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Molecular-level similarity search brings computing
to DNA data storage
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As global demand for digital storage capacity grows, storage technologies based on synthetic
DNA have emerged as a dense and durable alternative to traditional media. Existing
approaches leverage robust error correcting codes and precise molecular mechanisms to
reliably retrieve specific files from large databases. Typically, files are retrieved using a pre-
specified key, analogous to a filename. However, these approaches lack the ability to perform
more complex computations over the stored data, such as similarity search: e.g., finding
images that look similar to an image of interest without prior knowledge of their file names.
Here we demonstrate a technique for executing similarity search over a DNA-based database
of 1.6 million images. Queries are implemented as hybridization probes, and a key step in our
approach was to learn an image-to-sequence encoding ensuring that queries preferentially
bind to targets representing visually similar images. Experimental results show that our
molecular implementation performs comparably to state-of-the-art in silico algorithms for
similarity search.
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ecent advances in DNA nanotechnology have demon-

strated synthetic DNA’s ability to carry out molecular

computations for biochemical applications, such as gene
expression classification! . These applications reflect a paradigm
shift in the field of DNA computing, away from parallel com-
puting in the style of Adleman’s solution to the traveling sales-
person problem®, and towards DNA strand-displacement
circuits®” and algorithmic self-assembly®°. This shift was moti-
vated by the recognition that encoding combinatorial problems
requires synthesizing exponential amounts of DNA, and that
synthetic DNA is better suited to implement circuits, which
autonomously analyze information already encoded in the con-
centrations and sequences of nucleic acid molecules. DNA-based
digital storage applications provide a unique opportunity to apply
parallel computing to large-scale databases already stored in
molecular form, without the requirement for exponential
amounts of DNA as in Adleman’s work: many database opera-
tions are inherently parallelizable, and the amounts of DNA
required to perform them grow linearly with database size rather
than exponentially. Due to growth in synthesis and sequencing
capacity, DNA-based digital storage has become an increasingly
attractive technology to address the exponentially widening gap
between the volume of media that the world produces and the
capacity of traditional storage media (such as solid state, optical,
and magnetic storage). Researchers are developing practical sys-
tems using synthetic DNA as a storage medium, with several
orders of magnitude higher density and durability than current
storage technologies!?-1°. To store an arbitrary digital file in
DNA, its binary data are translated into a DNA sequence using
error-correcting codes that account for limitations and errors in
DNA synthesis and sequencing. Because synthetic DNA oligo-
nucleotides are limited in length, the encoded file’s sequence may
be split over many hundreds or thousands of oligos, depending
on its size. A DNA database may consist of many logically distinct
files pooled together, so a required feature of these systems is the
ability to retrieve all of the oligonucleotides associated with a
single file without having to sequence the entire data pool. This is
typically accomplished by associating each file with a unique pair
of short, predetermined sequences that are included on each oligo
for that file. To retrieve a specific file from an aliquot of a large
pool, these sequences can be used as primers for a polymerase-
chain reaction (PCR) that selectively amplifies the target file!>16,

The sequences of the PCR primers needed to retrieve a specific
file are analogous to a filename, in that they must be stored and
remembered separately from the data itself. In database terms,
this is referred to as key-based retrieval. Although key-based
retrieval might be sufficient for a well-maintained library or
archive, modern search and recommendation systems do not
assume users know the exact key of the document they are
looking for, and thus make heavy use of content-based retrieval.
For instance, they allow users to search for words, phrases or even
topics that occur within documents, or enable them to use an
image as a query to retrieve visually similar images.

Executing key-based retrieval in a DNA database leverages
DNA hybridization to perform parallel molecular computing: the
PCR primers associated with a particular file are programmed to
bind with their intended reverse complements, even in the pre-
sence of many millions of potentially off-target sequences. Early
formulations of DNA databases!”~20 proposed that hybridization
could also be used to search through the content of the docu-
ments in the database. However, these approaches require that
semantically similar documents are represented by similar
sequences, and this is not possible in a DNA database that allows
storage of arbitrary digital data. For instance, while a pair of JPEG
and PNG files may represent visually similar images, we cannot
rely on their binary encoding (or their DNA encoding) to be

similar. The same is true for text or other media that may be
encoded or compressed in unpredictable ways.

