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Abstract

As malignant transformation requires synchronization of growth-driving signaling (S) and

metabolic (M) pathways, defining cancer-specific S-M interconnected networks (SMINs)

could lead to better understanding of oncogenic processes. In a systems-biology approach,

we developed a mathematical model for SMINs in mutated EGF receptor (EGFRvIII) com-

pared to wild-type EGF receptor (EGFRwt) expressing glioblastoma multiforme (GBM).

Starting with experimentally validated human protein-protein interactome data for S-M path-

ways, and incorporating proteomic data for EGFRvIII and EGFRwt GBM cells and patient

transcriptomic data, we designed a dynamic model for EGFR-driven GBM-specific informa-

tion flow. Key nodes and paths identified by in silico perturbation were validated experimen-

tally when inhibition of signaling pathway proteins altered expression of metabolic proteins

as predicted by the model. This demonstrated capacity of the model to identify unknown

connections between signaling and metabolic pathways, explain the robustness of onco-

genic SMINs, predict drug escape, and assist identification of drug targets and the develop-

ment of combination therapies.

Author summary

Complex and highly dynamic interconnected networks allow cancer to take different

routes and circumvent chemotherapy. Therefore, understanding these context-specific

networks and their dynamics of molecular interactions driven by different oncogenic sig-

naling and metabolic pathways is very much needed to predict drug targets and the effect

of therapeutics. We incorporated high-throughput transcriptome and proteome data into
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mathematical models to deduce properties of cancer cells through systems biology

approach. Here we report the development, testing and validation of an integrated systems

biology model of information flow between signaling and metabolic pathways to under-

stand the regulation of the interconnection between them in cancer. Our model efficiently

identified unique connections and key nodes important in signaling-metabolic informa-

tion flow. We predicted some potential novel targets before performing actual drug tests.

We have successfully applied this model to identify the interconnections altered in the

constitutive signaling of the mutated EGFR by comparing EGF-dependent and wild-type

EGFR signaling in glioblastoma multiforme.

Introduction

Diseases like cancer involve a large range of components that interact via complex and highly

dynamic networks [1–3], and are interconnected with biochemical pathways [4–7]. These

multipath interconnections may allow cancer and other diseases to take alternate routes and

bypass the effects of therapeutic interventions. Traditional approaches to biological studies

which focus on single molecules or pathways may not be able to capture and understand these

complex networks of molecular interactions. To predict alternative or escape routes around

blockades and to develop effective therapies [8], sophisticated mathematical and computa-

tional models are required [9–10].

Transforming traditional drug discovery approaches toward smarter therapeutic strategies,

the field of systems biology is emerging [1, 9, 11–20]. Systems approach generally involve

large-scale data collections, most often from high-throughput transcriptome or proteome anal-

yses, incorporation of the data into mathematical models to deduce systems properties, model

building and finally computational and/or experimental validation of model-derived hypothe-

ses. Systems biology approaches may predict combination therapies for cancers driven by dif-

ferent oncogenic signaling and metabolic pathways.

Signaling and metabolic networks were studied using separate model systems [15, 21–26].

Mathematical models for signaling pathways had been based on logic models [27–30], kinetic

models [31–33], decision tree [34], and other differential equation-based models [35]. Compu-

tational models of molecular signaling [36–41] have the potential to improve drug discovery

and development [32,42–44]. Analyses of knockdown experiments [45] using mass spectrome-

try [46] and transcriptomics [47–49] are progressively refined and tuned towards specific

physiological situations. While these studies have helped considerably to extend our under-

standing of tumor biology, they are still restricted to signaling pathways and do not integrate

the metabolic pathways, which in some initial studies have been subjected to separate systems

biology analysis.

Predicting the effects of multiple targeted drugs [8, 50] with modeling the information flow

from new molecular interactions within pathways is challenging [51–55]. Here we report the

development, test and validation of an integrated model for signaling and metabolic pathways

in cancer using glioblastoma multiforme (GBM) as an example [47, 56–59]. GBM is the most

prevalent and most aggressive brain tumor. In the majority of cases, tumor development is

dependent on signaling via the epidermal growth factor receptor (EGFR) and requires EGF in

lower-grade forms or is EGF-independent in the more aggressive forms. In most cases, the

expression of EGFR is up-regulated, often related to the amplification of the EGFR gene. More

than fifty per cent of EGFR-amplified GBM cases have in-frame deletions of exons 2–7 that

code for the extracellular ligand-binding domain (EGFRvIII mutation) resulting in EGF-
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independent constitutive signaling and more aggressive tumor growth, higher invasiveness,

increased resistance to treatment, and poor prognosis [60–62].

In this study, we choose the cell line U87MG expressing the EGF-dependent EGFRwt and

its derivative U87MGvIII expressing the EGF-independent EGFRvIII-mutant, as models of

low and high-grade GBM, respectively. Except for the EGFR mutation, the two cell lines have

the same genotype but differ in growth behavior suggesting different metabolic requirements,

and are experimental examples for the regulation of the interconnection of signaling and meta-

bolic pathways, which is considered among the basic characteristics of cancer [63–64].

We implemented a probabilistic approach based on the Hidden Markov Model (HMM)

utilizing the information of experimentally established protein-protein interactions (PPIs)

[65–66] to extract novel paths and interconnections between signaling pathway proteins (S)

and metabolic pathway proteins (M). To cope with the limitations of PPI identification, for

example high error rates of the detection methods [67], incomplete data sets, ignorance of the

physiological conditions in the cell or tissue compartments [68], technical problems and study

biases [69], we collected information from curated sources (http://string-db.org) with high

experimental score cut-off, which reduces false positive rates, and used transcriptome data

from clinical samples to build more reliable and GBM context-specific PPI networks. To

bridge the gap between transcriptome data and cell-biological processes, we incorporated pro-

teome data from the GBM cell lines complemented with transcriptome data to solve the miss-

ing data problem caused by the failure of proteomics to capture all proteins in the cells due to

sensitivity and reproducibility issues. Including experimental data, our dynamic model can

make use of multiple weighted network properties to add biologically relevance and can

extract novel paths of information propagation in networks. The results of the model were

tested in rigorous in-silico perturbation experiments and experimentally validated in cell cul-

ture systems. Fig 1 depicts the overall strategy implemented with this study.

Results

Construction of a signaling to metabolic pathway interconnection network

As a starting model, we constructed an integrated network where signaling (S) and metabolic

(M) pathway proteins were connected through protein-protein interactors (PPIs). The signal-

ing pathways were the apoptosis, Akt, EGFR, hedgehog (Hh), JAK-STAT, JNK, MAPK,

mTOR, NF-kappa B (NF-κB), Notch, p53, Ras, TGF-β, and Wnt pathways. On the metabolic

Fig 1. A schematic representation of the steps to establish the context-dependent signaling-metabolic interconnection model.

https://doi.org/10.1371/journal.pcbi.1007090.g001
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site, there were 81 pathways grouped into the six categories carbohydrate, lipid, amino acid,

nucleotide, energy and xenobiotic metabolism (Fig 2).

To build an initial human protein-protein interactome network (HPPIN), the total of all

human protein-protein interactions was extracted from the protein-interaction database

STRING [70] for experimentally validated interactions including physical and functional asso-

ciations. Then to structure the signaling-metabolic interaction network (SMIN), cross-connec-

tions between the fourteen signal transduction and six groups of metabolic pathway proteins

selected from pathway databases (see Materials and methods) were constructed based on pro-

tein-protein interacting proteins (node) and cross-connecting links/paths. All possible connec-

tions between any given signaling pathway protein (S) and metabolic pathway protein (M) via

protein-protein interconnectors (PPIs) were included (Fig 2A). To derive a simplified but

informative network, the interactions were restricted to the second level of protein interactors,

i.e. up to interactors of interactors. This led to four different types of cross-connected paths

where signaling pathway proteins were either directly connected with metabolic pathway pro-

teins or through one, two or three PPIs, respectively (Fig 2A). These paths connecting all

above-mentioned signaling (S) and metabolic (M) pathway proteins were then converted into

networks based on the protein-protein interaction status between the involved proteins

(Fig 2B).

The resulting signaling-metabolic interaction network (SMIN) is shown in the left panel of

Fig 3A with nodes in orange and edges (connection between two nodes) in blue,within the

total interactome containing HPPIN network with grey nodes and edges. As a result of afore-

said restriction criteria, Fig 3A shows the reduction of the network size (number of nodes/pro-

teins and their interactions/edges) of SMIN (11,059 interactions formed by 2,785 proteins)

from HPPIN (16,828 interactions formed by 5,703 proteins). As an example of network links,

the detailed connections and interactions between one signaling pathway protein, CSNK2A1,

and one metabolic pathway protein, NDUFA13, through different PPIs in the SMIN are

shown on the right panel of Fig 3A. These two selected examples are indicated by asterisks.

The SMIN was found to contain 158 direct (S-M) linking paths, 4,036 with one interactor

(S-P-M), 91,847 with two interactors (S-P-P-M) and 2,110,205 with three interactors

(S-P-P-P-M). These paths were formed between 158, 2,967, 22,307, 69,032 S-M pathway pro-

tein pairs, respectively (Table 1). Comparisons with respective random networks proved that

our selected HPPIN and SMIN are non-random scale-free networks (S1 Fig and S1 Table).

Expression of signaling and metabolic pathway proteins in GBM cell lines

To render the above condition-independent SMIN GBM-specific, quantitative comparative

proteome analysis of the low- and high-grade GBM cell lines U87MG and U87MGvIII were

performed and the data incorporated in the model to derive an enriched GBM-specific net-

work. The use of cell lines helped to reduce the noise associated with the usual small size and

heterogeneous cellular compositions of clinical samples. Proteomes was chosen as primary

expression data to focus the models on the protein level, which is more closely related to the

biological processes to be modeled than transcriptome data. Transcriptome date from clinical

samples (see below) were subsequently added to reduce the missing data problem of proteo-

mics and link the model to the clinical level. To decrease the complexity of the proteins in the

cell extracts and minimize signal suppression by overabundant peptides, the proteins were

first separated by SDS-PAGE. Then the gels were cut into one mm slices followed by separate

in-gel digestion of the proteins with trypsin. The resulting fragments were extracted from the

gel slices as individual samples, separated by reverse-phase nano-HPLC and analyzed on-line

by ESI-Q-TOF mass spectrometry (S2 Fig). Quantification was done label-free by calculating

Integrated S-M pathway model for GBM
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Fig 2. Establishment of signaling-metabolic pathway protein (S-M) interconnections for construction of SMIN.

