLUT1 and GLUT4 as well as hexokinase 2 (HK2) a key 
glycolytic enzyme [51, 56, 57]. This shift in GLUT expres-
sion may represent the greater glycolytic need associated 
with pro-inflammatory activation and is reminiscent of 
the Warburg effect, which is often been reported in can-
cer cells [42, 58]. In light of recent findings suggesting 
that microglia in fact exist in a plethora of “activation” 
states, it is likely that changes to substrate utilization fol-
lowing “microglial activation” is more complex than pre-
viously thought. Since microglial activation plays a major 
role in the pathogenesis of all neurodegenerative diseases, 
and particularly AD, further studies aimed at defining the 
metabolic characteristics microglia are much needed. It 
is worth noting that recent transcriptomic studies that 
have highlighted the importance of distinct metabolic 
phenotypes in disease have used in vitro cell cultures or 
cells that have been isolated from the brain [12, 13, 59–
61]. The ability of microglia to rapidly respond to their 
environment could affect the validity of these studies. For 
example, it has also been noted that microglia grown in 
cultures tend to appear more “activated” than microglia 
in their native environment [62]. This calls for the devel-
opment of new methodologies that assess the metabolic 
profile of microglia removing them from their native 
environment.

Metabolism in the brain during damage 
and disease
Neurodegenerative diseases affect millions of people 
worldwide and can be devastating for the afflicted and 
their families [63]. Of these diseases AD is the most 
common [2, 64], and will become more prevalent as the 
world’s population gets older [65]. Importantly AD, PD 
and MS share metabolic characteristics such as neuro-
inflammation and mitochondrial dysfunction. For exam-
ple, during neuropathogenesis metabolic homeostasis 
becomes lost, which is associated with glial activation, 
neuronal damage, and cell death [66, 67]. Existing treat-
ments for these diseases are not curative and at best slow 
the progression of the disease, highlighting the need 
to further understand metabolic aberrations underly-
ing disease onset to develop new metabolism-focused 
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intervention strategies with the potential to reverse or 
halt disease progression. Here, we will review our current 
understanding of the metabolic changes involved in AD, 
PD and MS.

Alzheimer’s disease
AD is the most common cause of dementia. It was first 
described by Alois Alzheimer in 1907 who characterized 
it as a disease of progressive dementia with fibrils that 
were chemically distinct from the surrounding tissue [68, 
69]. With the advent of advanced microscopy techniques 
the disease has been further characterized by formation 
of plaques in the brain consisting of amyloid beta (Aβ), 
neurofibrillary tangles (NFTs), and loss of neuronal syn-
apses [70]. It is estimated that around 44 million people 
live with dementia worldwide, a number that is expected 
to triple by 2050 [71]. While many cases present spo-
radically, some genetic risk factors have been identified 
of which the Apoprotein E (APOE) ε4 allele presents 
the largest risk. Heterozygous APOE4 carriers have a 
reported odds ratio for AD of 3, whereas homozygous 
APOE4 carriers have an odds ratio of 12 [68, 72].

The APOE protein is a major component in glia-
derived high-density lipoprotein (HDL)-like lipoproteins 
and is the primary apolipoprotein in CNS lipid metabo-
lism. It is also involved in cholesterol and phospholipid 
efflux and clearance of lipids from the brain [73–75]. 
The APOE4 isoform has been found to be a significantly 
less potent acceptor of cholesterol and lipids than the 
APOE2 and APOE3 isoforms [73, 74, 76, 77]. This could 
be due to APOE4 lacking cysteine residues and leading 
to a propensity for posttranslational C-terminus cleav-
age preventing it from forming homodimers that allow 
it to accept lipids and to form lipoproteins [78–81]. This 
decreased lipid carrying capacity may lead to decreased 
lipid clearance from the brain, reduced lipid transport, 
reduced neuronal protection, and increased lipid accu-
mulation, particular in microglia where lipid droplet 
accumulation may lead to cellular dysfunction [82]. 
Therefore, it is plausible to suggest APOE4-mediated 
defects in lipid and lipoprotein processing are central 
to the neuropathogenesis of AD. In support, astrocytes 
expressing the APOE4 isoform were found to accumulate 
more and smaller lipid droplets (LDs) than those with the 
APOE3 isoform [81]. Accumulation of LDs is indicative 
of cell dysfunction and a pro-inflammatory state, sug-
gesting that cells expressing APOE4 isoform are more 
prone to activation and dysfunction that exacerbates the 
development of AD [81–84].

Recent studies have also found sex-dependent dif-
ferences in APOE4 influences on metabolism. Female 
APOE4 carriers were found to have higher cerebral glu-
cose metabolism than non-carriers while male APOE4 

carriers displayed no significant difference [85]. This 
could be due to an interaction between estrogen recep-
tors, estradiol, and APOE4 as suggested by literature, 
but clinical studies yield inconsistent results, and further 
studies are much needed [85–89].

