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Abstract: A machine-learning (ML) technique was used to optimize the energetic-trap distributions
of nano-scaled charge trap nitride (CTN) in 3D NAND Flash to widen the threshold voltage (Vth)
window, which is crucial for NAND operation. The energetic-trap distribution is a critical material
property of the CTN that affects the Vth window between the erase and program Vth. An artificial
neural network (ANN) was used to model the relationship between the energetic-trap distributions as
an input parameter and the Vth window as an output parameter. A well-trained ANN was used with
the gradient-descent method to determine the specific inputs that maximize the outputs. The trap
densities (NTD and NTA) and their standard deviations (σTD and σTA) were found to most strongly
impact the Vth window. As they increased, the Vth window increased because of the availability
of a larger number of trap sites. Finally, when the ML-optimized energetic-trap distributions were
simulated, the Vth window increased by 49% compared with the experimental value under the same
bias condition. Therefore, the developed ML technique can be applied to optimize cell transistor
processes by determining the material properties of the CTN in 3D NAND Flash.

Keywords: 3D NAND Flash; charge trap nitride; gradient-descent method; machine learning;
multi-level cell; trap distribution; threshold voltage window

1. Introduction

In recent years, solid-state drives (SSDs) have been developed to satisfy the require-
ments for rapidly storing and using large amounts of data. NAND Flash is a key and widely
used component in SSDs because of its suitability for mass production and reasonable
bit cost [1]. NAND Flash has been developed with innovation in three-dimensional (3D)
architecture and charge trap nitride (CTN) as a storage node [2–5]. Further, the bit cost
of NAND Flash has been reduced using multi-level cell (MLC) technology, which stores
multiple bits in each single cell [6].

An MLC creates more threshold-voltage (Vth) states in one cell by subdividing the
amount of charge injected into the storage node. As more Vth states are created, the number
of bits stored per cell increases, and therefore, the bit cost considerably reduces [7,8].
Unfortunately, the number of sections with overlaps between subdivided Vth states also
increases, making it difficult to distinguish the actual Vth states and thereby degrading the
device reliability [9–11].
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Multiple Vth states are created within a limited Vth window between the erase (ERS)
and the program (PGM) Vth [12,13]. Then, if the Vth window is widened, the errors in
distinguishing Vth states can be reduced by obtaining the margin of each Vth state. In the
previous works, wide Vth windows were achieved by adopting new materials and bias
conditions [14,15]. However, qualitative analyses for improving the Vth window have not
sufficiently focused on the material properties of the storage node.

The energetic-trap distribution is an important material property of the CTN, a nano-
scaled thin film in 3D NAND Flash. Previously, it was discussed based on the analytical
model for charges [16]. The energetic-trap distribution can be extracted using retention
models [17] and trap spectroscopy by charge injection and sensing (TSCIS) [18]. Further-
more, the energetic-trap distributions are determined by the gas flow ratio deposited on
the CTN [19,20]. These studies indicated that energetic-trap distributions are controllable
and that their profiles determine the ERS Vth (Vth,ers) and PGM Vth (Vth,pgm) [17,21]. We
tried to maximize the Vth window, that is, the sum of the absolute value of Vth,ers (|Vth,ers|)
and Vth,pgm, by optimizing the energetic-trap distributions.

We also used a novel machine-learning (ML) method to improve the Vth window.
Recently, ML has been used for predicting and optimizing nanoscale transistors [22–24].
Moreover, it can help quantitatively determine the complex material properties of the
CTN with high speed and accuracy. Therefore, an artificial neural network (ANN) [25]
was trained by modeling eight inputs that determine the energetic-trap distributions
and the two outputs |Vth,ers| and Vth,pgm. Next, the energetic-trap distributions were
investigated to realize a large Vth window by the gradient-descent method, a widely used
optimization algorithm.

In this study, the ML method helps determine the optimized energetic-trap distri-
butions and thereby control the material properties of the CTN in 3D NAND Flash. We
quantitatively found the energetic-trap distributions that resulted in the largest Vth window.
The remainder of this paper is organized as follows. In Section 2, the simulation data and
ML method used to train the ANN are introduced. In Section 3, we discuss the results
of training and optimization of ML-based analysis. Finally, the conclusions are drawn in
Section 4.

2. Simulation and Machine-Learning Method

We obtained data from TCAD simulations for training the ANN [26]. Shockley–Read–
Hall recombination, drift-diffusion transport, mobility (high-field, doping and interface
dependent) and Hurkx band-to-band tunneling models were adopted for the poly-Si
channel. Furthermore, the nonlocal tunneling model was used to describe charge transport
in ERS/PGM operations.