(A) Fourteen signaling (left) and six groups of metabolic pathways (right; grouping of 81 individual metabolic

pathways) were selected from the KEGG database to develop the S-M interconnected network (SMIN) through PPI.

Experimentally validated data from the STRING protein-interaction database were used to construct an initial HPPIN.

The levels of interaction were restricted at the interactors of interactors to create the network resulting in four possible

linking paths through which selected signaling and metabolic pathway proteins could be connected directly or through

one, two and three PPI. (B) Conversion of interconnecting paths into network representation.

https://doi.org/10.1371/journal.pcbi.1007090.g002
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Fig 3. Development of a GBM-specific significant network from HPPIN. (A) A human protein-protein interactome

network (HPPIN) was established based on experimentally validated interactome data of STRING database (left panel:

the total network where nodes and edges are marked in grey). The SMIN was extracted from the HPPIN as signaling-

metabolic interconnected path-dependent network between fourteen signaling and six groups of metabolic pathways as

indicated in Fig 2 (highlighted as orange nodes and blue edges within the HPPIN on the left panel). The interconnections

in the SMIN between one signaling (CSNK2A1) and one metabolic (NDUFA13) pathway protein through PPIs were

highlighted on the right panel.(B) A GBM-specific network (left panel with yellow nodes and green edges) was developed

from the SMIN (orange nodes and blue edges within the total background network) considering interconnecting paths

with at least one differentially expressed protein identified from comparative proteome analysis of U87MG (EGFRwt)

Integrated S-M pathway model for GBM
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the exponentially modified protein abundance index (emPAI) to avoid the drawback of mere

signal intensity-based measurements. Only proteins with at least two tryptic fragments were

identified by MS/MS with high confidence were considered, which further reduced the noise

of protein identification although resulting in lower numbers of hits. The analyses were done

with three independent replicates per cell line and the resulting data processed in two different

ways. First, each of the three datasets for U87MG was compared to each of the three datasets

for U87MGvIII resulting in nine pair-wise comparisons. Second, the average of three datasets

of one U87MG was compared with the average of the three datasets for U87MGvIII.

A total of 907 unique proteins were identified, 771 from U87MG and 664 from U87MGvIII.

Five hundred twenty-eight proteins were expressed in both cell lines, 243 only in U87MG

(EGFRwt) and 136 only in U87MGvIII (EGFRvIII). These distinctively expressed proteins

were considered as overexpressed in the respective cell lines in comparison to the other. Com-

pared quantitatively, 458 of the 528 common proteins were expressed at similar levels, 70 pro-

teins were either up (45) or down (25) regulated in U87MGvIII compared to U87MG (Fig

4A). Together, nearly half of the identified proteins (449) were differentially expressed, 268

down-regulated and 181 up-regulated in U87MGvIII versus U87MG (Fig 4B).

Over-representation analysis (ORA) based enrichment for cellular pathways, biological

processes and molecular functions were performed using cell line specific and commonly

overexpressed proteins. Fig 4C and 4D show the top 20 most enriched pathways for proteins

exclusively overexpressed in U87MGvIII (EGFRvIII) and U87MG (EGFRwt), respectively.

and U87MGvIII (EGFRvIII) GBM. The interconnecting paths between the same signaling (CSNK2A1) and metabolic

(NDUFA13) pathway protein after exclusion of non-GBM specific interconnections are shown on the right panel. (C)

The GBM-specific network based on significant nodes (z�1) and significant interconnected paths (path score�80% of

the highest path score of each SM pair) identified from the weighted network were indicated with blue nodes and red

edges within the GBM-specific network with yellow node and green edge. The interconnecting paths in the GBM-specific

significant network between CSNK2A1 and NDUFA13 are shown as examples on the right panel.

https://doi.org/10.1371/journal.pcbi.1007090.g003

Table 1. Detailed statistics of paths, pairs, and proteins with expression involved in stepwise filtration of the signaling-metabolic interaction network (SMIN) to

the significant GBM-specific network with the differential expression states in the EGFR-mutated cell line U87MGvIII compared to U87MG with wild-type EGFR.

Connection Types Pairs and Paths

Supra Interaction

Network (SMIN)

GBM specific

Network

GBM specific paths and pairs in weighted network

Total

S-M pairs

Total

paths

GBM specific

Pairs

GBM specific

Paths

Model-1

Pairs selection

Model-2

Path selection

Z�3 Z�1

Z�3

pairs

Z�1

pairs

�80%

Paths

�80%

paths

S & M same 51 - 2 - - - - -

S- - - - -M 158 158 22 22 1 1 2 5

S- - -P- - -M 2,967 4,036 425 509 2 8 21 84

S- - -P- - -P- - -M 22,307 91,847 5,509 15,042 114 334 228 600

S- - -P- - -P- - -P- - -M 69,023 2,110,205 33,328 421,876 758 1,961 625 1,564

Total 69,352 2,206,246 33,418 437,449 801 2,055 876 2,253

Total gene 949 2,785 906 2,319 431 494 447 654

Exp. status UP 17 48 17 48 11 15 17 22

DN 24 85 24 85 8 12 23 32

NC 53 162 47 142 11 19 24 40

https://doi.org/10.1371/journal.pcbi.1007090.t001
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Fig 4. Comparative proteome analysis between the GBM cell lines U87MG (EGFRwt) and U87MGvIII (EGFRvIII).

Protein identification and quantification were done by nano-HPLC Q-TOF MS/MS and peptide searches using the

SwissProt databank for human proteins. Quantitation of the protein expressions was label-free by calculating the emPAI

values for each protein. (A) Venn diagram for the statistics of proteins identified in U87MG and U87MGvIII. In three

independent biological replicates of the proteome analysis for each cell line 907 proteins were identified, 528 common,

243 only for U87MG and 136 only for U87MGvIII cells. Of the shared proteins, 458 were equivalently and 70

differentially expressed. (B) Distribution of equivalently and differentially expressed proteins. Of the 449 differentially

expressed proteins 243 were only present in U87MG and 136 in only U87MGvIII and 70 were present in both but in

differential expression (down right). In total 268 were up-regulated and 181 down-regulated in U87MGvIII compared to

U87MG. (C-D) Pathway over-representation analysis. Panels C and D plot the enriched pathways for proteins exclusively

overexpressed in U87MGvIII (EGFRvIII) and U87MG (EGFRwt), respectively. One thirty four out of 136 and 235 out of

Integrated S-M pathway model for GBM
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Similarly, Fig 4E and 4F provide the top 20 enriched pathways for commonly over and under

expressed proteins, respectively.

The most significantly enriched pathways were found to be proteasome (p-value =

0.97763E-07) in U87MGvIII (EGFRvIII) and TCA cycle (p-value = 1.48369E-06) in U87MG

(EGFRwt). However, Fructose and mannose metabolism (p-value = 6.7086E-04) and pentose

phosphate pathways (p-value = 3.1503E-05) were found to be most significantly enriched for

proteins commonly overexpressed and underexpressed, respectively.

Gene ontology (GO) based biological process and molecular function over-representation

analysis was also performed using cell line specific overexpressed proteins. Most significantly

enriched biological processes and molecular function were found to be Tricarboxylic acid

metabolic process (p-value = 2.7304E-04) and Threonine-type peptidase activity (p-value =

0.001053394), respectively in U87MGvIII (EGFRvIII). In U87MG (EGFRwt), TCA metabolic

process (p-value = 7.76842E-08) and pre-mRNA binding (p-value = 0.007857451) were found

to be the most significantly enriched biological process and molecular functions, respectively

(S3 Fig).

EGFR-mediated GBM-specific network

To uncover the signature of the reprogramming of global cellular processes by the EGF-inde-

pendent constitutively active EGFRvIII in GBM, we mapped the data from the comparative

proteomics of U87MGvIII (EGFRvIII) versus U87MG (EGFRwt) onto the above-described

SMIN. All S-M interconnecting paths with at least one differentially expressed protein were

extracted from the SMIN to generate a GBM-specific network (Fig 3B, left panel: highlighted

with yellow nodes and green edges within the orange nodes and blue edges of the SMIN) with

the assumption that those paths will have higher probability to be differentially active in

mutant GBM condition. As an illustration of proteome data mediated extraction of a GBM-

specific network, the interconnections between the aforementioned signaling pathway protein,

CSNK2A1 and the metabolic pathway protein, NDUFA13 are highlighted after extraction

from SMIN (Fig 3B right panel in comparison to Fig 3A right panel). Table 1 provides the

details of the paths/pairs present at different stages of network development.

GBM-specific network weighted for biological significance

To make this network further enriched with potentially disease-relevant paths/pairs, weights

specifying disease-related biological properties and expression states of the proteins were

assigned to each node (protein/gene) and edge (interaction) of the GBM-specific network. The

following three categories of proteins (nodes) were given additional weights. First, proteins

cross-talking between different signaling pathways (signaling cross-talk, SC), second, rate-lim-

iting enzymes (RLE) for their roles in regulating metabolic rates and pathways, third, EGFR

mutation-specific differentially expressed proteins (dEXP) for their GBM-specific impact.

The GBM-specific network included 446 dEXP, 349 SC, and 267 RLE proteins. Of these, 11 SC

and 17 RLE proteins were up or down regulated suggesting their involvement in signaling-

metabolic cross-connection in EGFR-mutated condition (S4A Fig). For systems-level interpre-

tation and understanding the network property, local signaling entropy (Si) was introduced.

