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In recent years, neutrophil extracellular traps at the forefront of neutrophil biology have
proven to help capture and kill pathogens involved in the inflammatory process. There is
growing evidence that persistent neutrophil extracellular traps drive the pathogenesis of
autoimmune diseases. In this paper, we summarize the potential of neutrophil extracellular
traps to drive the pathogenesis of rheumatoid arthritis and experimental animal models.
We also describe the diagnosis and treatment of rheumatoid arthritis in association with
neutrophil extracellular traps.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic inflammatory disease with high disability and increased
mortality. It is characterized by progressive joint damage and synovial membrane hypertrophy.
There are stark differences in the prevalence among different ethnicities and populations. RA is a
heavy burden for the patients, their families, and society. To date, studies have shown that RA is a
multifactorial disease involving age, sex, environmental, epigenetic, and genetic factors. However,
the pathogenesis of RA is not fully understood (1). Many studies have shown that both innate
immune response and adaptive immune response contribute to the etiopathogenesis of RA (2). It’s
considered that the formation of autoantibodies to citrullinated antigens (ACPA) is a critical
pathogenic event involved in the development of RA. Neutrophils isolated from patients suffering
from autoimmune diseases present enhanced formation of neutrophil extracellular traps (NETs).
The role of neutrophils in autoimmune disease is still elusive (3). The release of cytotoxic products
[e.g., degradation enzymes and reactive oxygen species (ROS)] from activated neutrophils into the
synovial fluid and pannus in RA has been known for a long time and is considered important for RA
(4, 5). In recent years, it was discovered that neutrophils participate in the inflammatory progression
of RA through multiple regulatory immune mechanisms, including directly secreting cytokines and
chemokines, and releasing neutrophil granules that activate or inactivate cytokines and chemokines.
Enzymes upregulate the expression of MHC II and promote cell-cell interactions.

A novel role of neutrophils, the release of NETs, has attracted increasing attention. Upon
pharmacological activation with phorbol myristate acetate (PMA) (6), interleukin 8 (IL-8) (7), or
lipopolysaccharide (LPS) (8), neutrophils release granule proteins and chromatin to form NETs.
The release of NETs (9) constitutes a novel programmed cell death that differs from apoptosis (10).
LPS-induced NET formation increases with adhesion and substrate elasticity, while PMA-induced
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NET formation is independent of adhesion (6). NETs are
composed of chromatin and granular proteins, which trap and
kill bacteria (11, 12). Most DNA is derived from nuclei however,
mitochondrial DNA is also included. The proteins consist of
neutrophil elastase (NE), myeloperoxidase (MPO), histones,
defensins, calprotectin (13), matrix metalloproteinase-9, and
others (14). During NET formation, NE, MPO, and peptidyl
arginine deiminase (PAD4) promote nuclear decondensation
and histone citrullination, respectively (15). NETs can be
quantified and analyzed by DNA area and NETosis analysis
(DANA). Higher frequencies of NETs are detected in subjects
with RA (16).

NET formation conventionally occurs via the NADPH oxidase
(NOX) and ROS-dependent suicidal pathway in which
neutrophils rupture and release NETs. Suicidal NETosis is
triggered by the engagement of specific receptors or other
biomolecules, such as IgG-Fc receptors, Toll-like receptors
(TLRs), complement molecules, and cytokines on neutrophils
(11, 17–19). The formation of suicidal NETosis is a gradual
process that is commonly initiated by the generation of ROS.
Then NE and MPO are transported into the nucleus where
histones are modified. Finally, nuclear and cellular membranes
break, and NETs are released (9, 10, 14). During this process,
substantial morphological changes occur. Neutrophils flatten and
form membrane protrusions after stimulation (11). Nuclear
lobules disappear and chromatin decondense. The inner and
outer nuclear membranes detach. The nuclear membrane
disintegrates into vesicles, and nuclear material mixes with the
cytoplasm to form a homogenous mass. Finally, the neutrophils
round up and rupture to release the NETs (10). ROS are pivotal for
suicidal NETosis formation (20). ROS are mainly generated by
NOX during the “respiratory burst” of neutrophils (21). Patients
with chronic granulomatous disease harbor mutations of NOX
genes and show reduced NET formation (10, 22). Finally, the
NOX complex converts molecular oxygen to hydrogen peroxide,
which is a substrate of MPO and is sufficient to induce NET
formation (10). The reaction of hydrogen peroxide and MPO can
form hypochlorous acid. The latter induces the generation of
chlorinated polyamines that may cross-link NET proteins, which
maintains the ordered structure of NETs and increases the
capacity to trap bacteria (23). MPO partly binds to NE to form
the azurosome complex that spans granular membranes without
dissolution of the granular membranes (24). NE is a critical
enzyme involved in many pathways of NET formation.
Methicillin-resistant Staphylococcus aureus (MRSA) infected
mice with NE deficiency fail to form NETs (25). However, other
studies have demonstrated that NE is not required for NET
formation induced by noninfectious stimuli; meanwhile, NE
deficiency has little effect on histone citrullination (26). NE
combines with F-actin filaments to enter the nucleus before
MPO. The proteolytic activity of NE is determined by MPO.
Patients with mutant MPO also show reduced NET formation
(22). As NE translocates from cytoplasm to nucleus, it cleaves
histones and participates in chromatin decondensation (27).