Microglial activation and astrogliosis in response to 
amyloid deposition has been implicated in disease pro-
gression [70, 72, 90]. These phenotypic changes are cou-
pled to metabolic alterations. Astrocytes and microglia 
have been found to switch to glycolysis in mouse models 
of AD, producing more lactate and exhibiting less TCA 
cycle activity [64]. This seems to contradict findings from 
fluorodeoxyglucose positron emission topography stud-
ies (FDG-PET) suggesting that the brains of AD and PD 
patients exhibit glucose hypometabolism [46, 91–93]. 
However, it is plausible that relative hypoglycemia may 
be representative of aberrations in systemic metabolism 
that are becoming increasingly associated with AD risk 
[94, 95]. It should also be noted that blood glucose levels 
also affect FDG-PET measurements, as the FDG com-
petes with glucose to bind hexokinase [96]. In hypogly-
cemia, FDG will bind hexokinase more readily and not 
have as much competition due to relatively lower glucose 
levels. Similarly, in hyperglycemia, FDG will bind its tar-
get less readily as there is more relative competition. This 
confounds FDG-PET findings in neurodegenerative dis-
ease and should be considered during study design and 
data interpretation.

It has been proposed that inflammatory cells in the AD 
brain consume enough glucose to mask the metabolic 
deficits in neurons [97]. For example, metabolic tracer 
studies in a rodent model of AD have shown that AD 
neurons exhibit less TCA cycle activity and decreased 
expression of key mitochondrial enzymes [98], leading to 
poorly maintained ionic gradients and neuronal dysfunc-
tion. In addition, the loss of astrocytic TCA cycle activ-
ity cuts off neuronal supply of neurotransmitters, leading 
to an inability to maintain neurotransmitter homeostasis 
[98]. The interaction between neurons and astrocytes 
that both exhibit metabolic alterations in AD, leads to a 
cascade of events that culminates in neuronal death and 
cognitive decline, further supporting the need to under-
stand this sequence of events in a temporal and cell-spe-
cific manner.

Fatty acid metabolism is associated with the patho-
genesis of AD. Current research has focused on omega-3 
and omega-6 poly unsaturated fatty acids (PUFAs) for 
the anti-inflammatory and pro-inflammatory effects of 
their breakdown products. The breakdown products of 
omega-6 PUFAs, like arachidonic acid (AA), promote 
inflammation and have been associated with increased 
AD pathology [99, 100]. On the other hand, omega-3 
PUFAs are believed to have an anti-inflammatory effect 
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[101]. However, this notion is often inconsistent with 
experimental findings. For example, increased levels of 
tissue omega-3 PUFAs have been associated with worse 
cognitive function in AD patients, suggesting that per-
turbation of fatty acid metabolism is implicated in AD 
pathogenesis [99]. Although it has been long postulated 
that supplementation with omega-3 PUFAs may be 
beneficial for patients with AD, clinical studies are also 
contradictory. While several studies have found that 
omega-3 PUFAs supplementation can improve cognitive 
function in both humans and animal models of AD [102–
104], supplementation with the omega-3 PUFA doco-
sahexaenoic acid (DHA) was not effective in preventing 
AD progression [105]. There are likely several reasons for 
these conflicting findings, including insufficient dosing 
regimens, the method of omega-3 delivery to the brain, 
and inherent defects in lipid processing that may simul-
taneously contribute to disease and unresponsiveness to 
omega-3 supplementation. Further research is needed to 
determine how changes in lipid metabolism may contrib-
ute or protect against the development of AD, particu-
larly since dietary regimens that target lipid processing in 
the brain are a promising strategy to improve outcomes 
in patients with AD.

Parkinson’s disease
PD is the second most common progressive neurode-
generative disorder in the United States. It is clinically 
characterized by a resting tremor, bradykinesia, stoop-
ing posture and rigidity. It is associated with cognitive 
impairment, neurobehavioral disorders like depression 
and anxiety, and autonomic dysfunction [106]. Patho-
logically, PD is characterized by dopaminergic neuronal 
loss in the substantia nigra and intracellular α-synuclein 
deposition and accumulation in cholinergic and mono-
aminergic brainstem neurons [106–108]. Unlike with 
AD, most cases of PD are sporadic although famil-
ial forms have allowed for the identification pathways 
involved in the disease. Some of these pathways include 
oxidative stress, axonal transport, calcium homeostasis, 
α-synuclein proteostasis, mitochondrial function, and 
neuroinflammation. Like AD, magnetic resonance imag-
ing and PET studies have found glucose hypometabo-
lism in PD patients [91, 93, 109]. Decreased levels of PPP 
enzymes have been identified in PD patients along with 
mutations in genes encoding α-synuclein, Parkin, PTEN 
Induced Kinase 1 (PINK1), Leucine Rich Repeat Kinase 
2 (LRRK2), and DJ-1 in familial forms of PD [110, 111]. 
Decreased levels of PPP enzymes while not directly del-
eterious, impair the cells’ ability to make pentoses nec-
essary for ATP generation and DNA repair. Mutations 
in the genes found in familial PD have been implicated 
in mitochondrial dysfunction, inhibiting OXPHOS and 