Previous studies [71–73] showed that Si can be used as a measure of uncertainty in signaling

243 proteins overexpressed in U87MGvIII (EGFRvIII) and U87MG (EGFRwt) were mapped onto pathways. (E-F) Panels

E and F plot enriched pathways of commonly up-regulated and down-regulated proteins between U87MGvIII and

U87MG. Fourty five out of 45 and 24 out of 25 proteins commonly overexpressed in U87MGvIII (EGFRvIII) and

U87MG (EGFRwt) were mapped onto pathways.

https://doi.org/10.1371/journal.pcbi.1007090.g004
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information flow over a network and to identify important signaling pathways and genes/pro-

teins in cancer. Effect-on-node (effs) of every protein (node) in the network provided signifi-

cance of a protein based on SC, RLE and dEXP in its local network. To identify probable paths

of information flow from a signaling to metabolic pathways, network entropy (Si) and effect-

on-node (effs) properties were incorporated as node weights into the logic of the Hidden Mar-

kov Model (HMM). The edge weight of every two interacting nodes (gene/protein) were

defined based on the principle of mass action (assuming that the probability of interaction of

two genes in a given sample is proportional to the product of their expression values in the

study samples) as probability of interaction (pij, where i and j are the two nodes) in GBM con-

dition. To assign the expression value of each node present in the GBM specific network, the

average expression value of each gene was calculated from the normalized transcriptome data

from 239 GBM patients. Incorporating these transcriptome data as edge weights linked the

network with biological information from GBM patients. It helped to assign an extra weight

other than previously mentioned node weight for all connections made by two nodes based on

their expression in clinical GBM patients. Furthermore, it helped to add another level of con-

straint on over-prediction of information flow for nodes, which got an extra weight based on

SC, RLE, and dEXP but are not expressed at higher levels in GBM patients. This helped to

incorporate the contribution of those nodes to the disease, which were identified by neither of

the three before-mentioned node weights nor by proteomics. Moreover, the much broader

coverage of gene expression by genome-wide transcriptomics compared to proteomics helped

to overcome some of the missing-data-problem of proteomic datasets.

An HMM-based simple mathematical formalism was used to understand context-specific

information propagation from signaling to metabolic pathways in the human biological net-

work. Node weights and edge weights were used to define the two major parameters of the

Markov model, emission (Ef) and transition (Tj) probabilities, respectively. Two model sys-

tems were implemented to apply HMM logic, Model 1 for SM pair identification (Fig 5A) and

Model 2 for S-M linking path identification (Fig 5B). Model 1 emphasized source (Signaling

Pathway Protein, S) and destination (Metabolic Pathway Protein, M) pairs i.e. SM pairs having

higher chances of information flow for each type of connections (Figs 2A and 5A). Model 2

was applied to find S-M linking paths between those selected pairs from Model 1. Selection of

SM pairs (Model 1) and S-M linking paths (Model 2) was based on Pathscore (see Methods for

more details) a mathematical function of emission probability (Ef) and transition probability

(Tj). For Model 1 positional emission probability was calculated considering the similar num-

ber of proteins because Model 1 was applied after grouping interconnecting links having the

similar number of proteins forming the connection (Fig 5Ai–5Aiv). The calculated path scores

of linking paths from the individual models were converted to statistical Z scores to identify

the paths deviating from the mean. Based on the Z score under the individual models, the sig-

naling-metabolic linking paths were classified as highly significant with Z score�3 (more

stringent) or less significant with Z score�1 (less stringent) in EGFR-mutated GBM. The

signaling and metabolic pathway proteins from the two ends of linking paths containing sig-

nificant Z sores of each of the models were defined as the significant SM pairs. Multiple identi-

fications of the same S-M pair from different models i.e. the formation of different types of

significant linking paths involving different PPIs or different numbers of PPIs were nullified

by considering them as a single. With that we identified 1, 2, 114 and 758 SM pairs meeting

the more stringent cut-off (Z score� 3) and 1, 8, 334 and 1,961 pairs with the less stringent

cut-off (Z score� 1) for the S-M, S-P-M, S-P-P-M and S-P-P-P-M linking types, respectively

(Table 1, Model-1). In total 801 Z� 3 and 2,055 Z� 1 signaling-metabolic cross-connected

SM pairs were identified between the 14 signaling and 6 groups of metabolic pathways as

potentially important in EGFR-mutated GBM. These SM pairs were categorized according to

Integrated S-M pathway model for GBM
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the proteomic expression states of the source (S) and destination (M) proteins as UP-DOWN,

UP-UP, DOWN-UP, and DOWN-DOWN. Including unidentified proteins in proteomics

analysis (NA) of the cell lines, the couplet categories UP-NA, DOWN-NA, NA-UP and

NA-UP, and unchanged expression states (NC) in the cell lines with SM categories UP-NC,

Fig 5. Models for the identification of significant signaling-metabolic (SM) pathway protein pairs and interconnecting paths. Models were

implemented to identify significant SM pairs and paths from the weighted network. Weights of the nodes were defined based on whether the

proteins were differentially expressed (dEXP), signal crosstalk (SC) proteins, rate-limiting enzymes (RLE) or none of these. The edge weights

were defined as interaction probabilities derived from the gene expression values of two interacting proteins in GBM patients. (A) Model 1 was

used to identify significant SM pairs from the GBM-specific weighted network. Four types of interconnection with none, one, two and three

PPIs between S-M pairs were considered as separate models (i to iv). Two hypothetical proteins were considered on each side (SH and MH) to

implement positional probabilities based on the node weights of all proteins including S and M. Using these models and the Hidden Markov

Model (HMM) logic, the path scores were calculated from the node and edge weights. The path scores were converted to Z-scores, and scores

above the cut-off value of Z�1 or Z�3 were considered as significant and highly significant, respectively, and the respective interconnected SM

pairs as significant pairs. (B) Model 2 was used to identify important linking-paths among the total possible paths formed between significant

SM pairs from Model 1. Path scores were calculated from the positional probabilities as above. Higher path scores indicate higher significance.

https://doi.org/10.1371/journal.pcbi.1007090.g005
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DOWN-NC, NC-UP and NC-DOWN, and unidentified and unchanged SM pairs NA-NA

and NC-NC were added (S4B Fig).

A number of cross-connections between signaling and metabolic pathways were identified

with significant cutoff levels where either one or both pathway proteins (S and/or M) were not

identified (NA) and/or unchanged (NC) by mass spectrometry indicating that the integrated

network model can identify connections also where intermediate interactors are more impor-

tant than SC, RLE or dEXP. The identification of pathway cross-connections is thus not

dependent on proteomic identification of all constituent members but can be based on signal-

ing crosstalk proteins and their expression status in GBM patients. It is important to include

unchanged (NC) proteins in the model building as they might represent nodes in the paths

that include other proteins that are differentially expressed. They might also play a role in the

crosstalk between signaling paths and pathways or they might become important when known

primary paths are blocked, e.g. by therapeutic intervention. The model could thus help to iden-

tify potential therapeutic targets for alternative therapies in cases of treatment failures or to

design combination therapies that target primary together with potential escape pathways.

Mapping the pathway information of proteins in SM pairs showed which signaling pathways

made a higher number of connections with which type of metabolic pathways in EGFR-mutated

GBM. Six hundred one significant pairs with Z� 1 were cross-connecting the MAP kinase

pathway with all six groups of metabolic pathways (S2 Table). Similarly, the Ras, EGFR, AKT

and p53 pathways were significantly connected to metabolic pathways through 570, 543, 549

and 179 SM pairs, respectively (S2 Table). As crosstalk between availabe signaling pathways is

common whereas it is less common in between metabolic pathways (S5A Fig), some identified

SM pairs and the respective proteins/genes may be shared. Analyzing the shared components in

the five most connected signaling pathways revealed that MAPK pathway had the highest num-

ber of unique significant SM pairs (256) and genes/proteins (63) involved, followed by 194, 129,

116 and 95 unique significant SM pairs (S5B Fig) and 20, 30, 36, 19 genes/proteins (S5C Fig left)

for the EGFR, AKT, p53 and Ras pathways respectively. Twelve cross-connected pathway pro-

tein pairs were common to all five pathways and 141 pairs shared by the Ras, EGFR, AKT and

MAPK pathways indicating high connectivity between them, and their cross-connection with

metabolic pathways suggesting important roles of the respective proteins in EGFR-mutated

GBM (S5B Fig for pairs, C for genes left). In turn, the amino acid, carbohydrate, and nucleotide

metabolic pathway groups were connected to all fourteen signaling pathways through 327, 289

and 326 cross-connected SM pairs (S2 Table, S5B Fig right)and 296, 260 and 268 genes in signif-

icant S-M paths, respectively (S5C Fig right). This indicates that altered cellular signaling related

to the EGFR mutation and its constitutive activity affects most strongly these three metabolic

pathway groups. As metabolic pathway enzymes interact via their substrates and products, there

are few possibilities for interconnection between metabolic pathways except for the end steps,

which is confirmed by the analysis of shared proteins. Twenty-three shared pairs were identified

between the amino acid and the carbohydrate metabolic pathway, which relates to the low num-

ber of amino acids metabolites feeding into the tri-carboxylic acid cycle (S5B Fig right).