In addition to chromatin decondensation performed by NE,
another important chromatin modification is histone citrullination
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driven by PAD4. During NET formation, calcium influx of
neutrophils activates a high amount of PAD4, which catalyze
histone to citrullinated protein. This enzyme citrullinates arginine
residues in the core histones H2A, H3, H4, thus reducing their
positive charge, which weakens the interactions between histones
and DNA and further promotes chromatin decondensation (28).
Five calcium molecules are bound to every PAD4 molecule (29).
Interestingly, citrullination driven by PAD4 is inhibited
accompanied by inhibition of NOX (28), which may be due to
the NOX-induced increase in cytoplasmic calcium levels that
activate PAD4 (30). Citrullination driven by PAD4 is induced by
LPS and PMA (31). PADI4-deficient mice failed to formNETs after
treatment with certain stimuli (32–34).

However, Clark et al. first reported vital NETosis in which
neutrophils remained impermeable for SYTOX Green after
releasing NETs, which suggested that the neutrophils
maintained an intact plasma membrane during NET formation
(7). Subsequent researchers found that NETs were induced by
blebbing of the nuclear envelope and vesicular exportation in S.
aureus infection (35). Vital NETosis is activated by pathogen-
associated molecular patterns (PAMPs) or endogenous damage-
associated molecular patterns (DAMPs). Stimuli recognized by
TLR4, such as LPS, may initiate vital NETosis. The nucleus loses
its multilobular shape and becomes rounded. Then, the nuclear
double membranes vanish, and vesicles composed of DNA
filaments bud. These vesicles approach toward the plasma
membrane. DNA is released through a small area on the cell
surface. Suicidal NETosis and vital NETosis can be distinguished
by cleaved N-terminal histone tails (36).
ROLES OF NETS IN RA

Pathogenesis of RA Related to
NETs Formation
Various elements in the peripheral blood of patients with RA,
such as autoantibodies or immunostimulatory molecules,
reportedly stimulate NET formation (Table 1). Excessive NET
formation leads to the production of deaminated antigens such
as citH2A, citH2B, and citH4 histones (Figure 1). Furthermore,
NET-borne citrullinated vimentin is a pivotal autoantigen that
stimulates the secretion of proinflammatory cytokines (e.g.,
TNF-a and IL-1) and the expression of PADI4 and receptor
activator of nuclear factor kappa B ligand (RANKL) in fibroblast-
TABLE 1 | Stimuli inducing neutrophil extracellular traps (NETs) formation.

Pathogen triggers Endogenous triggers Inflammatory triggers

Bacteria
Viruses
Fungi
Protozoa

TLR 4
FcgRIIIb (37)
IL-8, IL-17, TNF-a (38)
IFN-g (39)
Calcium salt crystals
Urate crystals

Antibodies (40)
Immune complexes (19)
Lipophosphoglycans (41)
M1 protein (42)
LPS (8)
Hydrogen peroxide (10)
PMA (6)
Calcium ionophore A23187 (43)
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like synoviocytes (FLSs) (44). FLSs, key effector cells of
inflammation in RA, produce multiple cytokines that cause
damage in the joints (45). In a joint with RA, presented
citrullinated antigens induce antigen-driven autoimmune
responses and lead to the generation of anti-NET
autoantibodies. Thus, chronic inflammation and autoimmunity
exist for a long time. Anti-NET RA recombinant monoclonal
antibodies (rmAbs) derived from CD19+ synovial B cells of
patients with RA constantly bind NETs.

