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Stem cell-based therapies exhibit profound therapeutic potential for treating various human diseases, including cancer. Among the
cell types that can be used for this purpose, mesenchymal stem cells (MSCs) are considered as promising source of stem cells in
personalized cell-based therapies. The inherent tumor-tropic property of MSCs can be used to target cancer cells. Although the
impacts of MSCs on tumor progression remain elusive, they have been genetically modified or engineered as targeted anticancer
agents which could inhibit tumor growth by blocking different processes of tumor. In addition, there are close interactions between
MSCs and cancer stem cells (CSCs). MSCs can regulate the growth of CSCs through paracrine mechanisms. This review aims to
focus on the current knowledge about MSCs-based tumor therapies, the opportunities and challenges, as well as the prospective of

its further clinical implications.

1. Introduction

MSCs are nonhematopoietic cells that were first discovered
from bone marrow and reported approximately 40 years
ago by Friedenstein and his coworkers [1, 2]. Studies have
shown that MSCs exist in a variety of tissues. To date, MSCs
have been successfully isolated from various organs including
brain, liver, lung, kidney, muscle, thymus, pancreas, skin,
bone marrow adipose tissue, fetal tissues, and umbilical cord
[3]. Also, MSCs are known as multipotent cells which can
differentiate into adipocytes, myocytes, osteocytes, and chon-
drocytes [4-6]. In 2006, the International Society for Cellular
Therapy proposed three minimal criteria to define human
MSCs. They must express CD105, CD90, and CD73 and lack
expression of CD45, CD34, CD14 or CD11b, CD79« or CD19,

and HLA-DR surface molecules. Additionally, they must
adhere to plastic in culture and differentiate into osteocytes,
chondrocytes, and adipocytes [7]. In addition, MSCs possess
unique immunophenotypic capacity, tissue-repair capacity,
and immunoregulatory capacity [8]. Therefore, owing to their
relative immune evasiveness and general immune dampening
activities, MSCs can be utilized in an allogenic setting and are
promising seed cells for cell therapy and tissue engineering
[9]. Moreover, various preclinical trials suggest that MSCs
show great potential for cancer treatment, although obstacles
and risks were described [10].

Studies have shown that MSCs are capable of migrating
directionally to specific tissues, which is termed as homing.
The tropism property of MSCs into sites of injury and
tumor makes them ideal vehicles for targeted tumor therapy,
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although the exact mechanism of MSCs homing is not
completely understood. Ongoing preclinical trials suggest
that MSCs are suitable targets for cell therapy in a variety
of cancers. However, the antitumor effects of MSCs are
still controversial. In various types of cancer, some studies
have shown proliferative effects, while others demonstrate
inhibitory effects of MSCs on tumors [11]. For example,
MSCs have tumoricidal effects on liver, lung cancer cell
lines, and pancreatic tumors in vitro and in vivo [12-14].
In contrary, it has been shown that MSCs are capable of
enhancing progression and metastasis of types of tumor,
such as breast cancer and colon cancer [15-18]. In addition,
MSCs may exert therapeutic function through an immune
evasive mechanism, which will protect MSCs from immune
detection and prolong their persistence in vivo [9]. Moreover,
the survival of MSCs in the tumor and biodistribution of
MSCs should take more attention when designing a trial,
which may influence the results of study. For example,
although human MSCs were found by staining in the tumors
1 day after IV injection in a mice model, the cells almost
were cleared after 1 week [19]. However, even after 11 weeks
MSCs were still observed in the tumor, although at very low
numbers [19]. In an in vivo study of colon cancer, exogenous
MSCs were still able to regulate immune response of the
tumor microenvironment even 1 year after the last MSCs
injection [20]. In this review, we summarize recent advances
of MSCs in the treatment of cancer and insights into potential
strategies for cancer therapy.

2. MSCs and Cancer

2.1. Discrepancy in Impacts of MSCs on Tumor Progression.
Extensive studies have been performed to investigate effects
of MSCs on tumor in recent decades. However, this issue is
still under debate. Controversial results have been reported.
Several studies have shown that MSCs promote tumor
progression and metastasis through influencing signaling
pathway [18, 39], while other studies suggest that MSCs
affect the pathways that can suppress both proliferation and
apoptosis [13, 40].

