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Abstract
Introduction: Globally, sexually transmitted infections (STI) affect >300 million people annually, and are a major cause of
sexual and reproductive health complications in women. In this commentary, we describe how STIs interact with the immune
and non-immune cells, both within and below the cervicovaginal mucosal barrier, to cause inflammation, which in turn has been
associated with increased HIV acquisition risk.
Discussion: STIs have a major impact on the female genital mucosa, which is an important biological and physical barrier that
forms the first line of defence against invading microorganisms such as HIV. Pattern recognition of STI pathogens, by recep-
tors expressed either on the cell surface or inside the cell, typically triggers inflammation at the mucosal barrier. The types of
mucosal responses vary by STI, and can be asymptomatic or culminate in the formation of discharge, ulcers and/or warts.
While the aim of this response is to clear the invading microbes, in many cases these responses are either evaded or cause
pathology that impairs barrier integrity and increases HIV access to target cells in the sub-mucosa. In addition, innate
responses to STIs can result in an increased number of immune cells, including those that are the primary targets of HIV, and
may contribute to the association between STIs and increased susceptibility to HIV acquisition. Many of these cells are media-
tors of adaptive immunity, including tissue-resident cells that may also display innate-like functions. Bacterial vaginosis (BV) is
another common cause of inflammation, and evidence for multiple interactions between BV, STIs and HIV suggest that suscep-
tibility to these conditions should be considered in concert.
Conclusions: STIs and other microbes can induce inflammation in the genital tract, perturbing the normal robust function of
the mucosal barrier against HIV. While the impact of STIs on the mucosal immune system and HIV acquisition is often under-
appreciated, understanding their interactions of the infections with the immune responses play an important role in improving
treatment and reducing the risk of HIV acquisition. The frequent sub-clinical inflammation associated with STIs underscores
the need for better STI diagnostics to reverse the immunological consequences of infection.
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1 | INTRODUCTION

There are over 50 types of viruses, bacteria and parasites
that can be sexually transmitted, eight of which are most
widely recognized as sexually transmitted infections (STIs).
These include syphilis, gonorrhoea, chlamydia, trichomoniasis,
hepatitis B, herpes simplex virus (HSV), human papillomavirus
(HPV) and HIV [1]. Most often, STIs are either asymptomatic
or mildly symptomatic, and therefore remain undiagnosed and
under-recognized by patients and clinicians [2]. Long-term
infection by STIs can cause severe reproductive health compli-
cations in women, including still birth, preterm delivery,
increased risk of HIV acquisition, infertility and cancer, among
others [3-5]. In most high-income countries, policies ensure

the availability of diagnostic tests, rapid delivery of results and
contact tracing for those infected; however, these are not typ-
ically available in low- and middle-income countries where
STIs are common and managed primarily on the basis of signs
and symptoms. While syndromic diagnosis is reasonably sensi-
tive and specific for ulcerative infections, other STIs are often
missed due to poor sensitivity and may remain untreated for
long periods of time [6].
Another challenge is drug resistance; infections such as

Neisseria gonorrhoeae are increasingly resistant to standard
therapies including macrolides, tetracyclines and cephalospor-
ins [7]. This increase in antibiotic resistance, combined with
high prevalence, low rates of treatment, and their association
with HIV transmission and reproductive compilations, all
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underscore the need to better understand the mucosal
immune responses to STI-causing organisms.
The purpose of this commentary was to describe how STIs

interact with the vaginal mucosal barrier, and the commensal
microbes that line its luminal surface, to cause inflammation.
While this commentary focuses on STIs in women, some simi-
lar mechanisms have been suggested for male genital
immunology [8-10]. Many of the pathological effects of STIs
correspond to biological mechanisms that may favour HIV
acquisition in women.