The immunoreactivity of NET-Ags depends on somatic
hypermutation (SHM) within the Ig variable H (VH) and
variable L (VL) chains of synovial B cells. Moreover, Fab-N-
linked-glycosylation determines the reactivity of the
autoantibodies (46). Rheumatoid factor (RF), anti-citrullinated
protein antibodies (ACPAs), and other autoantibodies in
peripheral blood or synovial fluid robustly support NET
formation in RA (47). IgG or IgM collected from peripheral
blood or synovial fluid of patients with RA induce more NET
formation than antibodies from healthy controls (38). Recently,
NET-derived elastase results in cartilage matrix disruption and
induction of membrane-bound peptidylarginine deiminase-2
released by FLSs. Cartilage fragments are subsequently
citrullinated and presented to antigen-specific CD4+ T cells
(48). In the NOX/ROS pathway, PAD4-induced histone
citrullination promotes chromatin decondensation and NET
formation (49). The chromatin-associated protein DEK
regulates the structure of extracellular chromatin (50, 51). In
Frontiers in Immunology | www.frontiersin.org 3
models of RA (51), NET formation and protein citrullination are
shown to be prevented by depletion of DEK or administration of
DEK-targeted aptamers. Both strategies alleviate the symptoms
of RA.

In patients with RA, IL-8, IL-17A, and TNF-a reportedly
induced NET formation (38). Upon exposure to IL-17A,
neutrophils in RAlead to NET formation when the cells are
primed with TNF-a. Correlations with NET formation have also
been detected for a higher serum level of C-reactive protein (CRP)
and a higher erythrocyte sedimentation rate. Furthermore, histone
citrullination alone with NET formation can be triggered by the
treatment of neutrophils with supernatants harvested from IL-15-
stimulated CD69(+)CD8(+) T cells, leading to the extracellular
release of citrullinated proteins (52). Conversely, immune
complexes induce “incomplete” NET formation (53, 54).
Ribonucleoprotein-containing immune complexes induce NET
formation depending on mitochondrial ROS rather than NOX
(55, 56), which correlates with hypercitrullinated proteins (57) and
production of IFN by plasmacytoid dendritic cells (58).

Signal Transduction Pathways
Correlating With NETs
Several underlying signal transduction pathways may promote
NET formation in RA and the molecular mechanisms may be
pleomorphic. In RA, high concentrations of NE, MPO, PAD4/
DNA-complex, and ROS production correspond to the elevated
formation of NETs (31, 59).
FIGURE 1 | The role of neutrophil extracellular traps (NETs) in the pathogenesis of rheumatoid arthritis (RA). Various elements in the peripheral blood of patients with
RA can stimulate NET formation. Excessive NET formation leads to the production of deaminated antigens such as citH2A, citH2B, and citH4 histones. In a joint with
RA, presented citrullinated antigens induce antigen-driven autoimmune responses and lead to the generation of anti-NET autoantibodies. Thus, persistent
inflammation of the synovial membranes occurs.
January 2021 | Volume 11 | Article 578129

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Song et al. Rheumatoid Arthritis and NETs
In neutrophils, Rac is a subunit of the NOX complex (60).
Guanosine exchange factor (GEF) activator, Vav, and the p21-
activated kinases (Paks) are involved in Rac signaling pathway
(61). NOX is indispensable for oxidative burst-dependent NET
formation (60–62). Inhibition of NOX reduces NET formation
and induces non-canonical NETs (10). ROS are related to the
lytic NET formation (63) and stimulate the activation of NE. NE
and MPO are also released from azurophilic granules into the
nucleoplasm (25). In the nucleus, NE proteolytically cleaves
histones and thus interferes with the dense package of
chromatin (27). Many physiological and artificial stimuli can
activate the MPO-NE pathway (22).