Researches have demonstrated that MSCs would be
recruited into tumor sites, promoting tumor growth, and
angiogenesis through differentiating into cancer-associated
myofibroblasts and secretion of proangiogenic cytokines
(e.g., interleukin (IL)-6, vascular endothelial growth factor
(VEGF), and transforming growth factor- 8 (TGF- ) [21-23].
In the meanwhile, the recruited MSCs also enhanced tumor
metastasis via increasing lysyl oxidase [24]. Another tumor-
promoting effect of MSCs is attributed to their protection
role for breast cancer cells from immune clearance through
modulating regulatory T cells and inhibiting natural killer
(NK) cells and cytotoxic T lymphocyte (CTL) functions [25].
Furthermore, MSCs have been found to form a cancer stem
cell niche in which tumor cells can preserve the potential
to proliferate and sustain the malignant process [41]. Also,
increasing evidences suggest that MSCs promote tumor
angiogenesis through their potential to differentiate into per-
icytes or endothelial-like cells as well as by their secretion of
trophic factors and cytokines, proangiogenic factors, growth
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factors, and plasminogen activator [42, 43]. Thus, MSCs
promote tumor growth and metastasis through stimulation
of angiogenesis, cancer stem cell niche maintenance, and
immune protection. Moreover, it has also been showed
that MSCs can affect tumor development and progression
through miRNAs. In a xenograft tumor model, researchers
demonstrated that human umbilical cord MSCs (hUCMSCs)
powerfully promote the growth of lung adenocarcinoma
(LUAD) cancer cells by transferring miR-410. The findings
suggest that modification of hUCMSC-derived extracellular
vesicles (hUCMSC-EVs) may be a promising therapeutic
option for treatment of tumor [44]. In a mice model, study
found that gastric cancer tissue-derived MSCs can signifi-
cantly promote HGC-27 growth and migration via increasing
the expression of miR-221, which may be as a novel biomarker
in gastric cancer [45]. The studies supporting MSCs favor
tumor growth are summarized in Table 1.

In contrast, it has been shown that the unmodified
MSCs have antitumor effects both in vitro and in different
animal models of cancer, which is attributed to the factors
secreted by MSCs that can suppress the proliferation of
glioma, melanoma, hepatoma, and breast cancer cells [46-
48]. Studies have indicated that MSCs exhibit antiglioma
effect through inhibiting vascular growth in glioma cells,
which is mediated by the downregulation of platelet-derived
growth factor (PDGF)/PDGEFR axis [28]. Also, human umbil-
ical cord-derived MSCs (hUC-MSCs) have been shown to
inhibit progression of breast cancer by inducing tumor cells
death and suppressing angiogenesis [29]. Another study
reported that human bone marrow-derived MSCs exhibit the
potential to suppress the growth of breast cancer and inhibit
lung metastasis by reducing their proliferative ability [30].
Furthermore, MSCs have been shown to have antiangiogenic
effect both in vitro and in vivo [49]. MSCs also can inhibit
tumor growth in a highly inflammatory and angiogenic
Kaposi’s sarcoma model [50]. Both in vitro and in vivo studies
have shown that MSCs derived from fetal skin can inhibit
the growth of human hepatocellular carcinoma (HCC) cells
and can reduce cell proliferation, colony formation, and
expression of oncogenes [48]. To conclude, MSCs play critical
roles in processes of tumor angiogenesis, tumor immune
response, and metastasis. The studies reporting MSCs inhibit
tumor growth are summarized in Table 2.

2.2. MSCs, Cancer Stem Cells and Cancer Microenvironment.
Cancer remains as one of the most challenging diseases
despite extensive studies have been performed and novel
systemic treatment advances during recent decades. In par-
ticular, when cancer is diagnosed to have metastasized,
treatments are much less successful; while it can often be
treated successfully by surgery or local irradiation before
it has spread [51]. Therefore, it is necessary and imperative
to better understand the biological processes behind the
progression of tumor cells towards metastasis.