Multiple linking paths of different types (S-M, S-P-M, S-P-P-M, and S-P-P-P-M) or of the

same type but through different PPIs were possible between SM pairs. Not all of these linking

paths could be equally significant in EGFR-mutated GBM. To find the significant linking

paths between the above-identified significant SM pairs, all possible paths between a single SM

pair were considered under a single model (Model 2, Fig 5B). Since in Model 2 proteins form-

ing interconnections between SM pairs vary, positional emission probabilities were calculated

for these proteins. As an example, in Fig 5B the second position contained two proteins and

third position one protein. Paths with path scores�80% of the highest path score for each SM

pair were selected as significant from Model 2. Accordingly, all the significant paths were
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identified from high (more stringent Z� 3) and less (less stringent Z� 1) significantly speci-

fied SM pairs to identify the total of significant linking paths in the network. These analyses

showed that 2, 21, 228, 625 and 876 significant paths were present with more stringent cut-off

(Z� 3) and 5, 84, 600, 1,564 and 2,253 paths with the less stringent cut-off (Z� 1) for the four

pathway types (Table 1). By these pathway-based analyses under less stringent condition

(Z� 1), 652 significant linking-paths were identified between 570 cross-connected SM pairs

of the Ras pathway with all six groups of metabolic pathways (S2 Table). In addition, 668, 629

and 569 significant linking-paths were identified between 601, 549 and 543 cross-connected

S-M pairs between the MAPK, AKT and EGFR pathways, respectively, and all 6 groups of met-

abolic pathways. Together, in EGFR-mutated GBM, these four signaling pathways were

involved in the highest number of SM cross-connections with metabolic pathways: 368, 344

and 298 cross-connecting paths were found between the fourteen signaling pathways and 327,

326 and 289 cross-connected SM pairs involving the amino acid, nucleotide and carbohydrate

metabolism, respectively (S2 Table).

GBM-specific network based on significant SM pairs and paths

Based on the identified significant (less stringent Z� 1) SM pairs and the significant linking

paths (path score�80% of the highest path score of each SM pair), we converted (as in Fig 2B)

the significant paths into a network (Fig 3C left panel: highlighted with blue nodes and red

edges within yellow nodes and green edges of the GBM network). This filtered network is

more specific for EGFR-mutated GBM conditions. The filtration further eliminated non-sig-

nificant or unimportant SM pairs and PPIs, which is shown, as an example, for the intercon-

nections between signaling pathway protein CSNK2A1 and metabolic pathway protein

NDUFA13 (Fig 3C right panel compared to Fig 3B right panel).

The GBM-specific network based on significant SM pairs and linking paths was restruc-

tured to implement the biological consequences as network properties i.e. color-coded

proteomic expression states (up, down, no change and not identified), size of node symbols

proportional to the numbers of connections passing through it, colors of the edges as connec-

tion formed between more (Z� 3) or less (Z� 1) stringently defined SM pairs, width of the

edge as the probability of interaction or product of the average expression values of two inter-

acting genes in GBM patients from the transcriptome data (Fig 6A). The resulting network

showed the important signaling pathways and their interconnections with metabolic pathways

in EGFR-mutated GBM with the significance of every protein (size of the node) and their

interactions with interacting partners (width of the edge). Around the network, representative

paths between 14 signaling to metabolic pathways are shown as examples (Fig 6A, S6 Fig as

more details of RAS pathway). To explore the importance of signal-crosstalk proteins in signal-

ing to metabolic pathway interconnections in EGFR-mutated GBM, the sub-network depen-

dent on the top fifteen crosstalk protein-based interconnecting paths were extracted from the

GBM-specific significant network (Fig 6B). These sub-networks showed which signaling path-

ways are mostly cross-talking and how they are connected with metabolic pathways. This

information was used to extract candidate genes/proteins/paths of EGFR-mutated GBM for

further analysis.

In silico perturbation test of the network

In silico perturbation analysis was performed for identification of paths that significantly

change upon removal (e.g. by mutation or down-regulation) of a node (protein). To test the

importance of the nodes/proteins in the final weighted network, each of the 654 nodes present

in the Z� 1 network (Table 1) was removed individually from the human interactome
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007090 August 6, 2019 13 / 37

https://doi.org/10.1371/journal.pcbi.1007090


Fig 6. GBM-specific significant network. (A) The SM pairs and interconnecting paths between them that have a significant

impact on EGFR-mediated GBM were filtered from the GBM-specific network using the mathematical model of Fig 5 and

combined to generate the final signaling-metabolic interconnected network. The network parameters (color code of node and

edge, node size, edge width mentioned in the figure) signified the cell-biological consequences of GBM driven by constitutive

EGFR signaling. One representative signaling–metabolic connecting path for each of the fourteen signaling pathways is indicated

at the side of the network.(B) Sub-network based on the 15 top-ranked signaling cross-talk proteins and their interconnection

with all metabolic pathways.

https://doi.org/10.1371/journal.pcbi.1007090.g006
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(HPPIN) and the node and edge weights were recalculated for the resulting networks and

paths by recalculating Model 1 and Model 2 (Fig 2).

Accordingly, new significant SM pairs (Z� 3 or 1) were identified on the basis of Model 1

and significant paths (path score�80% of the highest path score) between them on the basis of

Model 2. We mapped the pathway details of the SM pairs and calculated the average path

scores before and after perturbation for the 14 signaling pathways to all 6 groups of metabolic

pathways and vice-versa. The difference of values (before vs. after perturbation) for the 654

proteins for all pathways were converted to Z-scores and plotted for each perturbed node for

each signaling pathway (Fig 7A). The nodes for which the Z-scores deviated from the mean as

-2� Z� 2 were selected as effective for the respective signaling pathway to all metabolic path-

way interconnections in EGFR-mutated GBM (Fig 7B). S3 Table lists the numbers of signifi-

cant and effective proteins identified for the individual signaling pathways connected to all

metabolic pathways and from all signaling pathways to the individual metabolic pathways. As

a measure of its effect on signaling-metabolic interconnection, each perturbed node was

ranked according to the difference between baseline and perturbed condition. This means that

highly ranked proteins have an important role in the connections of the respective signaling

pathway to all metabolic pathways or vice-versa.

The NOTCH pathway is shown as an example for the level of reduction in the network size

when the GBM network is transformed to the significant GBM network to identify significant

interconnecting paths and proteins (Fig 8). Fig 8A shows the interconnections of NOTCH

pathway proteins with all metabolic pathway proteins present in the signaling-metabolic inter-

action network (SMIN) and Fig 8B shows only those NOTCH pathway proteins with intercon-

nections to metabolic pathway proteins passing through effective nodes, i.e. nodes identified

by the perturbation experiments (Fig 7B). Fig 8C presents the interconnections of the NOTCH

pathway to all metabolic pathways in the GBM-specific network filtered on the basis of the

weightage parameters for the nodes and edges, and Fig 8D shows the interconnections

between the significant proteins only. Fig 8E shows the interconnections of the NOTCH path-

way to all metabolic pathways in the GBM-specific significant network and Fig 8F the same

only for significant nodes. The comparison of Fig 8B, 8D and 8F on basis of the effective node

identified by the perturbation study (red colored) indicate the levels of filtration from the start-

ing SMIN to the final GBM-specific significant network. We found 457,111 paths involving

1941 genes/proteins and 8047 interactions out of a total of 2,206,246 paths in the SMIN con-

necting the NOTCH signaling pathway to all metabolic pathways, of which 10% were found to

have a significant (Z-score cut-off -2� Z� 2) perturbation impact (PI) (Fig 8B). Comparable

reductions of approximate 75% (Fig 8C) and 50% (Fig 8D) for both nodes and interaction

were found when going to the GBM-specific condition. After Pathscore based filtration (Z-

score� 1), 146 paths involving 125 nodes and 166 interactions were identified in the NOTCH

pathway (Fig 8E) of which 51 paths involving 59 nodes and 65 interactions formed by nodes

with significant PIs.

Experimental validation of signaling-metabolic network

The result of perturbation study proved the importance of the respective nodes in the final net-

work for information flow from signaling to metabolic pathways. To validate these findings of

interconnections between signaling pathway alterations and metabolic rearrangement, some

of SM connections were selected from the final network for experimental validation (Fig 9).

The selection was based on the effect of the removal of the respective node in the in silico per-

turbation experiments, the predicted effects on the metabolic pathways and the availability of

specific small-molecule inhibitors, excluding transcription factors as their impact is obvious.
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Fig 7. Importance of the individual nodes in signaling-metabolic pathway interconnection. (A) Each of the 654

nodes of the final network was tested in perturbation studies by removing it and its associated connections from the

network and recalculating all network parameters. The scores for significant SM pairs (Z�1) and interconnected paths

(path score�80% from the highest path score for each SM pair) were redefined for each signaling to all metabolic

interconnections. The differences of the sums of all significant path scores before and after perturbation of the

individual 654 nodes for each signaling to all metabolic pathway interconnections were converted to Z scores (blue

dots) and plotted against the genes/nodes. (B) Summary of the nodes with a significant impact on the entire network.

Nodes with significantly altered Z score after perturbation (-2�Z�2) were considered as effective nodes with

significant impact and are listed in S3 Table for all interconnections of the 14 signaling pathways to the 6 metabolic

pathway groups and vice versa, the metabolic pathway groups to the signaling pathways. Drugable node/proteins

according to the KEGG database are highlighted.

https://doi.org/10.1371/journal.pcbi.1007090.g007
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Fig 8. Enrichment of significant S-M interconnections by successive filtering during the development of the

signaling-metabolic pathway network. The successive reduction of non-significant nodes and paths was followed for

the inter-connection of the NOTCH pathway to all metabolic pathways. (A) Starting signaling-metabolic interaction

network (SMIN) with the NOTCH pathway proteins in purple; (C) to GBM-specific network, and (E) the final GBM-

specific significant (Z�1) network. (B) Connections formed through twelve TOP Perturbation Impact (PI) nodes (red

color) for NOTCH to all metabolic in SMIN; (D) connections formed through 11 nodes (in red color; out of 12 genes/

proteins found with significant perturbation impact [PI]) in GBM-specific network and (F) connections formed

through 9 nodes (in red color; out of 12) in the GBM-specific significant (Z�1) network.

https://doi.org/10.1371/journal.pcbi.1007090.g008

Integrated S-M pathway model for GBM

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007090 August 6, 2019 17 / 37

https://doi.org/10.1371/journal.pcbi.1007090.g008
https://doi.org/10.1371/journal.pcbi.1007090


The selected targets were calmodulin (CALM2), casein kinase II subunit alpha (CSNK2A1),

1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (PLCG1), the tyrosine-

protein kinase ABL1 and B-cell lymphoma 2 (BCL2). The signaling-metabolic interconnecting

paths including the selected proteins were extracted from the final GBM-specific significant

Fig 9. Test of the GBM-specific significant network model in cell cultures. The EGFRwt and EGFRvIII-mutated

GBM cell lines U87MG and U87MGvIII were incubated with inhibitors for calmodulin (CALM2) with CGS

9343B (A), casein kinase II subunit alpha (CSNK2A1) with Emodin (B), 1-phosphatidylinositol 4,5-bisphosphate

phosphodiesterase gamma-1 (PLCG1) with U73122 (C), tyrosine-protein kinase ABL1 with Dasatinib(D), and B-cell

lymphoma 2 (BCL2) with ABT-199 (E). The bar diagrams on the left show the effects of the inhibition of the

expression of metabolic pathway proteins predicted to be interconnected to the targeted signaling pathway proteins.