In the peripheral blood of patients with RA, ACPAs stimulate
neutrophils to release PAD enzymes (64). Porphyromonas
gingivalis and smoking are known risk factors for RA, and
overexpression of endogenous or bacterial PAD enzymes
drives citrullination (65, 66). PAD4 depends on Ca2+ (67) and
is activated via the ROS pathways to convert internal arginine to
citrullines (8, 9). Upon PAD4 activation, locally released
citrullinated histones enhance the generation of highly mutated
clonal B cells resulting in the generation of high-affinity ACPAs
(68). At a high titer, fibrinogen citrullinated by PAD 4 acts as the
preferred targets for ACPAs (69). Additionally, human leukocyte
antigen (HLA)-DR bound PAD4 is recognized by T cells and
further contributes to the production of antibodies responded to
citrullinated proteins, such as ACPAs and anti-PAD antibodies
(70). Anti-PAD4 antibodies have been reported to be closely
related to ACPAs (71–73). Kolfenbach et al. evaluated the
prediagnosis serum samples of 83 patients with RA and found
that 15 RA samples had anti-PAD4 antibodies with a high
specificity of 98.8% (71). Interestingly, Erika Darrah et al. first
detected PAD4-specific CD4+ T cells in peripheral blood
mononuclear cells (PBMCs) of RA patients and found that
protease granzyme B (GrB) induced structure changes of
PAD4 and promoted the presentation of CD4+ T cell epitopes
(74). Overall, further studies are need to demonstrate correlation
between PAD4 and RA citrullinome.

Deficiency or inhibition of PADI4 reduces the formation and
the size of NETs and alleviates arthritis symptoms in many
models, except the murine K/BxN model (75). These findings
suggest that PADI4 acts downstream of ROS in NET formation
and generates autoantigens that amplify the inflammatory
response that precipitates in the pathogenesis of RA (32, 76,
77). PADI4 thus participates in the initiation rather than the
effector phase of RA. PAD4, which is associated with histone
deamination, can catalyze hypercitrullination by immune-
mediated membranolytic pathways (57, 78). Interestingly, in a
TNF-induced model of citrullination and arthritis, protein
citrullination is executed by PAD2 instead of PAD4. PAD2 is
not associated with NET formation (79). Relatively high activity
of putatively neutrophil-derived PAD4 has been reported in RA
synovial fluid (80). The pathogenesis of RA is also related to T
cells specific for citrullinated epitope (81). In brief, the NOX
pathways and PAD4 activity can be regarded as critical elements
that regulate NET formation and generation of citrullinated
autoantigens in RA (82).
Frontiers in Immunology | www.frontiersin.org 4
NETs Promote Autoantibody Production,
Cytokine Expression, and Cell Activation
Citrullinated components of NETs often serve as self-antigens
recognized in the serum of patients with RA (80). Aberrant NETs
may promote the externalization of citrullinated autoantigens
and immunostimulatory molecules, which enhances the
expression of epitopes related to the pathogenesis of RA (38).
In RA or osteoarthritis (OA), the levels of IL-6 and IL-8 are
upregulated in the presence of NETs, resulting in the activation
of FLSs (38, 83). LL-37/DNA complexes induce NETs that
activate plasmacytoid dendritic cells via TLR7 and TLR9 to
produce type I IFN (84). Moreover, NETs are abnormally
accumulated in some patients with SLE due to the DNase I
inhibitory factors (85, 86), leading to IFN-a release. IFN-a not
only enhances NETosis but also induces activation of
autoreactive T- and B cells to synthesize autoAbs, such as anti-
dsDNA, anti-HNP, and anti-LL37 autoAbs. Moreover, NETs can
trigger the production of IL-1b and IL-18, and further stimulate
NETosis. These vicious cycles contribute to the imbalance
immune homeostasis of SLE. Similarly, NETs are involved in
multiple sclerosis (MS). NETosis secretion of antimicrobial
proteins induces elevated T-cell activation resulting in tissue
damage in MS (87).

NETs triggered by microscopic cholesterol crystals also take part
in atherosclerosis (88). NETs induce the activation of leukocytes,
platelets, and endothelial cells and further lead to endothelial
dysfunction (89). Moreover, NETs promote the production of IL-
6 and pro-IL-1b in macrophages (49). Accordingly, these increased
cytokines accelerate T helper 17 (TH17) cells differentiation and
subsequently induce immune cell recruitment in atherosclerotic
lesions. Neutrophils infiltration of culprit lesions results in plaque
rupture and erosion via NETs (90, 91). Very recently, significantly
higher plasma levels of NETs are observed in the carotid lesion site
(CLS) of stroke patients. NETs decorated with phosphatidylserine
(PS) are detected in thrombi. NET formation requires the synergy of
CLS plasma and activated platelets (PLTs). PS-bearing NETs can
induce the formation of thrombin and fibrin as well as the
conversion of endothelial cells to a procoagulant phenotype (92).
These findings indicate that NETs are indispensable in the
pathogenesis of many diseases, such as RA, SLE, MS,
atherosclerosis, and stroke via multiple molecular mechanisms.