forcing cells to rely on glycolysis to generate ATP [110, 
111]. While astrocytes are less dependent on OXPHOS, 
neurons rely heavily on mitochondrial respiration to 
meet energy demands. Therefore, impaired oxidative 
metabolism in neurons will disrupt neuronal functions 
and continue to the progression of PD.

Amyloid deposition is also seen in PD and has been 
hypothesized as a cause for microglial activation [93]. 
Several studies have shown that microglial activation 
is increased in PD patients and may exacerbate neuro-
degeneration in PD brains [64, 112]. Edison et  al., used 
[(11)C](R)PK11195-PET to measure the upregulation of 
translocator protein, a marker associated with microglial 
activation in patients with PD and Parkinson’s disease 
dementia (PDD) [93]. They found that patients with PD 
showed a significant increase in microglial activation, 
and that this activation was even more pronounced in 
patients with Parkinson’s disease dementia (PDD), but 
that microglial activation was an early event in the neu-
ropathogenesis of PD and was independent of amyloid 
pathology [93]. Moreover, they found concurrent reduc-
tions in glucose metabolism in PD patients, supporting 
the notion that metabolic permutation may drive disease 
pathology.

These activated microglia are believed to be key to 
pathogenesis of PD and generate oxidative species that 
damage neurons [64]. It has also been suggested that 
neuronal damage could be due to increased secretion 
of glutamate from activated microglia, since increased 
extracellular glutamate leads to impaired neuronal 
mitochondrial respiration and an inability to generate 
sufficient levels of ATP [113]. This cascade of events ulti-
mately leads to cell death [114], and highlights the impor-
tance of metabolic cross-talk between different cells of 
the brain in the development of PD.

Multiple sclerosis
MS is a chronic inflammatory and neurodegenerative 
disease in which immune cells cause demyelination and 
neuronal damage leading to cognitive decline. The dis-
ease has multiple clinical, radiologic, and histologic 
presentations. It is currently not known whether the 
inflammatory or neurodegenerative process is primary 
or secondary, and it is likely that pathogenesis is variable 
among patients, thus giving rise to different presentations 
[46, 115–118]. Although the disease progression is vari-
able, most patients experience relapsing remitting multi-
ple sclerosis (RRMS) characterized by periods of muscle 
weakness, blindness, double vision, trouble with sensa-
tion, and trouble with coordination, followed by total or 
partial recovery. In roughly 50% of patients, RRMS pro-
ceeds to secondary progressive multiple sclerosis (SPMS) 
where patients experience progressive deterioration. 
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SPMS is typically diagnosed based on a history of pro-
gressive worsening of symptoms following a relapsing 
course of the disease. In some patients, the disease causes 
progressive damage from the onset with no periods of 
relapse. This form is termed primary progressive multiple 
sclerosis (PPMS). The speed of deterioration occurs at a 
similar rate in PPMS as it does in SPMS [119].

Four types of lesions have been characterized in MS. 
20% of MS patients have immunopattern I lesions have 
T-cell inflammation, activated microglia, myelin-laden 
macrophages, and active demyelination suggesting that 
activated macrophages release toxic products that drive 
the demyelination process [120]. Approximately 50% of 
patients have immunopattern II lesions. These lesions are 
characterized by T-lymphocyte and macrophage infil-
tration, immunoglobulin deposition and complement 
activation on myelin. Immunopattern III lesions are char-
acterized by oligodendrocyte apoptosis, microglial acti-
vation, T-cell inflammation and loss of myelin-associated 
glycoprotein, 2,3-cyclic nucleotide-3-phosphodiestarase 
[120]. This form describes about 29% of MS patients. The 
final form, immunopattern IV lesions are defined by non-
apoptotic oligodendrocyte death and comprise only 1% 
of MS patients.