Figure 1 shows the schematic diagrams of 3D NAND Flash used in the simulation.
Figure 1a shows a part of the 3D NAND Flash string. It has a cylindrical structure, and
both ends are connected by a bit line (BL) and a source line (SL). Vth is extracted from the
BL current (IBL) of 1 µA vs. selected word line (WLSel) voltage in the middle of the string.
Figure 1b shows the half cross-sectional view of the cylindrical structure and a gate stack.
Furthermore, ERS (PGM) state is the condition when holes (electrons) are filled in the CTN.
The simulation structure was derived from the manufactured device [27].

Figure 2 shows two energetic-trap distributions following the Gaussian distribution
of the bandgap in the CTN. Donor- and acceptor-like traps capture holes and electrons,
respectively. Each distribution consisted of the trap densities (NTD and NTA), peak energy
levels (ETD and ETA), capture cross sections (CCSD and CCSA), and standard deviations
(σD and σA). These eight inputs determine the profile of the distributions, and Vth,ers and
Vth,pgm change accordingly.

Figure 3 shows Vth with the ERS/PGM operating time. Each operation was performed
by applying a single pulse; the PGM operation started from the ERS state, whereas the
ERS operation started from the PGM state. Under the same bias condition (VPGM = 15 V,
VERS = 20 V), the simulation data (solid lines) were calibrated with the experimental data
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(symbols) by adjusting the energetic-trap distributions of the CTN. The calibrated simula-
tion data were then used as training data for the ML-based analysis. In this study, the Vth
window is the sum of |Vth,ers| and Vth,pgm at time = 10−2 s. The corresponding Vth window
contains the difference between the ERS and the highest PGM Vth states of an MLC.
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Figure 1. (a) Schematic diagram of the cylindrical structure of 3D NAND Flash. (b) Half cross-
sectional view of string and cell stack. Depending on whether holes or electrons are present in the
CTN, the state is ERS or PGM.
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Figure 2. Two energetic-trap distributions comprising donor- and acceptor-like traps of the CTN. The
peak energy levels (ETD and ETA) are from the conduction band (EC). Their profiles determine the
Vth window.
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Figure 3. Vth vs. operating time started from different ERS/PGM states during a single pulse
operation. The simulation (solid line) and the experimental (symbol) data are in good agreement.
The Vth window is the sum of |Vth,ers| and Vth,pgm at time = 10−2 s.

Figure 4 shows a schematic of the ANN. First, datasets are produced from TCAD
simulation for 3D NAND Flash cell. These extracted datasets are used to design the ANN.
A multilayer perceptron (MLP), in which several layers of perceptrons are sequentially
attached, was used for training [28]. MLP is suitable for solving nonlinear functions that
cannot be solved using a single-layer perceptron, so it is useful for the training complex
model. In this study, this feedforward network contains one hidden layer with 15 nodes
and tanh as an activation function. In addition, it was trained using MATLAB to model
the inputs and outputs [29]. The Levenberg–Marquardt method was used for the back-
propagation of training, and the cost function was calculated by the mean squared error
(MSE). The MSE indicates the accuracy of ML training. The smaller it is, the better is the
training of the ANN. After training, the gradient-descent method was used in the backward
direction to determine the optimal inputs that resulted in a large Vth window. This method
is widely used for finding the minimum value of the cost function in ML. Finally, we set the
cost function in the direction of making large outputs. In summary, we trained the ANN
using well-calibrated simulation data and then used the well-trained ANN to determine
the optimal inputs that resulted in the largest outputs.

Table 1 summarizes the calibrated values and ranges of the eight inputs for training
and optimizing of the ANN. These inputs were randomized within each range uniformly,
and different |Vth,ers| and Vth,pgm values were derived, accordingly. NTD, NTA, CCSD, and
CCSA were logged, and then all parameters were standardized to improve the prediction
accuracy of the ANN. In addition, there is no correlation between inputs. The calibrated
values are generally the median of each range, and the entire range is reasonable [27,30].
Other material properties of the CTN were fixed only to verify the effect of energetic-
trap distributions.
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found in the direction of making the two outputs large.

Table 1. Input parameters of energetic-trap distributions of the CTN.

Trap Parameter Min Max Calibrated

Density of donor-like traps, NTD (cm−3·eV−1) 5.00 × 1018 5.00 × 1019 1.00 × 1019

Peak energy level of donor-like traps, ETD (eV) 2.00 3.00 2.50
Capture cross section of donor-like traps, CCSD (cm2) 1.00 × 10−15 1.00 × 10−11 1.00 × 10−13

Standard deviation of donor-like traps, σD (eV) 0.10 0.50 0.35
Density of acceptor-like traps, NTA (cm−3·eV−1) 8.00 × 1018 8.00 × 1019 2.00 × 1019

Peak energy level of acceptor-like traps, ETA (eV) 0.80 1.50 1.00
Capture cross section of acceptor-like traps, CCSA (cm2) 1.00 × 10−15 1.00 × 10−11 1.00 × 10−13

Standard deviation of acceptor-like traps, σA (eV) 0.10 0.50 0.30

3. Results and Discussion

Figure 5 shows the example of MSEs in the training and validation sets with epochs.
Here, epoch refers to the number of times the entire data have passed through the neural
network. A total data of 1980 samples were used for ML training. First, they were used
for training and test sets with a weight of 80/20. Then, the training sets were divided
five-fold. Each fold became a validation set once, and the mean value of the five evaluations
was used to determine the performance of the corresponding model. We also repeated
this entire process five times by splitting the nodes of the hidden layer to increase the
reliability of the model. As a result, the 15 nodes of the hidden layer have the lowest MSE,
and the results of applying the model to test sets are shown in Figure 6. Furthermore, the
model was well-generalized with no overfitting and underfitting because of the five-fold
cross validation.