NET and Citrullinated Autoantigens
Form a Vicious Cycle in RA
In RA, neutrophils infiltrate synovial tissue, rheumatoid nodules,
and the skin (38), when neutrophils form NETs, deaminate
proteins, and initiate ACPA production (57). Furthermore,
circulating low-density granulocytes (LDGs) in patients with
RA tend to increasingly form NETs (19). FLSs activated by
NETs express IL-17A, TNF-a, and IL-8 and infiltrate the
cartilage, where they enhanced proinflammatory responses
(10). The enhanced release of inflammatory cytokines from
FLSs driven by NETs causes joint damage and further worsens
the condition (31). The secretory leukocyte protease inhibitors
can prevent proteolytic maturation of cytokines related to NET
formation. Skin lesions may be associated with the insufficient
January 2021 | Volume 11 | Article 578129
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activity of the secretory leukocyte protease inhibitors (93).
Importantly, these cytokines trigger the vicious cycle of NET
formation and autoantibody biogenesis (38). IL-8 and IL-17
recruit neutrophils and promote the exposure of autoantigens
(12, 94). Therefore, NET formation plays a critical role in the
pathogenesis of RA. A comprehensive understanding of the
mechanisms involved in NET formation may help us develop
new therapies via targeting NETs to treat NET-related diseases.
NETS ARE ASSOCIATED WITH RA
IN MOUSE MODELS

Neutrophils Drive the Inflammation of
Murine Arthritis
RA is an autoimmune disease characterized by progressive
destruction of joints. The pathogenesis of RA is still elusive.
Researchers usually establish murine models to analyze the
pathogenetic sequelae of RA (95). Daisuke and colleagues
established an experimental model of male BALB/cAnNCrj
(BALB/c) mice injected with an anti-type II collagen antibody
and LPS (95). Histological analysis showed that neutrophils were
the vast majority of infiltrating cells in the joint space. To
determine the effect of neutrophils on arthritis, monoclonal
antibodies (mAbs) against Gr-1 (the RB6-8C5 mAb) were
intravenously injected into arthritic mice to deplete circulating
neutrophils. These experiments suggested that neutrophils are
indispensable for the development of arthritis. It is commonly
believed that neutrophils play a key role in inflammatory diseases
due to their secretion of cytotoxic products (4). However,
neutrophils are now considered to be not only effectors of the
innate immune systems but also key players in the regulatory
circuits of the immune system (96). FcgRs activate neutrophils
and trigger a series of signaling events, including ROS
generation, protease release as well as the production of
chemokines and cytokines. These mediators recruit additional
neutrophils and regulate the functions of other immune cells.
Hence, they participate in the regulatory network and interplay
of innate and adaptive immunity (97). Neutrophils isolated from
patients with RA functionally differ from those from healthy
controls. Blood- and synovial fluid-derived neutrophils from
patients with RA trigger ROS production and display enhanced
NET formation (38).

The Role of NETs in the Etiopathogenesis
of RA
NETs are considered to contribute to the pathogenesis of RA (9).
Degradation or citrullination of histones driven by PAD4
promotes chromatin decondensation and NET release (38).
Furthermore, PAD4 exacerbates inflammatory arthritis and is
crucial in some pathways of NET formation (79). Compared to
wild-type mice, PADI4 (encoding PAD4)-deficient mice induced
by glucose-6-phosphate isomerase showed less severe
inflammatory arthritis and reduced autoantibody titers (75).
Similarly, in murine collagen-induced arthritis (CIA),
Frontiers in Immunology | www.frontiersin.org 5
inhibition of PADI4 reduced the formation of NETs and
arthritis relief (98). However, PAD4 was dispensable in
spontaneous arthritis in the K/BxN mouse model (99). NET
formation and arthritis in the murine TNFa-induced
inflammatory arthritis were investigated to identify the roles of
PAD2 and PAD4 for citrullination. PAD2 mediated TNFa-
induced citrullination and arthritis but was dispensable for
NET formation (99). PAD4, which is involved in NET
formation, was dispensable for citrullination. These studies
indicate that various pathogenic pathways may cause murine
arthritis. These can be dependent or independent of NETs.