2 | DISCUSSION

2.1 | Types of mucosal immune responses to STIs

There are several ways to classify STIs, the most obvious
being by the type of causative organism, that is, bacterial, viral
or parasitic. A second important way is by clinical presenta-
tion; although STIs are frequently asymptomatic, they can also
cause (a) ulcers in genital, anal, oral and perianal tissues (e.g.
Treponema pallidum, HSV), (b) urethral and vaginal discharge
(e.g. Chlamydia trachomatis, N. gonorrhoeae and Mycoplasma
genitalium), or (c) genital warts (e.g. HPV) [11].
Yet another way to classify STIs is by the different mecha-

nisms through which they cause infections and evade immu-
nity. STIs result in a large inflammatory response that can
lead to pathology throughout the genital tract, including pelvic
inflammatory disease, ectopic pregnancy and infertility, and

degradation of the epithelium. As part of this inflammatory
response, an influx of immune cells including neutrophils has
been associated with discharge and lesions in the genital tract,
resulting in further damage to the epithelial barrier [12]. We
and others have shown that this epithelial damage may be
due to increased protease expression, which functions to
degrade epithelial integrity [13,14].
Although the mechanisms differ, the ability of all STI-causing

pathogens to induce an inflammatory response, damage the
epithelial barrier, and impair natural innate defences is
believed to increase the risk of HIV acquisition, by providing
the virus better access to HIV target cells in the sub-mucosa
and beyond. Inflammation may simultaneously increase the
number of and location of these cells relative to the lumen or
induce phenotypic changes that increase their cellular suscep-
tibility to virus infection [15]. The inflammatory responses
induced by STIs is intended to (and in some cases may) play
an important role in protecting the host, but in many other
cases this response favours the pathogen. This could be due
to evasion of the effector mechanisms that are aimed at
pathogen clearance (see Table 1), but also by causing collat-
eral damage to host tissues [16-18]. For example, in C. tra-
chomatis infection, neutrophils are among the first immune
cells to be recruited to the site of infection. Delayed apoptosis
is a strategy used by C. trachomatis to avoid a complete
immune response whereby it reduces the neutrophil sensitiv-
ity towards the stimuli from apoptosis, hence contributing
towards pathogen persistence [19].

Table 1. Immune evasion strategies employed by common STIs

Strategy Definition Examples References

Internalization Epithelial cell entry, avoiding extracellular

mechanisms of immune surveillance such as

antibody responses

Chlamydia trachomatis

Neisseria gonorrhoeae

Mycoplasma genitalium

[26,90,91]

Deregulation of cellular

process

Inhibition of important cellular processes in order

to dampen the immune response e.g. DNA

methylation, maturation of DCs, activation of

immunoinhibitory pathways

HPV, HSV2,

C. trachomatis

Treponema pallidum

[92-95]

Resistance to antimicrobial

peptides

Expression of genes which are highly resistant to

antimicrobial peptides

Haemophilus ducreyi [96-99]

Interference with the

processes of the

complement system

Acquisition of CD59 from different host cells, which

inhibits binding of C9 with C5b-C8 that is critical

for pore formation. In addition, this pathogen can

stimulate iron induced cysteine protease activity.

Trichomonas vaginalis [100,101]

Structure alteration Pathogen-induced changes to their extracellular

structure to avoid detection by the innate

immune system.

M. genitalium [37]

Inhibition of Th1 CD4 and

CTL responses

Pathogens upregulate specific responses which

results to the suppression other immune

responses that would result to their clearance.

For example, upregulation of Th17 response that

results to the downregulation of Th1 response.

M. genitalium, Chlamydia trachomatis

T. vaginalis, HSV2, HPV,

Treponema pallidum, N. gonorrhoeae
[95,101-112]

Inhibition of other types of T

cell responses (Th2, 17, 22,

Treg)

The pathogen downregulates the immune response

in specific cells like macrophages, dendritic cells

and monocytes.

T. vaginalis, HPV, N. gonorrhoeae,

T. pallidum
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2.2 | STIs and genital inflammation

Genital inflammation, defined by elevated cytokines, has
been a strong predictor of HIV acquisition risk and
decreased TFV gel efficacy [20,21]. Elevated levels of
inflammatory cytokines have been highly correlated to
increased protease activity, which may decrease the integrity
of the epithelial barrier [13,14]. South African women with
laboratory-confirmed STI infections had increased the levels
of inflammatory cytokines in the genital tract, including IL-
1a, IL-4, fractalkine, TNF-b, macrophage-derived chemokine,
IL-1b and interferon-c [20,22]. STIs have been associated
with increased genital inflammation signatures specifically
among those with C. trachomatis infections [23-26]. Many
studies have established that mucosal cytokine production
occurs after STI acquisition, forming a central feature of the
ensuing immune response. Therefore, consideration of the
broader immune pathways that drive these cytokine
responses could provide important insight into how STIs
change the mucosal milieu [27,28].