Cancer cells in primary tumors reside in a complex
microenvironment comprising numerous cell types, includ-
ing endothelial cells of blood vessels, lymphatic circulation,
fibroblasts, and various bone marrow-derived cells, such
as macrophages and MSCs. It has been well documented
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that tumor cells secret chemokines, cytokines, and growth
factors recruiting MSCs into the tumor sites. In turn, MSCs,
as a component of tumor microenvironment, affect tumor
growth and metastasis through secretion of cytokines and
chemokines [52, 53]. Thus, the process of tumor progression
has been regarded as a result of an evolving crosstalk between
different cell types within the tumor and its surrounding host
tissue and organ or tumor stroma [54].

Cancer stem cells (CSCs), which possess chemotherapy
resistance, have been considered as the root of cancers
and can resist chemotherapy, explaining cancer recurrence
even many years after therapy is ended. The evidence that
CSCs selectively resist therapy is provided by a multitude
of observations in cell culture, animal models, and cancer
patients. For example, direct analysis of apoptosis during
cell culture showed that differentiated colon cancer cells are
induced to die after chemotherapy, while CSCs from the same
culture survive after toxic damage. Moreover, these surviving
CSCs are able to reestablish the culture, indicating that
they are responsible for therapy failure [55]. Chemotherapy-
resistant CD133+ CSCs were also observed in lung and
liver cancer [56, 57]. Similarly, the phenomenon of CSCs
escape from therapy was also observed in xenograft studies.
Chemotherapy treatment of xenotransplanted CSCs leads to
an increase in CDI133+ CSCs in the tumor [58]. This showed
that CD133+ CSCs are more resistant to chemotherapy drugs
in vivo compared to differentiated CD133+ cells. And breast
CSCs and GBM CSCs isolated from patient specimens have
showed selective resistance to a variety of chemotherapies
(59, 60].

Furthermore, various studies have shown that the tumor
stroma plays important roles in the survival, growth, and
metastatic progression of cancer. In the hypoxic environment,
the tumor stroma can increase its secretion of signaling
proteins such as tumor necrosis factor-o (TNF-«), TGF-
B, PDGE, and hepatocyte growth factor (HGF) [61]. In the
meanwhile, tumor oxygenation status is tightly associated
with its aggressive behavior. Experimental solid tumors con-
tain a significant fraction of microregions that are chronically
or transiently hypoxic. Hypoxia plays critical roles in tumor
progression including tumor angiogenesis, mutation rate,
metastasis and resistance to radiation and chemotherapy
[62]. Many molecular pathways have been demonstrated to
mediate these hypoxia-induced responses in tumors. Among
them, hypoxia-inducible factor-1 (HIF-1) is a key signal-
ing pathway regulating tumor responses to hypoxia [63].
Transiently hypoxic microenvironment in solid tumor may
represent the stem cell niche to some extent, in which HIF-
l« stabilization and activation of stromal-cell derived factor-
1 (SDF1), VEGE, and Chemokine (C-X-C motif) Receptor 4
(CXCR4) occur, attracting MSCs homing and recruitment
consequently [64, 65]. Furthermore, the state of tumor-
induced hypoxia, which often perpetuates the inflammatory
state, induces the secretion of numerous growth factors (e.g.,
endothelial growth factor-A, and fibroblast growth factor),
thereby inducing MSCs recruitment and tumor growth
through stimulation of tumor angiogenesis [23, 66]. The
cancer microenvironment, MSCs, and CSCs are illustrated in
Figure 1.

3. MSCs and Antitumor Therapy

3.1. MSCs-Derived Exosomes as Vehicles for Antitumor Ther-
apy. Exosomes are nano-sized (<100 nm) and lipid-bilayer-
enclosed extracellular vesicles that are released by many types
of cells. They are found to play critical roles in intercellular
communication via the transfer of genetic molecules such as
mRNA and microRNAs, as well as proteins [67]. A common
characteristic of human cancers is the aberrant expressions
of either oncogenes, oncomiRs, or tumor suppressors. The
MSCs-derived exosomes which contain a variety of miRNAs
can be taken up by cancer cells and function in them. For
example, miR-100 has been found to be downregulated in all
subtypes of breast cancer, including the luminal A, luminal
B, basal-like, and human epidermal growth factor receptor
2 (HER2) subtypes [34]. It is enriched in MSCs-derived
exosomes and could suppress in vitro angiogenesis through
modulating the mTOR/HIF-1a/ VEGF signaling axis in breast
cancer cells [35].