Further evidence supported the roles of NETs in the
pathogenesis of RA that blocked NET formation and protein
citrullination was caused by treatment with DEK-targeted
aptamers, as DEK is essential for certain pathways of NET
formation (38, 100). Autoantibodies that recognize DEK have
been detected in the sera of patients with autoimmune diseases,
such as systemic lupus erythematosus (SLE) and adolescent
idiopathic arthritis (JIA) (100). DEK acts as a chemoattractant,
triggers inflammatory responses, and plays an important role
in a murine model of arthritis. Aptamers targeting DEK
could reduce NETs formation, slow the progression of joint
inflammation, and ameliorate the disease symptoms in arthritic
mice (51).

Another established murine model of RA is the K/BxN mice.
The pathology is similar to that of human RA. The K/BxN mice
are generated by crossing KRN-C57BL/6 mice, which carry a
transgenic T cell receptor, with autoimmunity-prone non-obese
diabetes (NOD) mice (101). K/BxN mice develop IgG
autoantibodies against glucose-6-phosphate isomerase, which
precipitate joint damage.

Mice lacking functional NOX have the further aggravation of
arthritic symptoms. ROS suppression occurs in patients with
chronic granulomas disease (CGD) due to impaired function of
NOX (35). This implies that ROS in NETs are derived from
additional mechanisms beyond the NOX pathway (86). NET
formation triggered by nicotine (102) was found to be dependent
on mitochondrial ROS rather than depend on NOX (20).
However, Cl-amidine, a PAD inhibitor, did not inhibit the
formation of mitochondrial ROS but inhibit NETs in the New
Zealand mixed 2328 (NZM) murine mice (34).
DIAGNOSING RA WITH NETS

Currently, the laboratory diagnosis of RA relies on the detection
of RF and ACPAs (59, 103). These autoantibodies can be found
in most RA patients, and the titer of ACPAs correlates with the
severity of RA (4). Although many autoantibodies markers have
been applied for patients’ diagnosis with RA, ACPAs are the
most disease-specific markers with the highest specificity and
sensitivity (103). Khandpur et al (38). analyzed 55 Patients with
RA and 36 healthy volunteers or patients with OA. The results
showed that NET formation was associated with the levels of
ACPAs and indicated NETs were a potential target for ACPAs.
ACPAs include antibodies targeting keratin (AKA), perinuclear
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factor (APF), profillagrin/fillagrin (AFA), Sa, and artificial cyclic
citrulline peptide (CCP). The diagnostic specificity of four kinds
of ACPAs (APF, AKA, AFA, and CCP (II)) for RA was more
than 90%, which is significantly higher than that of RF (77.7%),
suggesting that ACPAs can be employed as effective diagnostic
antibodies for RA. However, the sensitivity of ACPAs for RA
differs due to differences in antigens preparation and detection
methods (104–106).

Recently, some studies have focused on the detection of
potential signaling pathways that lead to the increase of NET
formation in RA. This is to determine whether the products of
NET formation are useful for diagnosis. NETs as target
biomarkers have been reported in many autoimmune
diseases. Levels of human neutrophil peptide 1–3 (HNP 1–3),
a part of NETs, were found to be significantly higher in patients
with lupus nephritis (LN) than in healthy controls. They are an
independent indicator of LN [P = 0.006, odds ratio (OR) = 7.5,
95% confidence interval (CI), 1.782–31.842]. Moreover, the
NET-inducing capacity might be a novel biomarker of ANCA-
associated vasculitis (AAV). The levels of NET degradation
products, such as circulating free DNA (cfDNA), free
nucleosomes, NE-DNA, and MPO-DNA complexes, are
reportedly increased in patients with RA (3). NET-derived
products were previously analyzed in vitro by microscopy and
enzyme-linked immunosorbent assay (ELISA). Receiver
operating characteristic (ROC) curves showed spontaneously
increased formation of NETs and production of ROS in
patients with RA (59). NET-derived cell-free nucleosomes in
RA serum showed diagnostic value with an area under the ROC
> 97% with 91% sensitivity and 92% specificity (59). No
significant differences were detected between ACPA-positive
and ACPA-negative patients (59). Recently, the level of anti-
NET antibodies (ANETA) in RA serum was reported to be
significantly higher in rheumatoid factor-positive than that in
seronegative patients (107). The collective evidence suggests
that the quantitative detection of the NET-derived products
may be a useful complementary tool to identify individuals at
risk and to monitor patients with RA.
THERAPEUTIC TARGETING OF NET
FORMATION TO TREAT RA