Document similarity is typically formulated as a geometric
problem?! where each document’s semantic content (rather than
its binary representation) is converted to a vector in a high-
dimensional feature space, with the property that neighboring
feature vectors represent subjectively similar documents. This
conversion process is called feature extraction, and there are a
variety of methods that work well, depending on the type of
document and the goals of the application. For documents like
images, intermediate layer activations from neural networks
trained on image classification problems (such as VGG16%? or
AlexNet?? tend to perform well as feature vectors for similarity
search tasks24, Figure 1A illustrates this with a two-dimensional -
SNE (t-distributed Stochastic Neighbor Embedding) projection of
4096-dimensional feature vectors extracted using the FC2 layer of
VGG16. The images depicted here were not seen by VGG16
during its training; however, because VGG16 was trained on real-
world photographs, its effectiveness as a feature extractor gen-
eralizes to other real-world images. Database systems facilitate
content-based similarity search by creating an index that stores
documents’ feature vectors separately from their original data.
Searching through the index provides the location of the original
document. For instance, a web-based reverse image search engine
is an index that allows users to upload an example image, which is
used to retrieve the URLs of visually similar images. Index
structures do not have to be static: when new data are added into
the database, its feature vectors can also be added to the index,
without recomputing the feature vectors of other items.

Because similarity search is an efficiently parallelizable problem
(each document’s feature vector can be compared with a query
simultaneously), it is a good fit for massively parallel DNA
computing. An ideal DNA-based index for similarity search
encodes feature vectors as DNA sequences such that single-
stranded molecules created from an encoded target and the
reverse complement of an encoded query are likely to form stable
hybridized structures when the query and target feature vectors
are neighboring, but not when they are distant (Fig. 1B). Given
such an encoding, the index associates each document with a
single strand of DNA that contains the document’s ID, alongside
with its encoded feature vector (Fig. 1C, D). An encoded query
(Fig. 1E) can then be used as a hybridization probe to filter out
similar documents from the index (Fig. 1F, G). The filtered index
is then sequenced and decoded to recover the IDs of documents
that are similar to the query. These documents are then retrieved
from a key-based database and displayed to the user (Fig. 1H).

Designing a universal encoding from feature vectors to DNA
sequences is difficult because of the high dimensionality of both
feature space and DNA sequence space, and because of the
nonlinear nature of DNA hybridization. An alternative is to use
machine learning to optimize the encoding for a particular
dataset. Early researchers!? achieved this by clustering the dataset
using k-means, then mapping each cluster center to a known
DNA sequence, which is assigned to each document in that
cluster. By reducing content-based retrieval to exact key-based
retrieval, their approach sidesteps any issues with unwanted DNA
hybridization. However, there is no notion of more or less similar
within a cluster: every item in the cluster is retrieved, regardless of
its distance to the query. Additionally, once the clusters are
chosen, they are static; any additional data added to the database
must fit into the existing clusters, even if it would cause the
cluster centers to change.

In this work, we greatly expand upon our prior proof-of-
principle work?> and show how we can scale up computational
workflow and molecular image search from tens to over 1.5
million images. We show a path toward overcoming the
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A. Document similarity as geometric space

B. Similarity-preserving DNA encoding
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Fig. 1 Overview DNA-based similarity search. A lllustration of a feature space where neighboring documents are subjectively similar. B A similarity-
preserving DNA encoding is one where the reverse complement of a query document’s sequence hybridizes with a neighboring target document's
sequence, but not with a distant target's. Note that the query is color-coded green and the targets with other colors. C=H The retrieval process. A database
(€) is encoded and synthesized to produce an DNA-based index (D). Arrowheads indicate 3' ends of DNA. An encoded query (E) is annealed with a
sample of the database (F), which is filtered with magnetic beads (G). The filtered database is sequenced to reveal the IDs of retrieved documents, which

are used to look them up in the original database (H).