However, to date, studies with controversial outcomes
on MSC-derived exosomes in tumor progression have been
reported, including promoted effects [36-38] and suppressive
effects [68, 69], as summarized in Table 3. The controversy
effects of MSCs-derived exosomes may result from differ-
ent tissue-derived MSCs used and different component of
exosomes applied, different protocols applied for exosome
collection, as well as different cancer model and stages
of cancer studied. In addition, there is also another issue
that the exosomes secreted by MSCs are not created equal.
Thus, comprehensive studies are required to advance our
knowledge and concerns over cancer research and treatment
using MSCs-derived exosomes. One possible approach for
clinical application of MSCs-derived exosomes for cancer
treatment is that MSCs should be genetically engineered
for stable expression of some cancer killer genes before the
isolation of exosomes from MSCs, just as Sueon Kim et al.
reported for generating antigen-specific CD8+ T cells for
adoptive cell therapies against viral infection and tumors [70].

3.2. MSCs as Vehicles for Antitumor Therapy. MSCs have the
characteristics of tumor tendency and avoidance of immune
clearance; thus, it is promising that MSCs are utilized as
vehicles to deliver anticancer treatments [71]. It has been
demonstrated in a number of preclinical in vitro migration
experiments and in various tumor models, such as hepatoma
[72], leukemia cells [73], breast cancer [52], and osteosarcoma
[74]. It may be an appropriate strategy that MSCs carrying
anticancer drugs targeted treatment of tumors. For example,
Bonomi et al. observed that MSCs-Paclitaxel (PTX) inhibit
the proliferation of human myeloma cells in vitro 3D dynamic
culture system [75]. The anticancer effect of MSCs-PTX has
also been shown on pancreatic carcinoma cells in vitro [76].
MSCs are also promising tool for cisplatin (CDDP) delivery
towards the tumor [71]. In addition, researches have shown
that MSCs with suicide genes or apoptotic genes targeting
for tumor is a promising approach. In vivo and in vitro
studies have shown that the expression of interferon-y in
MSCs transfected by adenovirus can effectively kill glioma
cells [77]. It is worth noting that in a model of lung metastasis
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FIGURE 1: The primary tumor microenvironment. Cancer cells in primary tumors are surrounded by a complex microenvironment that consists
of numerous cells, including endothelial cells of the blood vessel, cancer-associated fibroblast, lymphocytes, neutrophil, MSCs, macrophages,
cancer stem cells, and pericytes. Solid tumors contain a significant fraction of microregions that are chronically or transiently hypoxic, in
which HIF-1 associated signaling pathway is activated, thus inducing the expression of various downstream genes, including VEGF and

SDF-1.

of prostate cancer, MSCs expressing IFN-f3 could prolong
the survival period, and its possible mechanism is that IFN-
B could promote tumor cell apoptosis, inhibit angiogenesis,
and increase the activity of natural killer cells [78]. Simi-
larly, adenovirus-transfected MSCs expressing interferon-y
inhibit proliferation of leukemia cells and induce apoptosis of
leukemia cells in vitro [79]. In models of lung metastatic car-
cinoma, a study has found that MSCs carrying TNF-related

apoptosis-inducing ligand (TRAIL) reduce tumor growth
and recurrence and inhibit the growth of lung metastatic
foci in most mice [80]. Study has reported that in glioma
mice, tumor tropism of umbilical cord MSCs carrying TRAIL
was enhanced after irradiation and its proapoptotic effect
on tumor cells was enhanced by MSCs-TRAIL [81]. In
addition, the previous and our studies also have demon-
strated that MSCs could be genetically modified with herpes
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TABLE 3: Effects of MSCs-derived exosomes on tumors.