2.3 | Intracellular and extracellular recognition of
STIs by pattern recognition receptors

Mucosal epithelial cells are the first barrier against infection,
forming an early line of defence against pathogen invasion.
Epithelial cells are equipped with receptors that are crucial
for pathogen detection, and these cells function to initiate and
modulate the inflammatory cascade aimed at inducing patho-
gen clearance [29,30]. Inflammation leads to a series of reac-
tions which induce adaptive immunity, including effector
mechanisms that can clear infection. However, tight regulation
of inflammation is required in order to avoid self-damage
[30,31]. In the case of STIs, a combination of immune evasion,
potent induction of inflammation and poor natural immunity
represents scenarios in which HIV entry may be increased
(Figure 1).
Toll-like receptors (TLRs) play an important role in detecting

pathogens including STIs, and initiating appropriate innate and
adaptive immune responses. TLRs bind to their cognate
ligands, resulting in a signalling cascade that culminates in the

Figure 1. Mucosal innate immune responses to STIs in the female genital tract that could potentiate HIV transmission risk.
Depicted are several of the modes through which STIs might increase the risk of HIV acquisition. Infection with STIs results to physical abrasion,
ulcer formation and increase of pro-inflammatory cytokines resulting in inflammation. Inflammation increases the availability of HIV target cells in
the sub-mucosa. During N. gonorrhoeae infection, TLR2 and 4 detect lipooligosaccharide and induce a NF-KB driven immune response resulting to
production of cytokines. Infection with C. trachomatis results in death of some cells which in turn produce elementary bodies. C. trachomatis infec-
tion is detected by inflammasomes resulting to production of IL-1b and IL-8 through the NLR3 pathway. TLR9 detects the CpG island in Genomic
material of the HPV virus inducing an immune response through the MYD88 pathway. TLR3 detects the viral nucleic acid to induce an immune
response through the IRF and IR7 pathways.
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expression of pro-inflammatory cytokines. TLRs can be classi-
fied as both intracellular (TLR3,7,8,9,11,12 and 13) and extra-
cellular (TLR1,2,4,5,6 and 10), on the basis of their expression
and where ligand recognition typically occurs [32,33]. TLRs
recognize pathogen-associated molecular patterns (PAMPs),
including bacterial DNA, viral nucleic acid and viral proteins,
with the eventual goal of inducing specific T-cell and antibody
responses. For example, TLR9 detects the unmethylated CpG
sequences in bacterial DNA molecules. Many TLRs signal via
MyD88, an important intracellular protein adaptor molecule.
MyD88 is responsible for induction of the IL-1 family, a group
of 11 mainly inflammatory cytokines that regulate innate
immune cell function. IL-1R-associated kinase is recruited via
MyD88 activation, further activating the NF-kB pathway cul-
minating in transcription of pro-inflammatory cytokine genes
[34,35].
Several bacterial STIs induce innate inflammatory responses

by interacting with extracellular TLRs. A recent study that uti-
lized a 3D model of endocervical cells showed that M. genital-
ium was recognized by TLR2, 4 and 6, a pattern of TLR usage
that initiates the NF-KB pathway and is unique to this bac-
terium [36,37]. In microorganisms such as Neisseria, protein
elements are detected both intracellularly and extracellularly,
both of which can induce an NF-KB driven inflammatory
response. TLR 2 and 4 detect LPS, outer membrane vesicles,
porins and other proteins, while additional pattern recognition
molecules called NOD 1 and 2 detect additional STI biochemi-
cal structures such as gamma glutamyl diaminopimelic acid
and muramyl dipeptide, which also results in induction of NF-
KB-driven inflammation [38,39].
Intracellular TLRs mainly detect viral infections. In contrast