The line graphs on the right show the dose-dependent effects of the signaling protein inhibitors on the viability of the

cells.

https://doi.org/10.1371/journal.pcbi.1007090.g009
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network using the most stringent cutoff and the connected metabolic proteins linked to the

above-mentioned signaling pathway proteins were identified (S1 File). As the translation of

oncogenic signaling to metabolic adjustment is via the expression of metabolic enzymes, the

changes of expression of the metabolic pathway proteins upon inhibition of the selected signal-

ing proteins with small molecule inhibitors and cell viability were analyzed. The inhibitors

were CGS-9343B for calmodulin (Fig 9A), Emodin for CSNK2A1 (Fig 9B), U73122 for PLCG1

(Fig 9C), Dasatinib for ABL1 (Fig 9D), and ABT199 for BCL2 (Fig 9E). U87MG (EGFRwt)

and U87MGvIII (EGFRvIII) cells were incubated with the inhibitors and their effects on the

expression of the predicted interconnected metabolic pathway proteins analyzed by quantita-

tive RT-PCR, and the viability of the cells tested in MTT assays. The blockade of the signaling

pathway proteins had significant impacts on the expression of the metabolic pathway proteins

(Fig 9). In the case of the calmodulin inhibitor, the expression levels were reduced in both cell

lines but for prostaglandin-endoperoxide synthase 2 (PTGS2) andO-linked β-N-acetylglucosa-

mine transferase (OGT) much more pronounced in the EGFR-mutant cell line than in the

wild type. The strongest effect was seen for phosphoglycerate kinase 1 (PGK1) with around

400-fold reduction of expression in both cell lines. The effects of the CSNK2A1 inhibitor are

more differentiated. While the OGT and PGK1 expression is inhibited uniformly in both cell

lines, 800-fold in case of PGK1, the inhibition of glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) is much stronger in U87MGvIII than in the wild type, the expression of ribonucleo-

side-diphosphatereductase 2 (RRM2) is decreased in the wild-type and enhanced in the

mutant, and that of NADH dehydrogenase [ubiquinone] 1 alpha sub-complex subunit 13

(NDUFA13) is affected inversely. Inhibition of phospholipase C gamma 1 (PLCG1) results in

enhanced expression of GAPDH and reduced expression of NDUFA13. The ABL1 inhibitor

reduced the expression of pyruvate dehydrogenase kinase subunit 1 (PDK1) in both cell lines

but much more in the mutant cells. In contrast, the expression of pyruvate dehydrogenase

(lipoamide) beta (PDHB) is more reduced in the wild type, and that of pyruvate dehydroge-

nase subunit alpha 1 (PDHA1) is slightly enhanced in the wild-type and reduced in the mutant

cells. Finally, the BCL-2 inhibitor reduces the expression of 6-phosphofructo-2-kinase/fruc-

tose-2,6-biphosphatase 3 (PFKFB3), GAPDH and RRM2 2-fold in both cell lines but enhances

the expression of PGK1 in the wild-type 4-fold while reducing it in the mutant cells 10-fold.

All signaling pathway inhibitors have pronounced negative effects on the viability of both

GBM tumor cell lines (Fig 9) but U87MGvIII is significantly more sensitive to the inhibition

of casein kinase than the wild-type whereas the wild-type is more sensitive to the inhibition of

PLCG1, ABL1 and BCL2. Half-maximal reduction of viability is seen for the PLCG1 and the

ABL1 inhibitors in the single-digit, for the others in the double-digit micromolar range.

Further, the effect of the signaling molecule inhibitors on cell migration and invasion was

tested. The results showed the similar negative effects of the inhibitors with a higher sensitivity

of U87MGvIII, which reconfirms the potency of the signaling-metabolic interconnected net-

work model (S7 Fig).

Discussion

In all cellular condition, signaling, gene expression, and metabolic pathways must be coordi-

nated to maintain cellular integrity and functions [74]. In this study, we propose an integrative

systems biology model of information flow between signaling and metabolic pathways that use

an interconnected scaffold based on the complete set of human interactome (HPPIN). The

model successfully detects probable unique connections of genes/proteins involved in the

interconnection of different signaling and metabolic pathways. The identified components of

the network (i.e. genes/proteins as nodes and connections through edges) represent known
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physical and/or functional associations between proteins/genes. Depending on the oncogenic

signaling, the interconnectors involved modulating the metabolic pathways change. We have

successfully applied the model to identify the interconnections altered in the constitutive sig-

naling of the mutated EGFR in glioblastoma multiforme (GBM) compared to EGF-dependent

and wild-type EGFR (EGFRwt) signaling.

So far, the development of integrated models including all three or any two of signaling

pathways, gene regulation and metabolic pathway in any cellular context is still very restricted.

Difficulties of integration arise from the mode of information flow in these three processes

significantly involving activation/inactivation, inhibition/induction and substrate/product

respectively, as well as different extents and time frames or kinetics [74]. Attempts to integrate

metabolism and gene regulatory networks were based on regulatory flux balance analysis

(rFBA) [75,76], steady-state regulatory FBA (SR-FBA) [77], probabilistic regulation of metabo-

lism (PROM) [78], integrative omics-metabolic analysis (IOMA) [79] and ordinary differential

equation (ODE) [80]. There is a straightforward interconnection between signaling and gene

regulation through transcription factor (TF) but the little informative interface and the

dynamics of cellular localization of TF affect the integrative modeling. A few studies addressed

the issues using the integrative logical, influence graph, Boolean and thermodynamics models

[81–86]. Attempts to integrate signaling and metabolism is rarer because information in the

two process areas flows in different ways via activation/inactivation and substrate/product

interactions respectively. The few reports that address this issue are based on ODE, combined

dynamic ODE and Boolean models [33, 80, 87]. Here we have taken a novel approach and

integrated signaling and metabolic pathways by i) creating a weighted PPI network depending

on the path of information flow from signaling pathway molecule to metabolic enzymes, and

ii) applying the probabilistic framework of Markov processes to calculate information flow

scores. We have used two major functions of the Markov model. First, to estimate the proba-

bility of a protein to be present at a particular point in the network to transmit information,

transition functions (node weights) were implemented. Second, to estimate the connection

strength between two proteins, emission functions (edge weights) were introduced. The two

functions utilize different biological parameters to explore the integrated network and to cal-

culate S-M Pathscore. In contrast, to other models for integration of signaling and metabolism

pathways, the comparative proteomic expression of the signaling molecule, metabolic enzymes

and interactors are effectively incorporated to construct a weighted PPI network (one criterion

of node weights) and to filter out context-dependent (mutated vs. wild-type EGFR GBM) S-M

interconnections. The second attempt toward integration of the two pathway types to make

modeling information flow more accurate and render the model context-dependent based on

patient-related disease-specific parameter, trancriptomic expression value from GBM patients

were implemented for each node and, by using the principle of mass action, edge weight were

defined. The implementation of these two layers of information distinguishes the model from

others by integrating weighted network properties like network entropy (Si) and effect-on-

node (effs). We believe that these have the potential to capture context-dependent properties of

PPI networks in terms of information flow [88]. Genes/proteins having a high impact on the

path formation are important in their local network as well as the global context. Unlike con-

sidering conventional network centralities (hubs, bottlenecks etc.) of nodes, biological state

and expression profiles are used.

Integrating proteome and transcriptome data in the development of the model helps to mit-

igate problems in translating high-throughput omics into systems biology models. While pro-

teome data more closely related to the biomedical and pathological systems properties of

interest, they are less complete and more prone to variation and experimental errors then tran-

scriptome data. The use of proteome data from cell lines helps to some extent to overcome the
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experimental problems, however, cell lines are selected cell culture-adapted models and may

be quite remote from in vivo situations. Transcriptome data from clinical specimens are get-

ting increasingly available and may add a close-to-clinic dimension to the systems biology

model, and help to overcome the missing-data problem of proteomics. Furthermore, the two

omics data sets were used at different steps of the network establishment and for different bio-

logical relevance. The proteome data of the EGFRwt and EGFRvIII-mutated cell lines were

used first to filter out the GBM-specific network from signaling-metabolic interaction network

(SMIN). On that GBM-specific network, we have incorporated the human GBM patient tran-

scriptomic data as edge weights to make it more relevant to human GBM condition.

The resulting model is probabilistic, based on the assumption that the likelihood of signal

flow relates to the expression levels of the nodes/proteins in the different paths/pathways. It is

not computing the actual signaling status of the paths and their nodes. Incorporation of phos-

phoproteome data in this integrated network could provide additional information about the

activation/deactivation state of the nodes thus adding elements of the actual information

flow. This could help to add some rationale weights for nodes that remained unchanged (NC)

or were unidentified (NA) in the proteomic study as well as in GBM patient transcriptome

data. Accordingly, it could add to solving the missing-data-problem of proteomics. Although

phosphoproteome data could provide relevant information about signaling flow it could be

less advantageous in the model of interconnection between the oncogenic signaling and met-

abolic pathways that are required to sustain the oncogenic processes. It could make the model

more complex as expression and phosphorylation of proteins are not correlated directly;

phosphorylation states are highly context- and time-dependent and requires to take into

account the ratio of phosphorylated and non-phosphorylated signaling proteins at any given

position within the cell and the spatial arrangements of active/inactive signaling pathway

molecules.