Clearance of NETs
DNAse-1 dismantles NETs in vitro. In vivo, DNase-1 does not
interfere with NET production, but fragments the DNA and
destroys the backbone of the NETs (9). DNase-1 reportedly
promotes the escape of group A Streptococcus (GAS) from being
killed by NETs. Enhanced neutrophil depletion of GAS and
reduced virulence occur in the presence of the DNase I inhibitor
G-actin (108). Recently, several studies have reported that
bacterial DNases degrade NETs, allowing the bacteria to escape
killing in NETs (109–111). However, Bryan et al. injected S.
aureus intraperitoneally into mice and monitored the infections
with minimally invasive nonsurgical luminescent imaging,
showing that DNase reduced bacterial growth (112).
Frontiers in Immunology | www.frontiersin.org 6
Kolaczkowska and colleagues also demonstrated that DNase
effectively eliminated NET-borne DNA and inhibited the
proteolytic activity of NE (25). Nevertheless, NETs still show
some antimicrobial activities, as most of the histones remained.
The circulating zymogen form of factor VII activating protease
(FSAP) can be activated by histones and the nuclear lobules of
NETs. NETs bound to FSAP fail to activate pro-FASP. However,
histones release after the degradation of NETs by DNase
dramatically stimulating pro-FASP activity (113). Pathogenic
micro-organisms produce DNases that inhibit the generation
of ROS in the later stage and lead to escape the killing in NETs
(114). In addition, NETs are cleared via phagocytosis of
macrophages, which increases the release of cfDNA (115).
Whether the pathogenesis of RA involves macrophage
dysfunction needs further examination. The cfDNA levels in
synovial fluids were correlated with neutrophil counts but not
with macrophage counts (80). The increased NETs levels in RA
synovial fluids may be caused by either impaired activity of
DNase-1 or by inhibitors of DNase-1. Serum DNase-1 activity is
negatively correlated with inflammatory markers and neutrophil
counts, suggesting that insufficient DNase-1 activity is an
important factor in the regulation of NET persistence. The
elevated cfDNA levels in the synovial fluid may be an
important source of “altered self.” Only very few eosinophils
and mast cells exist in the synovial fluid of patients with RA,
suggesting that cfDNA are mainly derived from NETs. An
advantage of DNase-1 is low toxicity, which has been verified
in murine models of breast cancer (116), lupus (117), or lung
damage (118). Exogenous administration of DNase I may be
used to dismantle NETs and can, therefore, be considered for the
treatment of RA.

Inhibition of NET Formation
Additionally, drugs that reduce the formation of NETs may also
be used to treat and relieve RA. Delivery of the NE inhibitor
sivelestat via a nanoparticle system to LPS-induced endotoxin
shock mouse model inhibits NET formation, reduces
circulating NE, and prevents mice from endotoxic shock
(119). CI-amidine can reduce protein citrullination in the
pGIA mouse model (120). Rituximab and belimumab reduce
NET formation by blocking the immune-complexes formation
(121). Emodin accelerates apoptosis and suppresses autophagy
and NET formation by reducing IL-6, IFN-g, and TNF-a in the
murine adjuvant-induced arthritis (AA) (122). Polydatin (PD)
reduces NET formation of bone marrow-derived neutrophils
and in patients with RA. Similarly, in CIA mice, the deposition
of NETs in the ankle joints is decreased by PD-treatment (123).
Ascomycin and cyclosporine A can decrease IL-8 induced NET
formation by inhibiting the calcineurin pathway (124).
Triptolide (TP) exhibits potential as an RA therapeutic by
lowering neutrophil recruitment and downregulating the
expression of TNF-a and IL-6. TP is also able to suppress
NET formation and autophagy of neutrophils (125). Moreover,
celastrol can inhibit NOX-dependent NET formation (126).
Tocilizumab likewise shows the potential to reduce
autoantibody levels and, consequently, immune complex
formation in patients with RA (127). Nevertheless, there are
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differences in the immune system and physiological function
between murine models and humans. Given the limited scope
of current clinical standard therapies, more clinical research is
required to establish NET reducing therapies.
PERSPECTIVES AND CONCLUSION

The accumulated data on the role of NETs in RA has brought
NETs into focus as novel therapeutic targets for RA. The future
will tell whether a blockage in NET formation or increased NET
catabolism will win the race.
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