to many extracellular TLRs, which tend to recognize protein
structures, intracellular expression of TLR3, TLR7, TLR8 and
TLR9 mediates viral nucleic acid sensing. In a recent study
that evaluated TLR gene expression by qPCR in endocervical
cells of women, increased levels of TLR and IFN-a2 were
observed among those who had cleared HPV-16 infection,
suggesting that TLR responses may be associated with viral
clearance. Moreover, HPV-16 may interfere with these
responses, thus enhancing their persistence [40]. In this study,
TLR9 expression was upregulated during high-risk HPV infec-
tion and was higher in HPV-positive compared to HPV-nega-
tive individuals, confirming that TLR9 plays an important role
in the detection of CpG islands in the DNA motifs during
HPV infection in vivo [41].
STIs similarly induce immune responses through inflamma-

somes (multi-protein intracellular structures located in the
cytosol). The inflammasome is activated by the signalling of
PAMPs, DAMPs (damage associated molecular proteins),
changes in the ion concentrations of cytosol and by extracellu-
lar adenosine triphosphate (ATP). Once activated, this molecu-
lar complex leads to expression of pro-inflammatory cytokines
and can also initiate an inflammatory form of cell death called
pyroptosis [42-44]. Activation of the inflammasome often
occurs through NOD-like receptors (NLRs, especially NLR3),
which interacts with apoptosis-associated speck-like protein
containing a CARD (ASC). This protein is located in the nucleus
of macrophages and monocytes and is responsible for activating
caspase-1, which in turn cleaves and activates IL-1b and IL-8
[44]. C. trachomatis, co-cultured with epithelial cells, were found
to activate inflammasomes resulting in IL-1b and IL-8

production and activation of pyroptosis. An inactivated form of
C. trachomatis was tested in the same model and was still found
to lead to priming of the inflammasome, but without the result-
ing inflammatory response, implying that pathogen replication
may be critical for cytokine induction [45]. This inflammatory
pathway also applies to other STIs; for example, the LPS of N.
gonorrhoeae has been shown to harbour hexa-acylated lipid A,
which can activate the NRLP3 inflammasome [46]. H. ducreyi
elicits IL-1b responses that are dependent on activation of cas-
pase-1, -5 and NLRP3 in both M1 and 2 macrophages [47]. In
viral STIs such as HPV, cytosolic viral DNA is detected by AIM2
inflammasome and IFI16, an intracellular DNA sensor, resulting
in the production of IL-1b and IFN-b respectively. Blocking of
AIM2 resulted in increased production of IFN-b thus it has the
ability to block the production of IFN-b an important mediator
of antiviral response [48].

2.4 | Co-infection with STIs, bacterial vaginosis and
HIV

In addition to the mucosal barrier, the composition of the
vaginal microbiome can play an important role in providing
immune defence at the genital mucosa. In particular, women
with certain Lactobacillus-dominant communities are able to
produce lactic acid and maintain a low mucosal pH, which inhi-
bits the growth of pathogenic bacteria including STIs. In the
absence of Lactobacillus spp., with the exception of Lactobacil-
lus iners, a more diverse microbiome population is typical,
which is often associated with bacterial vaginosis (BV). BV,
defined either by Nugent scoring or using molecular methods
[49], has been associated with an increased risk of both STI
and HIV acquisition [50-57]. Both STIs and BV are associated
with increased levels of inflammatory cytokines like IFN-a2,
IL-1a, IL-1b, TNF-a, IFN-c and IL-8 [51,58]. Epithelial cells of
the genital mucosa produce glycogen, an energy source that
allows Lactobacillus spp. to flourish [59,60], which has been
suggested provide protection against Chlamydia infection [61].
Synergism between BV and STIs is in part through the pro-

duction of metabolites by the BV causing bacteria, which are
utilized by STIs as growth factors. An example is seen between
BV and C. trachomatis infections. Bacterial species that produce
tryptophan have been associated with the increased risk of C.
trachomatis infection among women whereas Indoleamine-2,3-
dehydrogenase 1 (IDO1) producing species have been associ-
ated with decreased risk. IDOL1 inhibits the availability of tryp-
tophan. This shows that BV may play an important role in both
first time and recurrent C. trachomatis infections [62,63]. Ziklo
et al. found that chlamydia infection was associated with
reduced IFN-c response. IL-17 was also reduced among
infected individuals, and this cytokine is important in boosting
host defence and maintaining mucosal barrier. Therefore, the
increased levels of kynurenine, the byproduct of tryptophan
breakdown, is associated with increased risk of HIV acquisition
[63-65]. Studies have suggested that ethnicity and not meta-
bolic mechanisms may also underlie the association between
chlamydia and HIV [28,66,67]. Increased risk of Trichomonas
vaginalis acquisition has been associated with BV in both HIV-
positive and -negative women [68].
Durable and effective treatment of BV has been a major