limitations of fixed clusters by using machine learning techniques
to create a continuous feature-to-sequence encoding that pre-
serves similarity. Crucially, the in silico learning step only hap-
pens once and the cost of this is amortized over the lifetime of the
database. As with the feature extractor, the trained encoder can be
applied to new documents not seen during the learning process,
provided they share an underlying distribution (e.g., images of the
natural world). The trained encoder must translate a new item or
a query into its corresponding DNA sequence in silico, but the
rest of the computation is carried out molecularly, which
accounts for most of the computation for a search query. This
allows new items to be freely added or used as queries without
retraining, and all of our experiments were performed with
documents that were not seen during training.

Results

Sequence encoder maps similar images to similar DNA
sequences. As in our prior work, we focus on encoding feature
vectors derived from images, because large datasets and feature
extractors are readily available, and similarity between images is
easy to visualize. However, our approach can be applied to any
type of media, as long as an appropriate feature extractor is
available. We use Openlmages?®?’, a collection of roughly 9
million images, and the FC2 intermediate layer of VGG1622, a
convolutional neural network designed for image classification, to
extract feature vectors. Unlike our prior work, we do not reduce
the dimensionality of the VGG16-FC2 vectors prior to encoding.
As shown in Fig. 2A, the encoder is a fully connected neural
network with one hidden layer that directly translates the feature
vectors into softmax-encoded DNA sequences that are 80
nucleotides in length, where each position is represented
numerically by a four-channel vector (one channel for each pos-
sible base) whose components sum to one. This is a continuous

approximation of a one-hot encoding, where one of the four
channels would have the value one, and the rest would have the
value zero. A continuous approximation is necessary because
neural networks must have differentiable operations in order to be
efficiently trainable via gradient descent. However, because the
softmax encoding is continuous, the encoder may output an
indeterminate base for a particular position (for instance, 75% A
and 25% G). We do not treat this as a probabilistically random
base; to output a sequence from a softmax encoding, we treat it as
if it were one-hot and simply take the bases with the maximum
values. To encourage the softmax-encoded sequences to have a
high maximum value, indeterminate outputs are penalized during
training. The goal of the encoder is to map feature vectors to DNA
sequences such that a pair of neighboring feature vectors will
produce a pair of sequences that are likely to hybridize when one
of the sequences is reverse complemented.

A differentiable hybridization predictor enables efficient
optimization of the sequence encoder. In order to optimize the
encoder for this goal, we require a way to predict the outcome of a
hybridization reaction between one image’s encoded sequence
and the reverse complement of another image’s encoded
sequence. Predicting the outcome of a hybridization reaction with
high accuracy is possible with tools such as NUPACK?8. How-
ever, efficient optimization of neural networks requires that all
operations are continuous and differentiable, and NUPACK’s
algorithm is neither. In prior work, we used a continuous
approximation of the Hamming distance between the two
sequences to roughly predict hybridization, but we determined
that this would be unlikely to scale to longer sequences. There-
fore, a key component of our technique is a differentiable model
of DNA hybridization that is trained alongside the encoder
(Fig. 2B).
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A. DNA sequence encoder architecture

B. Hybridization predictor architecture
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Fig. 2 Overview of our neural network architectures and training process. A, B The neural network architectures for the image-to-sequence encoder, and
the hybridization predictor. Boxes represent layers, and trapezoids represent operations to go from one layer to the next. Only the colored operations have
parameters that change during training. € The training loop for the neural networks. Lines indicate data flow; dashed lines indicate parameter gradients
calculated using backpropagation. Green indicates operations only performed during encoder training, while pink indicates operations used only during
yield predictor training. All other operations are used in both training phases. D Simulated performance of an untrained model, evaluated on n=1.6 million
random pairs of independent images. Each violin depicts the distribution of simulated hybridizations for pairs whose feature vectors' Euclidean distance lie
within a certain range. E Simulated performance of a trained model, evaluated on the same set of random pairs (i.e., n=1.6 million random pairs of

independent images).