Author Exosome origin Tumor model Outcomes Mechanisms
Human bone marrow miR-142-3p in exosomes
MSCs from patients Colon cancer cells Increased the promoted the Notch
Li, Hongdan et al. [34] : (HCT-116, HT-29, and population of colon ; .
undergoing SW-480) cancer stem cells signaling pathways by
hip-replacement surgery downregulating Numb
. diH(;lsI:—ilI:g\I::inItZlS Cs Human EOC cell lines Promoted cancer Affect proteomic profile
Zhang, Yanling et al. [35] p (SKOV3, A2780, and . of tumor cells via
from cancer-free female progression . hani
donors HO-8910) paracrine mechanism
MM

Human bone marrow

BM-MSCs-derived
exosomes promoted

Roccaro AM et al. [36] MSCs from normal or Multiple myeloma (MM) MM tumor growth, Impact MM cell
. cells normal BM-MSC adhesion
cancer patients s 11
exosomes inhibited
the growth of MM
cells
Exosomal

Human bone marrow

transfer of miR-23b and

Makiko Ono et al. [37] MSCs BM2 cells Slowed tumor growth its suppression of
MARCKS
. Inhibited
Reza AM et al. [38] Human adipose MSCs A2780 and SKOV-3 ovarian proliferation of Upregulates

cancer cells

. proapoptotic molecules
ovarian cancer cells

simplex virus thymidine kinase (HSV-TK), and the cancer
cells could be killed by HSV-TK/GCV suicide gene therapy
[82-84]. A recent study showed that histone deacetylase
inhibitors (HDACis) induced apoptosis of chemoresistant
cells effectively, like CD123/CD47-positive cells, which were
found as maybe serving as a key role for chemoresistance in
tumor microenvironment. Furthermore, HDACis efficiently
targeted and removed chemoresistant leukemia blasts in a
xenograft AML mouse model [85].

The immune system plays an important role in moni-
toring the growth of malignant cells. Therefore, stimulating
the body’s own immune system for antitumor treatment is
a highly promising strategy. Interleukins (ILs) are cytokines
that regulate inflammation and immune response and have
been shown to exhibit antitumor effects through direct
tumor-killing or active regulation of the endogenous immune
system [86]. MSCs have been utilized to deliver interleukins
that can improve the anticancer immune surveillance by acti-
vating NK cells and cytotoxic lymphocytes [86]. For example,
the IL-18 secreted MSCs were correlative with enhanced T cell
infiltration and antitumor immunity in mice bearing invasive
and noninvasive gliomas [87]. Similarly, MSCs engineered to
express IL-12 prevented metastasis into the lymph nodes and
other internal organs as well as increased tumor cell apoptosis
in mice bearing preestablished metastases of melanoma,
breast, and hepatoma tumors [88]. Also, MSCs engineered
to express IL-12 was tested in different mouse tumor models
of melanoma and glioma [46]. Other immune-stimulatory
molecules, like CX3C chemokine fractalkine (CX3CL), have
also been engineered in MSCs. CX3CLl1 is known as a strong
T cell chemoattractant. Recent studies reveal that CX3CLlisa
driver of T cell migration to the omentum in esophagogastric

adenocarcinoma (EAC). Previous research has shown that
injection of an adenoviral vector expressing CX3CLl can
induce strong antitumor immune responses by activating
both NK cells and T cells [89]. Similarly, intravenous or
intratracheal delivery of MSCs-CX3CLl, activating T cells
and NK cells, was observed to strongly inhibit process
of lung metastasis and increase survival of mice carrying
lung metastases cells [90, 91]. Taken together, the tumor-
trophic homing capacity makes MSCs ideal cellular delivery
vehicles for personalized cell-based targeted-cancer gene
therapy. And the strategies of targeted-cancer therapy were
summarized in Figure 2.

3.3. Inhibition of Migration for Antitumor Therapy. Tumor has
been seen as a “wound that never heals” which enrolls MSCs
in its microenvironment through production of paracrine
and endocrine signals. So theoretically, inhibition of MSCs
homing will prevent the growth of tumor. For instance, PDGF
receptor 3 (PDGFR) has been reported to play an important
role in recruitment of MSCs towards tumor sites [92]. And
Simona Camorani et al. have demonstrated that interfere
with the PDGFRB-mediated crosstalk between BM-MSCs
and tumor cells using a nuclease-resistant RNA aptamer
could inhibit the migration of MSCs towards tumor cells and
hampering tumor aggressiveness [93]. The classic signaling
governing MSCs homing is SDF1-CXCR4 axis. SDF1 is highly
expressed in active multiple myeloma, as well as in bone mar-
row sites of tumor metastasis, neutralizing SDF1 with a high-
affinity L-RNA Spiegelmer to SDF-1 has been demonstrated
to diminish the disease progression [94]. In tumor biology,
a number of studies observed the requirement of Akt and
Wnt signaling for the migration, invasion, and survival of
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FIGURE 2: Strategies of targeted-cancer therapy. MSCs have been utilized as vehicles to deliver anticancer treatments due to their tumor-tropic
property. Genetically modified MSCs expressing suicide genes (e.g., TK gene) have been used to treat cancer effectively in vitro and in vivo
through inducing cell death. Additionally, MSCs can be induced to express anticancer proteins (e.g., IL-2 or IFN-f), to generate prodrug
activating enzymes or to deliver oncolytic viruses and the active drug for tumor-targeting. Simultaneously, MSCs-derived exosomes also