Regardless of the form, metabolic disturbances are 
central to the pathogenesis of MS. For example there is a 
growing body of evidence to suggest that mitochondrial 
dysfunction may underlie the neurodegeneration in MS, 
and is often present at the onset of clinical symptoms 
[121]. Dysfunctional mitochondria over-produce ROS, 
which can cause damage to proteins, lipids, DNA, and 
mitochondrial DNA (mtDNA) leading to cell damage and 
death [122–124]. OLs are particularly susceptible to dam-
age by ROS due to their high metabolic rate and reliance 
on mitochondrial respiration to fuel the production of 
myelin proteins. Neurons are also susceptible to damage 
by ROS as they rely heavily on the TCA cycle to generate 
ATP. Astrocytes on the other hand are more glycolysis-
dependent and therefore less affected by mitochondrial 
dysfunction and damage. Microglia become activated 
in response to the release of inflammatory mediators 
that are released by other microglia or infiltrating mac-
rophages leading to further ROS generation and damage 
to nearby cells [125]. Microglia switch increased glucose 
utilization and increased fatty acid synthesis due to acti-
vation of mTOR and disruption of the TCA cycle [125]. 
Intracellular metabolites like malonyl-CoA in activated 
microglia also prevent fatty acids from associating with 
carnitine acyltransferase, preventing their entry into 
mitochondria, and thus inhibiting FAO [125].

Like AD and PD, metabolic alterations appear to be a 
critical component, if not causative, to the development 
and progression of MS. Importantly, AD, PD and MS are 

all characterized by the lack of a true disease-modifying 
therapy that is able to reverse or halt disease progression. 
This can be due to many factors like drug half-life, pene-
tration of the active form of a drug into the BBB, the tim-
ing of the intervention, or ability of the drug to reach its 
target, inadequate bioavailability of the drug, or patient 
intolerance of therapy to name a few. Regardless of the 
reason for the lack of disease-modifying therapy, it is 
plausible to suggest that therapeutics aimed at restoring 
mitochondrial function may be an improved strategy that 
may rescue an increased susceptibility to develop ND in 
some individuals [126, 127]. To validate this hypothesis, 
further research is needed to define the time, region, and 
cell-specific changes in oxidative metabolism. Although 
current imaging modalities can measure changes in brain 
metabolism, the resolution is often lacking to determine 
cell-specific metabolic alterations. Going forward we 
will review the current range of methods used to visual-
ize brain metabolism and propose FLIM as an emerging 
modality with sufficient resolution to empirically deter-
mine metabolic changes leading to ND.

Metabolic imaging of the brain
It is clear by now that neurodegenerative diseases are 
accompanied by metabolic alterations in one or more cell 
types of the brain. Therefore, examining these alterations 
is a crucial step in understanding the etiology and pro-
gression of these diseases. There are many ways to study 
metabolism in cells and tissues such as mass spectrom-
etry, activity and colorimetric assays, seahorse XF analyz-
ers, and imaging [128]. Specifically, metabolic imaging is 
advantageous in a sense that it provides the spatial and 
temporal information that other techniques lack. Such 
spatiotemporal measurements are essential to resolve the 
metabolic changes in the different regions of the brain, as 
well as at different time points for longitudinal studies of 
disease progression.

Metabolic imaging modalities can be primarily divided 
into either ionizing radiation methods or non-ionizing 
radiation methods. Ionizing radiation methods include 
nuclear imaging techniques such as positron emission 
tomography (PET) and single-photon emission com-
puted tomography (SPECT). Whereas non-ionizing 
radiation methods include magnetic resonance imaging 
(MRI) techniques such as magnetic resonance spectros-
copy (MRS), hyperpolarized magnetic resonance, chemi-
cal exchange saturation transfer (CEST), optoacoustic 
(photoacoustic) imaging, as well as fluorescence micros-
copy imaging methods [129]. Coherent Raman scattering 
(CRS) microscopy [130] and mass spectrometry imaging 
(MSI) [131, 132] are other non-ionizing radiation meth-
ods which have been used to image metabolism in cells 
and tissues; although the latter does involve desorption/
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ionization of analytes by means of absorbing short ultra-
violet (UV) wavelengths that are non-ionizing per se. To 
be clinically relevant, metabolic imaging techniques need 
to be noninvasive or minimally invasive (i.e., no biopsies 
and tissue sampling are required), and preferably without 
the use of exogenous tracers. Moreover, they need to pro-
vide enough resolution to differentiate between different 
cell types at least, if not at a subcellular level.