Figure 2C outlines the training procedure, which alternates
between encoder and hybridization predictor training phases. In
the encoder training phase, a pair of image feature vectors are
compared to determine if they are close enough to be deemed
“similar”. Supplementary Figure S1 illustrates the relationship
between subjective image similarity and feature vector Euclidean
distance. Pairs of images with Euclidean distance of 75 or less
tend to be consistently similar, so we label these pairs as “similar”
and all other pairs as “not similar”. This distance threshold is a
property of the feature space, not of any particular image, so it
only needs to be chosen once per type of document being
encoded. After determining whether or not they are similar, the
pair of image feature vectors are encoded independently to
produce a pair of softmax-encoded DNA sequences. These
sequences are passed to the hybridization predictor, which
computes local matches in a small sliding window that allows
for misalignments (Supplementary Fig. S3B), then performs
pooling and convolution operations to produce a predicted yield.

If the predicted yield is low and the documents are similar, or the
predicted yield is high and the documents are not similar, the
encoder’s parameters are modified (via gradient descent) to
correct the error.

During predictor training, the softmax-encoded sequences
output by the encoder are discretized into one-hot sequences to
ensure that training data are deterministic. The one-hot
sequences are passed to the predictor, but they are also output
as strings and their reaction is simulated with NUPACK. If the
hybridization predictor’s output differs from NUPACK’s output,
the predictor’s parameters are modified (via gradient descent) to
correct the error. The encoder’s parameters are unchanged during
predictor training.

We alternate encoder and predictor training phases until their
parameters converge. Because the predictor is much simpler than
NUPACK, it will never reach NUPACK’s level of accuracy;
however, the model of hybridization it learns is specialized to the
encoder’s outputs, and it is good enough that the encoder can
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learn how to produce pairs of DNA sequences that are likely to
hybridize when encoded from neighboring feature vectors
(Fig. 2D, E).

Sequence design enables high-throughput experiments. During
training, we withheld a fixed subset of 1.6 million images from
Openlmages V4 to be used as our “database” for laboratory
experiments. After training our encoder, we transformed each of
these images into a DNA sequence using the trained encoder. In
addition to the encoded features, each image’s sequence contains
a unique, decodable barcode that refers to the ID of the original
image, as well as conserved regions to facilitate amplification and
processing via PCR (polymerase-chain reaction). Each image’s
sequence is short enough to fit on a single synthesizable DNA
oligomer (see Supplementary Fig. S4).

Our query images did not come from the Openlmages dataset,
and do not exist in the database. To conduct similarity search

A. Distribution of similarity across read depths

B. Retrieval as a function of read depth
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with an image, we ordered a biotinylated probe oligomer that
contains the reverse complement of the query’s encoded feature
sequence. We annealed the probe with a sample of the database,
and then separated the annealed target/query pairs from the
database using streptavidin-conjugated magnetic beads. We then
use high-throughput sequencing to reveal which database
sequences persist in the separated mixture, and measure how
frequently each of them occur.