suppressed tumor growth.

tumor cells [95-97]. Recent studies have shown that MSCs are
involved in mediating these signaling pathways to influence
migration of tumors. In glioma cells and in the nude mice
tumors, upregulation of PTEN by hUCBSC downregulated
Akt and (phosphoinositide 3-kinase) PI3K signaling pathway
results in the inhibition of migration [98]. Similarly, results
of a study demonstrated that overexpression of HNF4« sup-
presses HCC progression by reducing hepatoma cell growth
and metastasis through downregulating the Wnt/S-catenin
signaling pathway [99].

4. Clinical Trials of MSCs in Cancer Therapy

A small number of registered clinical trials for the treatment
of solid tumors with MSCs are underway. These trials have
been inspired by successful preclinical trials, although some
results have not been published yet. The first clinical trial of
gastrointestinal tumors worldwide utilizing genetically engi-
neered MSCs in humans has been reported (TREATMEI)
[100]; this trial uses MSCs-delivery of HSV-TK under the
control of the CCL5 promoter. This is a successful phase I/1I
clinical trial. Another two registered clinical trials with MSCs
have primarily focused on ovarian cancer. One of them is
a phase I clinical trial sponsored by M.D. Anderson Cancer
Center, in which human MSCs transfected with interferon
beta (MSCs-IFNJ3). The purposes of this clinical trial are to
test the safety of MSCs-IFN3 and to find the highest tolerable
dose of human MSCs-IFNf that can be given to patients with
ovarian cancer. Similarly, Mayo Clinic initiated a phase I/II
trial to find the side effects and best dose of MSCs infected
with oncolytic measles virus encoding NIS (MV-NIS) and
to observe its effect on patients with ovarian cancer. In a

clinical approach for the treatment of lung cancer, allogeneic
MSCs expressing a full length version of TRAIL have been
used. MSCs as gene-therapeutic vehicle aim to deliver the
TRAIL. In addition, one clinical trial for treating liver cancer
with MSCs is on the registry and is recruiting subjects.
The purpose of this trial was to study whether MSCs may
influence the outcome of graft versus host response in liver
transplantation of liver cancer patients. In a phase I clinical
test, allogeneic bone marrow-derived MSCs were infused
in men with localized prostate cancer [101]. The primary
objective was to assess safety and cancer-homing ability of
MSCs. However, in this study, MSCs did not home primary
tumors in sufficient levels to kill cancer cells or inhibit
tumor growth. Although the treatment results have not been
published or have not achieved the expected objectives, more
attention and patience are needed to promote the clinical
transformation of MSCs in tumor treatment. In summary,
MSCs and their secreted exosomes have great potential for
tumor therapy. Meanwhile, to accelerate the transformation
from preclinical research to clinical application, more efficacy
and safety of these therapeutic approaches need to be pro-
vided by preclinical studies.

5. Conclusions and Prospective

This article primarily discusses the recent progress of the
complex roles of multipotent MSCs in tumor microenviron-
ment, progression, and potential clinical applications. The
function of CSCs in tumor microenvironment should be paid
more attention to, which is critical for development of cancer
cells. The roles of miRNAs and signaling pathways in tumor
microenvironment need to be intensively studied, which may
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provide us with new means to accurately treat cancer. We
should also pay more attention to the molecular mechanism
of antitumorogenic activity of MSCs, which may improve
the precision of targeted therapy. Importantly, reducing the
growth stimulation and malignant transformation of MSCs
in tumor targeted therapy will accelerate clinical transforma-
tion.
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