In vivo changes in brain metabolism have been 
assessed using the following noninvasive or minimally 
invasive neuroimaging techniques: MRI, functional mag-
netic resonance imaging (fMRI), MRS, diffusion weighted 
imaging (DWI), diffusion tensor imaging (DTI), PET and 
SPECT [133], in addition to functional photoacoustic 
microscopy (PAM) [134] (a focused review on advanced 
MRI and MRS methods used in brain metabolic imaging 
can be found in [135]). On the other hand, postmortem 
ex  vivo examination of these changes has been gener-
ally performed using microscopy techniques [133] such 
as immunohistochemistry (IHC) [136], fluorescence 
microscopy with a variety of biosensors [137] (although 
such biosensors have also been used in in  vivo brain 
metabolic imaging [138]), stimulated Raman scattering 
(SRS) [139]—which is a CRS technique, MSI techniques 
[140–142], and more recently fluorescence lifetime imag-
ing microscopy (FLIM) [143–145] (though FLIM has 
also been used in in vivo brain metabolic imaging [53]). 
Autoradiography is another technique that has been 
used to observe changes in brain cell receptor expres-
sion or architecture [146–148]. Here, a radioactive tracer 
is injected into the sample prior to brain isolation and 
exposure of a radiation sensitive imager plate [149]. This 
technique provides good data on the regional localiza-
tion of the target of a given radioactive tracer. Depending 
on the tracer, inferences can then be made on changes in 
metabolism. This technique has been applied to analyze 
changes in PD, AD, and TBI [146–149]. This technique 
is particularly useful to determine drug or ligand occu-
pancy of specific-receptors and is therefore a gold-stand-
ard technique in pharmacological studies evaluating 
novel drugs, and their targets [150, 151]. However, the 
use of radiation, and the ex vivo nature of this approach is 
not always desirable.

Additionally, brain imaging methods can be broadly 
divided into three categories based on the information 
they provide: structural imaging, functional imaging, 
and molecular imaging. Structural imaging modalities 
include techniques such as computed tomography (CT) 
and MRI. CT images are created by exposing a patient 
to a rotating beam of X-ray radiation, whose signal is 
then collected and reconstructed to form a 3D image 
[152]. This can be used in conjunction with intravenously 
administered contrast agents, e.g., CT angiography, to 

allow for better imaging of vasculature [152, 153]. In the 
clinic, CT is useful for its quick acquisition time and is 
often used to rule out acute pathology such as hemor-
rhage, ischemia, or lesions. However, magnetic resonance 
images can provide better structural resolution especially 
when it comes to ND-associated structural changes. 
These images are created by exciting hydrogen ions and 
detecting energy release to construct an image [153]. 
Variations of MRI such as structural MRI and DTI have 
also been developed to study brain volume and tissue 
characteristics, and the integrity of white matter tracts 
[154].

Many MRI-based modalities have been developed to 
provide functional and molecular information. The most 
prevailing functional neuroimaging modality is blood 
oxygen level-dependent (BOLD) fMRI. This method 
relies on differences in the magnetic resonance signal 
created by changes in blood flow to brain regions, and 
differences in the magnetic properties of oxygen-rich and 
oxygen-poor blood. This provides an indirect measure 
of neural activity by associating metabolic activity with 
hemodynamic parameters that imply increased deliv-
ery or availability of nutrients to a specific brain region 
[155]. BOLD fMRI can be used for mapping brain net-
works associated with tasks or stimuli [156]. A similar 
technique is arterial spin labeling (ASL) wherein arterial 
blood is magnetically labeled and acts as a tracer to then 
measure differences in cerebral blood flow [157]. Rather 
than directly measure metabolism, these techniques pro-
vide good information on cerebral blood flow that can 
then be used to make inferences on regional cerebral 
metabolism.

PET is a well-established method of imaging that can 
provide metabolic information; the metabolic activity of 
brain regions can be imaged and analyzed using radio-
active forms of glucose, dopamine, or radioligands for 
the 5-HT2 receptor, serotonin transporter, or D2 recep-
tor [158, 159]. 18F-fluorodeoxyglucose (FDG) is one such 
tracer that has been developed to study regions of altered 
glucose metabolism in the brain. This is now widely used 
to study regions of infection, inflammation, or tumor 
growth [158, 160]. It should be noted, however, that local-
ization of FDG is a measure of glucose uptake and does 
not provide a precise measure of glucose metabolism 
[96]. As previously mentioned, FDG will bind hexokinase 
but not be metabolized.

Each of the aforementioned methodologies has its 
merits. Nonetheless, there exist limitations to their usa-
bility and suitability for the metabolic research in ques-
tion. PET technique, which is one of the most commonly 
used metabolic imaging methods for the brain- in addi-
tion to MRS—is limited by the high cost accompanying 
the production of its radiopharmaceuticals as well as the 



Page 10 of 18Cleland et al. J Neuroinflammation          (2021) 18:248 

inability to distinguish anatomic details [161]. MRS limi-
tations include potential tissue heating from the applied 
radio frequency (RF) energy, lengthy infusion and sam-
pling schemes of the isotopically labeled substrates, and 
more significantly the metabolic composition retrieved 
from a given voxel may belong to different tissue types 
[161], and thereby depreciating the importance of brain 
tissue-dependent metabolite heterogeneity. Addition-
ally, some MRS techniques (carbon spectroscopy) require 
either long acquisition time or infusion of 13C-labeled 
substrates, while others (hyperpolarization-based) are 
limited by their hyperpolarized metabolic probe’s short 
relaxation time [162]. Since many of these also rely on 
cerebral vasculature to either determine differences in 
brain regions or to transport a substrate, making these 
measurements susceptible to confounding by anatomi-
cal variation, as well as pathology that alters pericytes, 
endothelial cells, and smooth muscle cells which play a 
large role in controlling cerebral blood flow [163, 164]. 
Admittedly, many diseases also affect cerebral microvas-
culature, but this complicates separating metabolic dif-
ferences from vascular differences [165].