After filtering by a query, the most frequently sequenced oligos
correspond to images that are visually similar to the query.
Figure 3 shows the experimental results for three different query
images. If we consider images with sequencing read counts above
a certain threshold to be “retrieved”, we can characterize the set of
retrieved images for a variety of thresholds. Figure 3A shows that
higher read counts are associated with sets of images that are
closer to the query in Euclidean distance. We can quantitatively

C. Sets of retrieved images for select read depth thresholds
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Fig. 3 Experimental results for three different query images. Janelle, the cat (top), a building with fireworks (center), and Lego pieces assembled in the
shape of sushi (bottom). A Distribution of Euclidean distances to the query image, among sets of images with sequencing read depth above a certain
threshold. n =1.6 million independent images. B The proportion of the entire dataset that must be retrieved (y-axis) to retrieve a certain proportion of the
100 most similar images (x-axis). Each point represents a threshold for which images with read depth above that threshold are considered “retrieved”. The
dashed line indicates chance performance, while the dashed-and-dotted line indicates perfect performance. Colored triangles indicate the thresholds
depicted in the other subfigures. C The top five closest images to the query from result sets where images above a certain read depth threshold are

considered “retrieved”.
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characterize the quality of a retrieved set by its recall of the 100-
nearest neighbors; that is, the number of images in the set that are
among the 100 most similar images to the query in the database.
Figure 3B shows that, as the read threshold increases, the number
of total images in the retrieved set drops very low before you
begin to sacrifice nearest-neighbor recall. We can also visually
inspect the retrieved set by sorting its contents and displaying the
most similar images. Figure 3C shows that, even with very
aggressive filtering, the retrieved set still contains images that are
relevant to the query. If the read counts for each image are
proportional to their concentrations in the filtered mixture, this
means that the filtered mixture could be diluted about 1000x,
conserving sequencing resources while still retrieving relevant
images.

The performance of a similarity search algorithm can be
summarized by the curve in Fig. 3B, which measures the
proportion of the database that must be retrieved and sorted to
achieve a particular 100-nearest-neighbor recall. The dashed line
above the curve illustrates a “naive” algorithm that randomly
samples the database. To retrieve half of the hundred nearest
neighbors, it must retrieve half of the database. The dashed-and-
dotted line below the curve illustrates a perfect “oracle” algorithm.
To retrieve half of the hundred nearest neighbors, it would
retrieve exactly those 50 images from the 1.6 million in the
database.

Performance of molecular filtering is competitive with state-of-
the-art electronic algorithms. Figure 4 places the curve from
Fig. 3B in context alongside several state-of-the-art in silico
algorithms that were benchmarked using the same query and
same database for each of the queries we evaluated experimen-
tally. Implementations of HNSW (hierarchical navigable small
world) graphs?® are among the top performers on approximate
nearest-neighbor benchmarks3. HNSW requires building and
storing a very large index, which may be difficult to scale to large
databases. We also tested a quantized version of HNSW with
lower memory utilization, developed by Facebook3! (“faiss”,
shown in red), annoy3? (shown in green), a popular algorithm
developed by Spotify, and RPForest3® (shown in purple), an
algorithm designed for the lowest possible memory utilization.
These curves can be interpreted as summarizing the resources
(sequencing reads, disk operations, etc.) that must be spent to
achieve an acceptable result. On those grounds, our experimental
performance is comparable to the state-of-the-art. It is worth
noting that executing our molecular technique is still far slower
than reading from a disk for databases of this size. However,
because the molecular technique is inherently parallel, it may
scale to larger databases without requiring significant additional
processing time; the same is not true for in silico algorithms that
are bottlenecked by the available processing capacity.

Simulations indicate that further scaling is possible. To inves-
tigate the effect that increasing the database size might have on
search performance, we ran NUPACK simulations on a database
of 5.5 million additional images from Openlmages. Figure 5
shows that the highest simulated yields (which should correspond
to the most sequencing reads in laboratory experiments) are
reserved for images that are visually similar to the query, indi-
cating that aggressive filtering is possible even in larger databases.