To test the network properties, the dynamic behavior and the robustness of the model, we

performed in silico perturbation experiments. The in silico perturbation experiments were

done with the final GBM-specific model with all interactome, proteome and transcriptome

data incorporated in this order to render a general interactome map GBM-specific, and calcu-

late node/edge weights and path score. In silico perturbation was done by silencing the signal-

ing molecules one by one, and then redeveloping the model and recalculating node/edge

weights and path scores to determine the relevance of the respective signaling molecule and

the affected signaling path, to identify possible escape paths bypassing the blockade, and to

identify targets for experimental validation of the model. Based on the perturbation analysis

we postulated that proteins with higher impact as loss-of-function or gain-of-function or Path-

score difference between signaling-metabolic pathways and vice-versa have a higher ranking

and chances to transmit information between the studied pair of pathways. The perturbation

studies also captured the weighted topological changes in the dynamic network and the dis-

tinct sets of interactors that transmit information between proteins. Implementation of path

score differences before and after perturbation adds additional accuracy to the model to iden-

tify the most important paths of information flow among all probable paths. Applying this

model from 437,449 probable GBM-specific S-M paths, we identified 2,253 (Z�1) (0.52%) and

876 (Z�3) (0.20%) significant paths of information flow in mutated EGFR-dependent com-

pared to wtEGFR EGF-driven GBM. To experimentally test and validate the interconnections

predicted by the model, inhibition of signaling pathway proteins (S) present in the SMIN with

small molecule inhibitor was performed, which resulted in alteration of metabolic pathway

protein expression (M). We found that the performance of the model in predicting the dynam-

ics of the large-scale signaling networks is comparable to state-of-art methods for extracting

context-dependent information flow [89]. One node knockout at a time in the in silico
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perturbation experiments indicated, first, the importance of that protein in the signaling-meta-

bolic interconnected paths in establishing low or high grade GBM condition, and second,

alternative signaling routes that can become relevant as escape responses to therapy.

It is important to note that in biological networks including signal transduction, PPI is

highly dynamic in nature and may undergo continuous changes [90]. These context-specific

network dynamics need to be predicted by systems biology models. Our probabilistic inte-

grated network model captures network dynamics using the topology of PPI networks based

on dynamic data under different circumstances. The probabilistic network-based dynamic

model uses experimental data and deals with the uncertainty of systems to predict drug targets

and understand the effect of therapeutics. In our study, nodes forming paths significant to

information flow in a particular biological context is the key to network inference. Nodes pres-

ent in information flow path with high network weights and connected with higher edge

weight can be considered for drug intervention and combinatorial therapy. Our model effi-

ciently identified key nodes which are important in S-M information flow with confirmation

of some known and prediction of the potential novel drug targets [89] that can be used alone

or in combination to inhibit mutated EGFR-mediated GBM.

This model is now a useful tool and will be used to develop strategies and experiments to

study causal relationships. Among the questions to be addressed will be to understand the

molecular biology of high-grade GBM versus low-grade GBM, and mechanisms of therapy

resistance. However, in its current form, this model is not engineered to measure signal flow

in and across signaling pathway(s). It is also not applicable to other regulatory mechanisms

such as transcriptional, post-translational and miRNA based modulations of biomolecular

interactions. Nonetheless, the model should be robust enough to integrate and utilize large-

scale pan-omics data including genomics, transcriptomics, proteomics, metabolomics and

post-translational modification information to accurately model the cellular context under a

given scenario. These issues are important for assessing systemic changes and we are address-

ing them in follow-up studies. The strategy for developing the model can also be applied to

other cancers and to non-oncological conditions.

Interestingly, GAPDH and PGK1, commonly reported reference [91] and housekeeping

genes [92], were identified (Fig 7B) as significant (~40% of 20 networks in the study) by our

model and previously reported studies [47] have shown their association with cancer [93–95].

In this study, also significant expression change in two cell lines for GAPDH and PGK1 was

found after inhibition of CSNK2A1 and BCL2, respectively.

To our knowledge, this has not been reported before. A study [96] with a mice model has

shown increased expression level of bcl-2 under the control of pgk-1, which suggests a possible

relation to our findings. Not surprisingly, we have also found FOXO, a key player in cell fate

decision [97] as candidate target. In addition, the HSP90 family gene (HSP90AA1) and

CREBBP were identified as important agents in forming interconnections between multiple

signaling/metabolic pathways. Inhibitors of HSP90 (17-AAG) and CREBBP (ICG-001) have

recently shown effects in glioblastoma and other cancer models/cell lines [98–103]. They have

entered clinical trials for several cancer types [104, Clinical trial numbers:NCT01606579,

NCT01764477, NCT02413853]. This confirms that our model can identify potential therapeu-

tic targets before performing actual drug tests.

The presented network model can be used to explore novel therapeutic strategies against

cancer including combination therapies. This work also represents a step towards finding

alternative routes/pathways in cancer or other diseases and thereby predicting the potential

path of therapy evasion that can be included in the development of new therapies that aim to

prevent therapy resistance in cancer and other diseases.
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Materials and methods

Cell lines and cell culture

The human grade-IV glioblastoma cell line U87MG expressing wild-type EGFR (U87MG) was

purchased from ATCC (USA). The U87MG-derived genetically engineered U87MGvIII cell

line with exons 2–7 deleted from the EGFR gene (EGFRvIII) cell was a kind gift from Profes-

sors Webster K. Cavenee and Frank B. Furnari, Department of Medicine and Cancer Center,

University of California at San Diego, La Jolla, USA. The cells were grown in Iscove’s Modified

Dulbecco’s Medium (IMDM; Gibco, Thermo Fisher Scientific Inc., Schwerte, Germany) sup-

plemented with 10% heat-inactivated fetal calf serum (FCS; Biochrome, Berlin, Germany) and

1% penicillin/streptomycin solution (Gibco, Thermo Fisher Scientific Inc., Schwerte, Ger-

many) in a humidified atmosphere with 8% CO2 at 37˚C.

MTT assay

GBM cells (1 × 104) were plated in 96 well plates and treated with inhibitors of Calmodulin

(CGS-9343B, Sigma), Casein kinase II subunit alpha (Emodin, Sigma), 1-phosphatidylinositol

4,5-bisphosphate phosphodiesterase gamma-1 (U73122, Sigma), Tyrosine-protein kinase

ABL1 (Dasatinib, Santacruz) and B-cell lymphoma 2 (ABT199, Santacruz) for 24hr and subse-

quently incubated with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide

(MTT,100 μg/ml DMSO) in fresh culture medium for 3 hr. Optical density (OD) was taken at

550 nm with an ELISA reader (Thermo) as described elsewhere [105].

Scratch wound migration assay

U87MG and U87MGvIII were plated separately in 6-well plates with>90% confluence.

Scratch-wounds were made with a micropipette tip, washed thrice to remove the floating cells

and treated separately with ABL1, PLCG1, BCL2, CALM2 and CSNK IIA inhibitors at their

IC50 dose (5μM, 3μM, 25μM, 45μM and 40μM, respectively) in medium and incubating them

for the indicated time periods. Images were taken at 0 hrs and 8 hrs. The wound width was

measured for untreated and treated groups from at least five different fields of three separate

experiments, and percentage wound healing was calculated from the width at 8 hrs versus the

initial width at 0 hrs, all using ImageJ software.

Invasion assay

U87MG and U87MGvIII cells (5x104) were seeded separately to the upper part of matrigel-

coated invasion chamber in serum-free medium (200 μl) and the lower chamber was filled

with medium (600 μl) containing respective inhibitors of ABL1 and PLCG1 at their IC50

doses. The cells on the lower surface of the insert were stained with the crystal violet after 24

hrs and the numbers of invaded cells were counted by inverted light microscopy from at least

three different fields of three different experiments.

Expression analysis by real-time PCR

U87MG and U87MGvIII cells were treated with the indicated inhibitors at half of the IC50

dose for 24hr. Total mRNA was isolated by RNeasy Mini Kit (QIAGEN) as per manufacturer’s

instructions. RNA (1.0 μg) was reverse-transcribed to cDNA with the Reverse Transcriptase

kit (Promega). For RT-PCR, the cDNA was amplified with specific primers for the mRNA of

the indicated metabolic proteins in a Perkin-Elmer DNA thermal cycler. Real-time PCR analy-

sis was performed by mixing cDNA with 2× SYBR green master mix using Roche Applied Sci-

ence light cycler 480.0 instruments with the software version 1.5.0. Relative quantification of
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each target gene was normalized to two housekeeping genes (18s rRNA and β-actin) and

expressed as a fold change compared with untreated control using the comparative cycle

threshold (CT) method [6].

Protein preparation

For proteome analysis, total proteins were extracted with SDS-PAGE sample buffer from

U87MG and U87MGvIII cells grown to 80% confluency. EGFR expression status of both cell

lines was confirmed by western blot analysis. Proteins (100 μg) of each cell line were separated

by SDS-PAGE (10% acrylamide/0.8% bisacrylamide). After staining with Coomassie blue, the

lanes for both cell lysate were sliced into one-mm thick gel pieces. The slices were transferred

into 96 well round bottom polypropylene plate and destained with 100 μl, 20 mM ammonium

carbonate/acetonitrile (60%/40% v/v), dehydrated by adding twice acetonitrile (50 μl) and

dried under vacuum in a speed vac. The dried gel slides were rehydrated in 20 μl trypsin solu-

tions (10 ng/μl) in 30 μl NH4HCO3 (20 mM) for digestion by incubation for 16–18 hr at 37˚C.