The previously mentioned methods provide good struc-
tural, functional, and molecular information especially 
when used in conjunction with one another. However, 
they only provide regional resolution and are dependent 
on the detectable metabolites. On the other hand, optical 
imaging modalities provide cellular resolution. In light 
of these differences, an optical imaging modality such as 
FLIM, may be a better tool to study metabolic changes in 
the brain [15].

Fluorescence lifetime imaging microscopy as a tool 
to measure in situ brain metabolism
Reduced nicotinamide adenine dinucleotide (NADH) 
and flavin adenine dinucleotide (FAD) are endogenous 
molecules in cells and tissues that have weak natural 
fluorescence [166]. Using specific wavelength of a light 
source, they can be transformed into an excited state 
with subsequent relaxation back to the ground state fol-
lowed by simultaneous emission of a light signal of a 
different wavelength. The first NADH fluorescence imag-
ing on live cells was performed in 1957 by Duysens and 
Amesz [167]. Since then, it has been widely used to study 
metabolic state of cells and tissues. NADH and FAD have 
divergent emission spectra with a little spectral overlap, 
which allows them to be imaged simultaneously. Fluores-
cence microscopy of NADH and FAD molecules helps to 
visualize where metabolic alterations are taking place in 
biological samples, including cells and tissue sections.

While the fluorescence intensity signal of NADH and 
FAD is highly informative and represents the activ-
ity of metabolic pathways, it is proportional to their 

concentration in the imaged samples. This can become 
problematic when reproducing measurements or when 
a fluorophore is only present at small concentrations in 
a sample. One way to circumvent this reliance on fluo-
rophore concentration is to look at fluorescence lifetime 
instead of fluorescence intensity. With fluorescence life-
time the amount of time a fluorophore spends in the 
excited state is measured. This property of a fluorophore 
is dependent only on the molecule’s microenvironment 
and not on its concentration [168–170]. This can be par-
ticularly advantageous in the field of biology as some tra-
ditional fluorophores are cytotoxic or not native to a cell’s 
environment. As previously mentioned, FLIM allows for 
the use of endogenous fluorophores that are already pre-
sent in biological systems [167, 168, 171]. Looking at a 
fluorophore’s fluorescence lifetime as opposed to its fluo-
rescence signal intensity also eliminates the requirement 
that a fluorophore displays spectral shift in response to 
a change in environment [168]. This also allows for the 
use of fluorophores with large wavelength absorption 
spectra, potentially lowering the cost of instrumentation 
[168].

Development of laser scanning microscopy methods in 
conjunction with fluorescent molecules lifetime measure-
ment marked the advent of FLIM. With FLIM, contrast 
in an image is generated by differences in fluorescence 
lifetimes [168]. This new method allows for the study of 
a fluorophore’s microenvironment, shedding light on the 
different environments in a cell or tissue. Examples of 
factors that can change a fluorophore’s fluorescence life-
time include the presence of oxygen, calcium, pH, energy 
transfer, as well as many other factors like nearby pro-
teins or quenchers [172–184]. As the field grows, more 
fluorophores will enter the field. NADH and FAD, which 
have intrinsic fluorescence and their lifetime is tied to the 
state of the molecule [185, 186]. Given the subcellular 
resolution fluorescence microcopy provides, examination 
of these fluorophores allows for a direct analysis of the 
metabolic profile of individual cells.

Advances in the field of microscopy over the last 
century have been key in the development of FLIM. 
Two-photon excitation microscopy allowed for deeper 
imaging of tissues and reduced photodamage even with 
longer imaging times and allowed for the interrogation of 
femtoliter volumes in a sample [185, 187–191]. The abil-
ity to capture spatial and temporal resolution simultane-
ously in microscopy was also key in the development of 
FLIM as this allowed for fluorescence lifetime data acqui-
sition in volumes small enough to analyze individual sub-
cellular compartments in real time [189, 191].