Discussion

Here, we introduced an approach for performing massively par-
allel molecular image search. In our technique, data are encoded
and stored in such a way that the storage substrate, synthetic
DNA, also behaves as a computational element by performing
DNA hybridization. Computer architects refer to this as in-
memory computing or near-data processing, because it avoids the
bottleneck of shuttling data between memory and the CPU. It is
not a general-purpose computing paradigm, but it is still very
powerful because it is capable of efficient parallel computation
over high-dimensional data. This basic mechanism can be gen-
eralized to broader tasks such as pattern classification and time
series analysis34,

A limitation to our approach is that the search paradigm (e.g.,
visual similarity search) is fixed when the database is created, so a
user is limited in the way they can search but they do not need to
know what to search for. For example, we did not know that there
would be images of tuxedo cats in the database before we con-
ducted our search; the query image came from outside of the
database. We did, however, know that we were using a query
image to search for similar images. Another potential limitation is
the long latency (minutes to hours) to complete a single query.
However, it is possible to compensate for this and achieve high
throughput through batch processing. Furthermore, given a suf-
ficiently large electronic database (e.g., one that does not fit in
memory), a single query could require comparably long latency
and significant energy consumption.

DNA is an attractive medium for near-data processing because
it can perform this kind of computation without a significant
expenditure of energy. Training the data-to-DNA encoder is an
upfront cost that is only paid once per data type (e.g., natural
images). Encoding data as DNA sequences and then synthesizing
it as DNA oligonucleotides requires energy, but this energy cost is
paid only once per item added to the database. For a single search
operation, the query must be encoded and synthesized as well, but
the majority of the computation happens when copies of the
query molecule hybridize with the database, which releases
energy. This is not to say that the computation is “free”: accel-
erating the hybridization reaction with annealing requires heat,
and reading out the results with a DNA sequencer requires energy
that is proportional to the number of desired results. However,
low-power DNA sequencing techniques such as nanopore

b1 Query Algorithm
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Fig. 4 Comparison of our technique (*primo"”, shown in blue) with state-of-the-art algorithms for in silico similarity search. Dashed gray and dashed-
and-dotted gray lines represent chance performance and perfect performance, respectively. Not all of the algorithms could produce results towards the
lower-left (low recall and low proportion retrieved). We assume these algorithms could be stopped early to produce fewer results with a linear decrease in

recall; dashed continuations represent these linear interpolations.
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Fig. 5 Results of a NUPACK simulation of using a query image of a cat with a larger database consisting of 5.5 million images. A Distributions of
simulated yields for each target image, categorized by their feature vectors' Euclidean distances to the query feature vector. The widths of each violin are
normalized to be equal. B The top 20 images in the database, sorted by the NUPACK-simulated yield of the reaction between their encoded DNA
representation and the reverse complement of the query’s DNA representation.

sequencing can make this cost negligible. One could imagine a
low-power system that carries test tubes of DNA already primed
for computation, requiring only mixing or gentle heating of the
solution to trigger precipitation of the results.

An additional modification to our system could be changing
the size of the feature space. Eighty nucleotides were used in this
work due to synthesis length restrictions in place at the time. One
could use longer feature regions, but note that hybridization
specificity begins to break down at longer sequence lengths
because of nonspecific interactions and secondary structure for-
mation. Conversely, feature lengths could be shorter but this
would give the encoder fewer degrees of freedom to optimize.
There are theoretical frameworks for reasoning about the
embeddings of discrete sequence spaces into continuous vector
spaces, but not the other way around, so any optimizations of
sequence length must be discovered experimentally.

This paper detailed the demonstration of similarity search of
digital information in DNA and compared its potential efficiency
with electronic systems. The results suggest that, as DNA data sto-
rage becomes more practical and scales to larger datasets, similarity
search in DNA form is an attractive possibility compared to elec-
tronic systems. Combining DNA data storage with similarity search
support may offer a path to viable hybrid molecular-electronic
computer systems. To integrate DNA data storage and search with
existing computing infrastructure, automation is essential. The
mechanisms required for automating the protocol, such as magnetic
bead extraction, thermocycling, retrieval from stored pools of DNA,
input/output with DNA sequencers, and synthesizers, are viable in
digital microfluidics systems, e.g, PurpleDrop3>3%, which offer a
path to scalable and low-cost automation.