The supernatants were collected in 1.5 ml reaction tubes and the remaining tryptic fragments

extracted from the gel slices first with 50 μl 50% acetonitrile with 0.1% TFA for 15 min, and

then with 5% acetonitrile with 0.1% TFA. The extracts from each gel slice were combined and

dried in a speed vac. The peptides were re-dissolved in 12 μl 2% acetonitrile with 0.05% TFA.

LC-MS/MS

For MS/MS, the peptides of the tryptic digests (10 μl) were loaded via a pre-column at a flow

rate 20 μl/min (2% acetonitrile, 0.05%TFA) onto an Acclaim PepMap C18 nano-HPLC col-

umn (75μm inner diameter×15 cm length; Thermo Fisher Scientific Inc., Schwerte, Germany)

using an Ultimate 3000 nano-HPLC system (Dionex, Darmstadt, Germany). The peptides

were eluted with a gradient of 5–60% solvent B (0.1% formic acid in 95% acetonitrile/5%

water) in solvent A (0.1% formic acid in 1% acetonitrile/water) over 60 min, followed by 60–

90% solvent B over 5 min, and 90% solvent B for 5 min at a flow rate of 220 nl/min. The nano

HPLC system was directly coupled to a Micro-TOF-Q I mass spectrometer (BrukerDaltonics,

Bremen, Germany). Mass spectra were acquired in the m/z range 50–2500 at an acquisition

rate of 1.3 per sec. MS/MS spectra were acquired in the data-dependent mode with the frag-

mentation of the 5 most intensive peaks (absolute threshold 3000) with argon as collision gas,

and fragment masses in the range of 400–1400 m/z. The mass spectrometry was run with

dynamic exclusion of a time interval established and tested beforehand to avoid or minimize

signal suppression by over-abundant peptides. A dynamic exclusion of 1 min was set to avoid

repeated fragmentation of the most abundant peptides.

MS/MS data analysis

The MS and MS/MS spectra were processed with Data Analysis 3.4 and Biotools 3.1 (Bruker-

Daltonics). MS/MS searches for peptide identification were done via Biotools on a local Mas-

cot (version 2.2) server with a precursor mass tolerance of 50 ppm and a fragment mass

tolerance of 0.2 Da. Trypsin was specified as an enzyme, and one allowed missed cleavage and

oxidation of methionine as variable modification. Data searches were done in SwissProt data-

bank for human proteins. Proteins were identified with at least two peptides with a mascot

score of higher than 26. The false discovery rate with these search and filter parameters was

below 5% as confirmed with a decoy database. Exponentially modified protein abundance

index (emPAI) was employed for protein quantification using the equation

emPAI ¼ 10
Nobserved
Nobservable � 1 ðiÞ
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where Nobserved is the number of experimentally observed and Nobservable the calculated number

of observable peptides for each protein [106]. Comparative proteome analysis was done with

proteins identified by at least two peptides based on the emPAI scores for differentially

expressed proteins. The proteome analysis was done three times for each cell line as an inde-

pendent biological replicates.

Comparative proteomics of U87MG and U87MGvIII

Comparative proteome analysis was done for each proteome dataset (batch) of U87MG with

each batch of U87MGvIII using the in-house PROTEOMESTAT-12 software. For this, the

emPAI values of all proteins were normalized as

emPAInorm ¼
emPAIprotein

½
P
emPAIprotein�batch

� 100 ðiiÞ

where emPAIprotein was the emPAI value of a protein in a batch.

Multiple identifications of a protein within a proteome dataset were excluded, only keeping

the highest emPAI value for subsequent analysis. Intra-batch analysis was performed to deter-

mine the total unique proteins as well as the overlap between the three batches of each cell line.

Total unique proteins identified from U87MG and U87MGvIII cells were compared to iden-

tify the common and the differentially expressed proteins. Proteins identified only for one of

the cell lines were considered up-regulated in that cell line. Commonly expressed proteins

were further analyzed in two different ways to identify differentially expressed proteins. In one

approach, the emPAIave values for each protein were compared between the two cell lines (iii).

emPAIave ¼
P3

batch¼1
emPAIprotein

Number of batches with identified protein
ðiiiÞ

where emPAIprotein was the emPAI value of a protein in a proteome dataset.

The percentages of up or down-regulation of a protein in U87MGvIII were calculated as%
ExpU87MGvIII using the following the equation

%ExpU87MGvIII ¼
ðemPAIave U87MGvIII � emPAIave U87MGÞ

emPAIave U87MG
� 100 ðivÞ

where emPAIave U87MGvIII and emPAIaveU87MG were the average emPAI value of a protein

among the three proteome datasets for U87MGvIII or U87MG. Proteins that were� 50% up-

or down-regulated with p values� 0.2 were considered differentially expressed in the

U87MGvIII cell.

In a second approach, emPAInorm of a protein of each batch of one of the cell lines were

compared separately with the emPAInorm for the same protein in each of the three batches of

the other cell line. Then these comparative data were normalized by the LOESS method. Up-

or down-regulation of a protein in U87MGvIII were calculated using the Eq (iv). From this

second approach� 50% up- or down-regulated proteins with an SE� 35% were taken as dif-

ferentially expressed in U87MGvIII. Both the results were combined and duplicates were

excluded to identify the differentially expressed proteins.

Human signaling-metabolic interaction network

A signaling-metabolic cross-connected network was created using 14 signaling and 81 meta-

bolic pathways and protein-protein interactors of the pathway proteins. Signaling pathway

databases were created by integrating information from on-line resources including KEGG
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[107], Reactome [108] Signallink [109], NetPath [110] and Biocarta (http://www.biocarta.

com) for extensive coverage of the steps involved in the pathways. The 14 signaling pathways

were included based on their association with cancer in general according to KEGG pathway

database.

Metabolic pathway datasets were collected from KEGG. Human protein interaction data

were taken from the STRING interactome database using only protein-protein interactors [70]

established by high-throughput analyses with the high confidence score (� 0.7) to generate a

protein-protein interaction network (PPIN). PPI were restricted up to the second level interac-

tors, i.e. interactors of interactors, which brings about S(PPI)3M, meaning S-PPI1-PPI2-PPI3-

M paths. PPI1 is the first level interactor of signaling molecule and PPI3 is the first level interac-

tor of metabolic enzyme and PPI2 the second level interactor of both. Thereby, there are three

PPIs between the signaling and the metabolic pathway proteins. The resulting network con-

sisted of 5,703 proteins with 16,828 experimentally confirmed interactions.

Network centrality

NetworkX (https://networkx.github.io/), a network analysis framework in a Python language,

was used to calculate the degrees, Estrata Index and betweenness centrality of nodes (genes/

proteins).

GBM gene expression

Gene expression data used for edge weight determination in the weighted-network were col-

lected from five gene expression data sets for GBM patients taken from GEO (Gene Expression

Omnibus)[111] GSE4290 (77 samples), GSE53733 (70 samples), GSE50161 (34 samples),

GSE36245 (46 samples) and GSE15824 (12 samples) (http://www.ncbi.nlm.nih.gov/geo/). All

had been acquired with the Affymetrix GPL570 platform [http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GPL570]. The raw data of the total of 239 samples were normalized across

all arrays within a set using the RMA quintile normalization procedure of the Gene Pattern

Expression File Creator module [112]. Averages of normalized raw expression values were

used for the study.

Construction of cross-connected network linking paths

To construct cross-connecting linking paths (CCLPs) between signaling pathway proteins (S)

and metabolic pathways proteins (M), common interacting proteins from the HPPIN were

used. All possible unique connections between S and M with S-M (direct S-M interaction), and

S-P-M, S-P-P-M, and S-P-P-P-M where P is a common interacting protein were established for

common interacting proteins up to the second level in HPPIN (Fig 3A). Detailed descriptions

of all possible connecting links are provided in the Fig 3B and Table 1. Differentially expressed

(i.e. up-regulated or down-regulated) proteins in EGFRvIII versus EGFRwt expressing cells

obtained from proteome analyses were mapped onto the cross-connected links [Table 1]. To

assess the relevance of signaling to metabolic pathway interconnections for cancer pathogene-

sis, connections with at least one up-regulated or down-regulated protein (U87MGvIII versus

U87MG) were selected to create functional cross-connecting sub-network (CCsN) with, in all,

2,320 protein nodes and 8,914 interactions. This CCsN was used for network topology analysis.

Calculation of signaling entropy

The local entropy of a protein in CCsN was calculated on the basis of probabilities of an inter-

action of that protein with its interactors determined by using the principle of mass action.
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The calculation of the interaction probabilities is based on the assumption that two proteins

known to interact will have a higher probability of interaction when they are highly expressed.

Thereby, the interaction probability (Wij) of two proteins in a network is proportional to the

product of expression values (E of the corresponding genes (Ei and Ej) [72]:

Wij/Ei X Ej ðvÞ

with the expression value of CCsN genes calculated as an average expression of a gene in the

data set of 239 GBM patients.

Based onWij, a stochastic matrix of normalized interaction probabilities (Pij) in the network

was created for signaling entropy calculation. Probability of interaction between node i and

node j was calculated as

Pij ¼
Wij

P
k2Ni
Wik

ðviÞ

where Ni is interactors of node I with SPij = 1.

The local entropy of node i was calculated as

Si ¼ �
1

logki

X

j2NðiÞ
pijlogpij ðviiÞ

where ki is the degree of node i in the CCsN.

Effect-on-node as CCsN weight

To incorporate the impact of the interactors of a particular protein in the cross-connected net-

work, the node-weight of every node i was specified based on the categories signaling cross-

talk protein (SC), rate limiting enzyme (RLE) and up- or down-regulation in U87MGvIII ver-

sus U87MG (dEXP):

Wi ¼ 1; if dEXP ¼
1

3
;RLE ¼

1

3
; SC ¼

1

3

� �

; 0; else
� �

ðviiiÞ

Effect of interactors on a node s in CCsN was defined as effect-on-node (effs) depending on

the node weight of the interactors up to the second level:

effs ¼
Xk

j

Xn

i

Wi

degreei
þ
Wj

nj

 !