The fluorescence lifetime of NADH changes depending 
on whether it is free or in a bound-to-enzyme form [186, 
192]. For free NADH, the lifetime is around 0.4 ns versus 
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around 3.4  ns when it is in a bound-to-enzyme form 
[15]. Other factors that affect the fluorescence lifetime 
include pH, temperature, and redox state. Since NADH 
is intricately involved as a cofactor in multiple metabolic 
pathways, differences in its lifetime can be used to deter-
mine which pathways a cell is using to meet its metabolic 
demands. FAD is another cofactor whose autofluores-
cence can and has been used to investigate metabolic 
processes in situ [193–196]. Specifically, FLIM has found 
a niche in analyzing tissue for markers of cancer, since a 
hallmark of cancerous cells is the reprogramming of met-
abolic pathways [197–203]. It should be noted that there 
are many other molecules in cells and tissues that exhibit 
autofluorescence and whose fluorescence spectra overlap 
with these probes, and techniques have been developed 
to bypass this problem [186, 192, 204, 205].

The phasor approach for FLIM data analysis helps to 
avoid multiexponential analysis used in typical fluores-
cence decay fitting [187, 189]. In phasor analysis each 
pixel of an image has its fluorescence decay plotted as a 
vector on a universal semicircle plot with vertices at (0,0) 
and (0,1). These points correspond to an infinite lifetime 
and a lifetime of zero, respectively. Pixels with contribu-
tion of multiple different lifetimes lie inside the circle 
while pixels with more homogenous lifetime composition 
lie closer to the periphery of the circle [187, 189]. The 

resultant phasor plot provides insight on the state of vari-
ous fluorophores within a sample, which is not intended 
to determine exact fluorescence lifetimes (Fig. 2). Nota-
bly, there are caveats to this fit free analysis of FLIM data. 
Phasor analysis is not sensitive to low photon counts 
[206], and cannot reliably distinguish small changes in 
the redox state in the sample [186]. Moreover, the meta-
bolic analysis does not have a single pathway resolution 
and response is reported by the ratio of free-to-bound 
fractions, where both numerator and denominator can 
change, while maintaining similar ratio [207]. Further, if 
the calibration decay is not acquired properly, this can 
lead to improper conversions of data to phasors [208]. 
Additionally, if the phasor transformation is not done 
with data acquired in entire period of the laser repetition 
rate, advantages of phasor plot analysis can be dimin-
ished [209]. The consequences of such errors as well as 
ways to avoid them are outlined elsewhere [185, 209].

As previously discussed, many neurodegenerative dis-
eases involve metabolic reprogramming. By using FLIM, 
these changes in brain metabolism can be characterized 
with the possibility of identifying metabolic derange-
ments prior to the onset of symptoms. For example, we 
have recently shown that neurons lacking the lipid pro-
cessing enzyme lipoprotein lipase (LPL) show a shift in 
the NADH phasor plot indicative (Fig.  2) of increased 

Fig. 2  FLIM imaging and analysis. Mouse hypothalamus (A) is excited (B) with 2 photon laser to collect NADH and FAD fluorescence signal on 
multiple smaller fields of view (C) and measure their lifetimes. Phasor plots for NADH (D) and FAD (E) and corresponding lifetime maps distributions 
(F and G, respectively) are created
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free NADH compared to wild-type neurons, suggesting 
that LPL depletion results in metabolic shifts towards 
glucose utilization and away from oxidative metabolism 
(Fig.  2) [144]. These findings were the first to combine 
electrophysiological measurements of neuronal function 
with metabolic changes and highlight how FLIM may be 
used to measure metabolism alterations in fresh-frozen 
brain sections [144]. Recent studies have also employed 
FLIM to successfully determine metabolic changes in 
primary cultures of neurons and astrocytes in response 
to toxins that mimic the effects of PD [210]. Specifically, 
manganese (Mn) treatment leads to increased bound 
NAD(P)H in neurons consistent with enhanced apopto-
sis, but leads to decreased bound NADH in astrocytes, 
possibly due to a shift towards glycolytic metabolism and 
impaired respiration [210]. FLIM has also been used to 
study chronic neuroinflammation in the brains of mouse 
models of MS and in venous blood of human subjects 
[211–213]. Here, NAD(P)H was used as a fluorophore 
to detect active NADPH oxidase and as an analog for 
oxidative stress [211–213]. NAD(P)H can be used as an 
analog for oxidative stress because it serves as a source 
of electrons to generate ROS via NADPH oxidase [214–
216]. In the brain, overactivation of NADPH oxidase has 
been linked to neurodegenerative disease [214–216]. This 
technique has also been applied to studying the patho-
physiology of cerebral amyloid angiopathy and glioblas-
toma [217, 218].