Figure 6a compares the simulated and the estimated values of |Vth,ers| and Vth,pgm
in the test sets. For one input set, two outputs appear simultaneously, and the estimation
is expected to be good as the two symbols overlap. Figure 6b shows the errors in the
individual values. Each error is extremely small and is within the acceptable range of
±5%. Furthermore, each MSE is 0.7368 × 10−3 and 0.8472 × 10−3; therefore, the prediction
accuracy is very high. These results confirmed that the ANN was trained well. Furthermore,
the ANN model was superior in learning speed and accuracy in our datasets compared
with other regression models, the random forest, etc.
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Figure 6. (a) Comparisons of |Vth,ers| and Vth,pgm between simulated (closed, black) and estimated
(open, red) data, and (b) errors are within ±5% in the test sets. MSEs are 0.7368 × 10−3 and
0.8472 × 10−3, respectively.

Figure 7 shows the raw simulated and optimized values of the Vth window; the latter
are all larger than the former. We set the cost function in the direction of maximizing the
Vth window. The gradient-descent method was used to determine the slope of the cost
function. After setting the random inputs within the range listed in Table 1, the estimated
Vth window was derived using the well-trained ANN. Then, the random inputs were set
again until the slope reached the extreme value. Finally, the inputs that resulted in a large
Vth window were found. Table 2 lists the optimized inputs that resulted in the largest Vth
window after 2000 iterations.
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Table 2. Optimized input parameters of energetic-trap distributions of the CTN.

Trap Parameter Value

NTD (cm−3·eV−1) 5.00 × 1019

ETD (eV) 2.00
CCSD (cm2) 1.00 × 10−15

σD (eV) 0.50
NTA (cm−3·eV−1) 8.00 × 1019

ETA (eV) 1.45
CCSA (cm2) 1.00 × 10−15

σA (eV) 0.50

Figure 8 compares the calibrated and the optimized energetic-trap distributions. The
ML results indicated that NTD, NTA, σTD, and σTA strongly influenced the Vth window.
When they increased, both |Vth,ers| and Vth,pgm increased significantly. This is because
many available trap sites could capture more holes or electrons. When ETD decreased
and ETA increased, both |Vth,ers| and Vth,pgm increased slightly. This is because the deeper
energy of each distribution reduced the attempt-to-escape factor [31]. However, ETD and
ETA mainly determined the retention characteristics; therefore, the correlation with the Vth
window was weak. Similarly, CCSD and CCSA had small effects on the Vth window. In
summary, large NTD, NTA, σTD, and σTA resulted in a large Vth window owing to the avail-
ability of a larger number of trap sites. However, ETD, ETA, CCSD, and CCSA had a small
correlation with the Vth window because we did not consider the retention characteristics.

Figure 9 shows the experimental and simulated |Vth| values optimized by ML. Here,
the simulated Vth window was calculated from the best inputs in Table 2. In this case,
the |Vth| error between the simulation and the ANN was within 4.34%. Therefore, the
simulated Vth windows were reliable. The Vth window increased by 49%. In other words,
the Vth window can be sharply increased by optimizing the energetic-trap distributions.
Therefore, we can provide a guideline for maximizing the Vth window, although the precise
process remains difficult.
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Figure 9. |Vth| values in ERS/PGM operations and Vth window. Values estimated using ML
outperform experimental values overall.

4. Conclusions

ML-based analysis was used to obtain optimized energetic-trap distributions for the
CTN in 3D NAND Flash to improve the Vth window. The ANN enables modeling the
relationship between eight inputs that determine the energetic-trap distributions and the
two outputs, |Vth,ers| and Vth,pgm. The ANN was trained using well-calibrated simulation
data with experiments, and the MSEs were found to be small. Then, we used the gradient-
descent method to determine the best inputs that resulted in the largest Vth window. NTD,
NTA, σTD, and σTA significantly influenced the Vth window. As they increased, the Vth
window grew because of the large number of trap sites. In particular, when the best inputs
obtained using ML were employed, the Vth window increased by 49% compared with the
experimental value. This study should enable the determination of the Vth window from
the material properties of the CTN in 3D NAND Flash. More generally, this work implies
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that ML can help to solve the complex problem of nanomaterials accurately and optimize
it rapidly.
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