ðixÞ

where k is the degree of node s, nj is the degree of protein j, wj and wi are the node weights of

protein j and i.
Rate-limiting enzymes (RLE) are the enzymes in metabolic pathways whose kinetics deter-

mines the overall kinetics of the entire pathway. It is usually the enzyme with the slowest

enzyme kinetics. The identification of the RLE is done based on the Michaelis–Menten equa-

tion, and the established Michaelis constants (KM) and Vmax of all enzymatic steps in meta-

bolic pathways are listed in the respective biophysics and enzyme kinetic textbooks and

databases.

Calculation of CCLP scores

The CCLP for information flow from signaling pathway protein (S) to metabolic pathway pro-

tein (M) was defined to be one of the four types shown in Fig 5A, and path scores were calcu-

lated on the basis of node and edge weights of the proteins involved in a path. To select
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important S-M pairs, imaginary penultimate signaling and metabolic proteins are considered

as starting and ending state, and path score was calculated based on a hidden Markov model

(HMM) with a forward algorithm. Emission probability (Ej), i.e. the positional probability of a

protein at the particular position in that state was calculated as

Ej ¼
Sj þ Effj

Pk
i ðSi þ EffiÞ

ðxÞ

where k is the number of proteins in that state, Si and Sj are normalized local entropy of pro-

teins i and j, Effi is effect-on-node for protein i. Within the S-M pairs of a path (Fig 5B) infor-

mation flow is again scored by considering all types of paths formed between single S-M pairs

and calculated as

Pathscore ¼ I
Yn

j¼1
EjTj ðxiÞ

where n is number states in a path, I initial probability (in our case it is equal to one), Ej is
emission probability at state j, Tj is transmission probability at state j (in our case it is the prob-

ability of interaction Pij). Pathscore is converted into Z-score as

Zscore ¼
X � m
s

ðxiiÞ

where X is raw Pathscore, μ is mean, σ is the standard deviation. A cut-off of�1 is applied to

select significant S-M pairs and their cross-connecting links.

To understand the significance of the path scores in comparison to randomly generated

paths, we have performed permutations of node weights (Sij) and edge weights (Pij) and gen-

erated 20 random paths with the same number of proteins involved in the identified paths.

Averages of 20 path scores are compared with the corresponding original path score. S8 Fig

shows significant difference between the original and the randomly placed weighted path

scores.

In silico perturbation

In silico perturbation analysis was done by removing nodes/proteins from the network using

an in-house programme for nodes/proteins present in the final weighted sub-network. All

nodes in this sub-network were removed individually from the SMIN, and the impact was

studied by performing the same weighted network analysis with the sub-networks generated

after node removal as the starting point. Perturbation score (Ps) was calculated in two steps.

First, we calculated significant pairs using Model 1 shown in Fig 5A and significant paths

using Model 2 shown in Fig 5B using SIN-Ni network where Ni is the interaction of perturbed

node N. Second, path scores after perturbation (Pathscore’) for significant paths identified from

step 1 were calculated. Perturbation score (Ps) was defined as

Ps ¼ Pathscore � Pathscore;

To identify nodes with significant impact after perturbation we converted perturbation

scores (Ps) into Z-score for all signaling to metabolic pathways and vice-versa. In the perturba-

tion analysis, node and edge weights were re-calculated for networks and paths generated after

removing a node (protein) from the initial interactome. New weights in Model 1 and Model 2

were used to score the new paths and to compare the scores before and after perturbation thus

to identify significant nodes in the network forming connections between signaling and meta-

bolic pathway proteins.
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Functional enrichment by over-representation analysis (ORA)

KEGG pathway based over-representation analysis (ORA) was performed using 136 up-regu-

lated and 243 down-regulated proteins (EGFRvIII vs EGFRwt) and 45 commonly up-regulated

and 25 down-regulated proteins using ‘protein coding gene set’ as the reference gene set in

WebGestalt [113] web tool.

Additionally, Gene ontology (GO) based biological process and molecular function over-

representation analysis was performed for the same genes. Top 20 significant (p-values <=

0.01 and<= 0.05) categories were ranked based on the false detection rate (FDR) calculated

using Benjamini and Hochberg procedure.

Supporting information

S1 Fig. Degree and betweenness distribution of HPPIN and SMIN in comparison with ran-

dom networks of equivalent sizes. (A) The degree of distribution (left) and betweenness dis-

tribution (right) of the human protein-protein interaction network (HPPIN; red color) and

ten random networks (created using Erdős–Rényi model) in 10 different colors. (B) The

degree of distribution (left) and betweenness distribution (right) of the signaling-metabolic

interaction network (SMIN; red color) and ten random networks (created using Erdős–Rényi

model) in 10 different colors. The number of proteins with a given degree (k) in the network

(in this figure for representation, 20 is set as the upper limit for k) approximates a power-law.

HPPIN follows power-law degree distribution and is a scale-free network. The betweenness

centrality of a node quantifies the communication flowing through the network from node(s)/

protein(s) to another using the shortest path.

(TIF)

S2 Fig. Outline of label-free comparative proteomics by SDS-PAGE plus nano-HPLC

ESI-Q-TOF MS/MS.

(TIF)

S3 Fig. Gene ontology (GO) based over-representation analysis. Panels A and B show the

enriched GO biological processes, and Panels C and D the enriched molecular functions for

proteins exclusively overexpressed in U87MGvIII (EGFRvIII) and U87MG (EGFRwt), respec-

tively.

(TIF)

S4 Fig. Distribution of weighted nodes and expression states of interconnected SM pairs in

the step-wise filtered networks. (A) The number of differentially expressed proteins (dEXP),

signal crosstalk proteins (SC) and rate-limiting enzymes (RLE) present in the signaling-meta-

bolic cross-connected network, and the overlap between each group. (B) The numbers of sig-

naling-metabolic (SM) pairs present in signaling-metabolic interaction network (SMIN), the

GBM-specific network and the GBM-specific significant network (threshold cut off Z� 1 and

Z� 3), and their expression states in an EGFR-mutated U87MGvIII cell line in comparison to

EGFRwt U87MG. The expression states are indicated as NC: no change, NA: not identified,

UP: up-regulated, DOWN: down-regulated.

(TIF)

S5 Fig. Overlapping distribution of SM pairs, S-M path and genes of five selected signal-

ing-metabolic interconnection. (A) Distribution of pathway-specific genes of five selected

signaling pathways (left) and metabolic pathways (right). (B) Distribution of SM pairs of the

selected signaling to all metabolic pathways (left) and all signaling to five selected groups of a

metabolic pathway (right). (C) Distribution of the genes involved in the significant signaling-
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metabolic cross-connected paths of five selected signaling to all metabolic pathways (left) and

all signaling to five individual groups of a metabolic pathway (right).

(TIF)

S6 Fig. RAS pathway proteins with metabolic pathways interconnections. RAS pathway

proteins with their expression states and inter-connections with metabolic pathways via pro-

tein-protein interactors in EGFRvIII-mutated GBM mapped onto the GBM-specific signifi-

cant network.

(TIF)

S7 Fig. Effect of inhibitors of signaling molecule on U87MG and U87MGvIII cell migration

and invasion. (A) Scratch wound migration assay in vitro. Scratch-wounds were made by a

micropipette tip in a ~ 90% confluent cell and treated separately with ABL1, PLCG1, BCL2,

CALM2 and CSNK IIA inhibitors with their IC50 dose (5 μM, 3 μM, 25 μM, 45 μM and 40 μM

respectively) and incubated with IMDM and 1% FBS and images were taken at 0 hrs and 8 hrs.

Comparisons of percent wound healing area of individual treatment group with untreated

group are represented as bar diagram for respective cell line. (B) Matrigel coated transwell

chamber migration/invasion assay in vitro. U87MG and U87MGvIII cells were seeded to the

matrigel-coated upper invasion chamber in serum-free medium and lower chamber was filled

with medium with ABL1 and PLCG1 inhibitors at their IC50 doses. The cells on the lower sur-

face of the insert were stained with the crystal violet after 24 hrs. Comparisons of number of

invaded cells between untreated and treated conditions are presented as bar diagram.

(TIF)

S8 Fig. Comparison of path scores between the original and randomly assigned weighted

paths. Random node weights (Sij) and edge weights (Pij) were applied to the path forming pro-

teins to generate 20 random paths for each original path. Scores were compared between the

original and the random paths for S-P-M (A), S-P-P-M (B), and S-P-P-P-M (C) connections,

respectively. For panels A and B, path scores are in the range of 10−17.

(TIF)

S1 Table. Network properties of HPPIN and SMIN with 10 random networks of equivalent

size. Clustering coefficient (CC): It is a measure of the degree to which nodes in a graph tend

to cluster. Assortivity: It represents to what extent nodes in a network associate with other

nodes in the network, being of similar sort or of opposing sort. Estrada Index: It is a measure

of the robustness of complex networks by Eigen values and Eigen vectors.

(DOCX)

S2 Table. Individual signaling or metabolic pathway-wise statistics of a number of paths

and pairs formed in different networks. The number of paths formed between signaling-

metabolic pairs for information flow from 14 signaling pathways to all metabolic pathways

(magenta) and from all signaling pathways to six groups of metabolic pathways (blue) in sig-

naling-metabolic interaction network (SMIN) and significant GBM-specific network.

(DOCX)

S3 Table. Identification of important network proteins from in silico perturbation studies.

Number of significant (-2�Z�2) proteins identified from in silico perturbation analysis to

impact information flow from 14 analyzed signaling pathways to all metabolic pathways and

from all signaling pathways to 6 metabolic pathways. In X|Y, X is the number of common pro-

teins in the indicated pathway and Y is total number of significant proteins.

(DOCX)
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S1 File. S-MPaths formed through signaling molecules used for inhibition study as shown

in Fig 9.

(XLSX)
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