With enough characterization of a given fluorophore, 
and its possible intracellular bound states and respec-
tive fluorescence lifetimes, one can generate a database 
that allows for near complete analysis of a cell’s meta-
bolic state in various compartments [219]. Leben et  al. 
undertook such an endeavor, generating a database of the 
various fluorescence lifetimes that NAD(P)H has when 
bound to various enzymes. With the help of RNA-seq 
data, they identified metabolic enzymes like malate dehy-
drogenase or lactate dehydrogenase, inducible enzymes 
like nitric oxide synthase and NAD(P)H oxidases, as well 
as other abundant small enzymes like sorbitol dehydro-
genase that were most likely to bind to NAD(P)H and 
change its fluorescence lifetime [219]. By performing 
measurements of homogenous mixtures of NAD(P)H 
and single enzymes they were able to generate a database 
listing nearly all possible fluorescence lifetimes for this 
fluorophore [219]. This demonstrates that with enough 
fluorophore characterization, FLIM has the power to 
identify the state that a given fluorophore is in, what 
enzymes it is bound to, as well as what its microenviron-
ment looks like in various intracellular or extracellular 
compartments. Although FLIM characterization is some-
what new, and often require validation studies to support 
the findings, it is clear even from the limited number of 

published studies that FLIM analysis can resolve cell-spe-
cific changes in brain metabolism that would otherwise 
be missed by alternative imaging modalities.

Microglia are of particular interest since altered micro-
glial metabolism coincides with changes to phenotype 
and function that may contribute to, or protect against, 
the pathogenesis of many neurodegenerative diseases. 
However, existing methods for studying them rely on 
removing microglia from their native environment to 
study their gene expression and phenotype.

Recently, several publications have begun to utilize 
FLIM to understand inherent characteristics of micro-
glial metabolism that may differentiate them from other 
cells in the brain. Sagar et  al., measured the lifetime 
of NADH in both primary microglial cultures and in 
100-μm-thick coronal sections from mice that had been 
treated with increasing doses of LPS in order to modu-
late the inflammatory status of the brain and “activate” 
the microglia [145]. Interestingly, they found that micro-
glia in their activated state surveillant or inactivated state 
had a shorter NADH mean lifetime compared to other 
glial cells, and that they had a greater fractional contribu-
tion from free NADH [145]. In contrast, LPS treatment 
increased their mean NADH lifetime and decreased 
the fractional contribution of free NADH (compared to 
vehicle treatment) [145]. In support, Bernier et al., 2020 
recently reported that resting microglia in  situ have a 
much shorter NAD(P)H lifetime than surrounding non-
microglial cells [53], and therefore a more glycolytic state. 
Importantly this study performed glycolytic inhibition 
with iodoacetate to confirm that glycolytic activity cor-
relates with measurements of free short lifetime NADH 
[53]. Together, these studies suggest that microglia are 
much more glycolytic than previously thought, par-
ticularly in comparison to non-microglial cells and that 
activated microglia in fact may metabolically shift away 
towards oxidative metabolism to support the greater bio-
energetic needs of activation-associated functions such 
as phagocytosis. Since these findings are somewhat in 
contrast to previous literature, and in particular findings 
from (albeit peripheral) inflammatory and macrophage 
models, it is imperative to further validate these find-
ings using models of neurodegenerative disease such as 
AD, PD and MS. These discrepancies also highlight the 
importance of further work to validate our understand-
ing of cell-and-disease-state specific brain metabolism, 
and to determine whether our findings corroborate with 
those from existing metabolic imaging approaches. In 
other words, will our findings using FLIM challenge our 
previous notions? For example, FDG-PET, described 
above, is predominantly used to measure brain glucose 
metabolism, which is interpreted as neuronal metabolism 
and neuronal activity. Since we know that non-neuronal 
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cells majorly contribute to glucose uptake and metabo-
lism, could glial cells also contribute to FDG-PET read-
outs? Although further method development is required, 
FLIM analysis of brain tissue from various metabolic and 
disease state paradigms, in conjunction with cell-specific 
markers, may eventually help answer these questions. 
Nonetheless, it is clear from the few studies employing 
FLIM, that this technique will enable major advance-
ments in our understanding of microglial metabolism 
in  situ. With more widespread use of FLIM and better 
metabolic characterization of microglia, FLIM could be 
used to identify mechanisms that promote or protect 
against the development of ND.

Conclusion
A striking similarity between ND is the immunometa-
bolic switching of glial cells. Specifically, in AD, PD and 
MS oxidative-to-glycolytic, and shifts are often observed. 
It is plausible to suggest that targeting glycolytic shifts 
may be a potential therapeutic strategy for the treatment 
of ND. This is particularly promising in the case of AD, 
since disease-modifying treatments are mostly lacking. 
Here we suggest that imaging modalities such as FLIM, 
that can discriminate between subcellular, cell-type 
and regional differences in substrate utilization may be 
instrumental in the development of strategies that tar-
get metabolic processes to modify cellular function and 
improve outcomes in patients with AD and beyond.
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