challenge for the field. Oral or topical metronidazole is effec-
tive in the short term, yet recurrence occurs among more that
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50% of women within three to twelve months [50,69,70].
However, periodic presumptive treatment has proven to be an
effective method in reducing STI incidence [71,72]. This
strengthens the case for a causal relationship between BV
and STIs, and also suggests that reducing BV may help to
reduce STI incidence.
STI co-infection in HIV-positive women, particularly by N.

gonorrhoeae or HSV-2, increases inflammatory responses and
mucosal HIV shedding [22,73-75]. In addition to mucosal
inflammatory response, STIs such as N. gonorrhoeae have been
found to increase plasma viral load and reduce CD4 T-cell
counts, indicating that both STI and HIV act synergistically
resulting in detrimental effects to the host. While studies have
suggested that STI treatment could reduce HIV shedding and
transmission [73], this may be a moot point in the era of
effective antiretroviral therapy, which, if taken correctly,
reduces HIV transmission almost completely [76].

2.5 | Role of adaptive immune response in STIs

Mechanisms of immunity to STIs are poorly understood, form-
ing an obvious barrier to vaccine development. Epidemiological
evidence for immunity to Chlamydia has been shown in the
context to treatment [77]. While the mechanism for the immu-
nity is unclear, C. trachomatis infection has been associated
with the formation of follicles [78]; the presence of IFN-c+
CD4+ T cells in these follicles has been thought to provide an
immune response in the case of a secondary infection [79]. In
some STI infections, re-infection occurs long after the primary
infection [80-82], as the adaptive immune response following
primary infection plays a major role in immune surveillance
and forms the first line of immune response in secondary
infection.
Memory T-cells were initially divided into central and

effector memory T-cells, which preferentially home to non-
lymphoid and secondary lymphoid organs respectively. Since
that time, it is clear that there is an additional population of
tissue-resident memory lymphocytes that either do not re-
circulate, or re-circulate very slowly, and provide rapid
responses to re-infection [83,84]. The role of these cells in
the STI response is only beginning to be explored, with some
data emerging for HSV-2. In HSV-2, a persistent infection
occurs at the dermal epidermal joint (DEJ) of the mucosal
lining with CD8+ T cells being the most predominant
immune cells at this site. An assessment of CD8+ T-cells at
the DEJ in biopsies of HSV-2 infected individuals revealed a
high proportion of CD8 TCRab T-cells. A comparison of the
prevalence of CD8b or CD8a subsets at the DEJ showed
that there was a higher population of CD8a mRNA, which
were specifically CD8aa homodimers, an indication that they
are responsible for containing HSV-2 infection. The CD8a T-
cells formed clusters around epithelial cells that were HSV-2
specific [85].
Additional cells including mucosal associated invariant T

(MAIT) cells, invariant natural killer T (iNKT) cells, cd T-cells,
innate lymphoid cells and IELs form part of the connection
between the innate and adaptive response, and play a major
role in guarding the integrity of the tissue and generation of
local immune responses. Some studies support the presence
of these cells in the vagina [86-89], however, their responses
to STIs have not been extensively explored.

3 | CONCLUSIONS

In summary, STIs induce inflammatory responses through
interactions with the epithelial barrier and immune cells at
the site of infection. There are several molecular pathways
involved in the inflammatory response to a diverse range of
STIs, all of which likely function to cause pathology by weak-
ening the mucosal barrier. At the same time, STIs use a vari-
ety of immune evasion strategies to dampen the immune
response and enhance their persistence. STIs and BV likely
both increase the risk of HIV acquisition by damaging the
mucosal barrier and increasing pro-inflammatory cytokines,
increasing the availability of HIV target cells. The impact of
STIs on mucosal immune responses and HIV acquisition is
often under-appreciated, but improved control of these infec-
tions through better diagnosis, treatment and prevention
could make an important contribution to reducing HIV risk
and improving reproductive health outcomes.
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