Methods

Feature extraction. To extract image features, we processed each image with
VGG16, a convolutional neural network designed for image classification. The
weights were loaded from the publicly available trained model and left unchanged
during our processing. We used the activations of FC2 (the second fully connected
layer) as 4096-dimensional feature vectors.

Supplementary Figure S1 illustrates the relationship between subjective image
similarity and feature vector Euclidean distance. Pairs of images with Euclidean
distance of 75 or less tend to be consistently similar, so during training we label
these pairs as “similar” and all other pairs as “not similar”.

Sequence encoding. The sequence encoder is a fully connected neural network. Its
topology is depicted in Supplementary Fig. S2. The 4096-dimensional FC2 vectors
are fed into a 2048-dimensional hidden layer with a rectified linear activation,

followed by an output layer with a “one-hot” sequence representation that is 80
nucleotides in length. In this representation, each sequence position has four
channels, one for each base. A softmax activation function is applied that forces
each position’s channels to sum to 1. A DNA sequence can be read off by picking
the channel with the maximum activity at each position.

The one-hot representation can produce indeterminate bases (for example, if all
four channels at a position have a value of 0.25). Because of this, a regularization is
applied during encoder training to minimize the entropy at each position. This
encourages each position to have a well-defined maximum, which improves the
accuracy of the yield predictor.

The yield predictor takes a pair of one-hot sequence representations and
produces an estimate of the yield of the hybridization reaction between the first
sequence and the reverse complement of the second sequence. It is structured as a
convolutional neural network (Supplementary Fig. S3A). The network makes use of
a local match layer (Supplementary Fig. S3B) that produces vectors of possible
matches between each window of 3-mers. This encourages the predictor to make
use of any unaligned matches between the two sequences.

Training. During each round of encoder training, we draw a batch of pairs of
feature vectors from the training set where half of the pairs are labeled “similar”
(the Euclidean distance between the feature vectors in the pair is 75 or less). The
batch of pairs is processed by the encoder, which outputs pairs of one-hot
sequences. These are then processed by the yield predictor, which outputs the
estimated yield of the hybridization reaction between the first sequence and the
reverse complement of the second sequence. The estimated yield of each pair in the
batch is used along with the similarity labels (0 for “not similar” and 1 for
“similar”) to compute the mean cross-entropy for the batch. We use the cross
entropy as loss function because it penalizes similar images with low estimated
yield, dissimilar images with high estimated yield, and any estimated yields that are
neither high nor low. The parameters of the encoder are modified (via gradient
descent) to minimize the mean cross-entropy. The yield predictor’s parameters are
not changed during encoder training.

In order to use gradient descent, the one-hot sequence representations cannot
be fully discrete. This can create positions with indeterminate bases, which may
interfere with the yield predictor. To discretize the one-hot sequences as much as
possible, we add an additional regularization term to the encoder to minimize the
per-position entropy of the one-hot sequences. This regularization must be gently
applied; if it is too strong, the gradients will explode and training will fail.

During each round of yield predictor training, we draw a random batch of pairs
of feature vectors (unlike the encoder batches, these are not conditioned to have a
particular distribution of similarity). The batch is processed as above to output the
estimated reaction yield.

To simulate the reaction yield with NUPACK, the pairs of sequences are
discretized. The first sequence in the pair is treated as the target, and a reverse
primer is appended as in Fig. S4A. We do not append the forward primer, barcode,
or internal primer as these regions will be double stranded during retrieval. The
second sequence in the pair is treated as the query, and six bases of the reverse
primer are appended, and the sequence is reverse complemented, as in Fig. S4D.
The target and query sequences are processed with NUPACK at 21 °C using default
DNA parameters and an equal molar concentration of 1 nM for both query and
target. The simulated reaction yield is computed by dividing the final concentration
of the query-target duplex by the initial concentration of 1 nM.
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We compute the cross entropy between NUPACK’s simulated yield and the
predictor’s estimated yield for each pair in the batch. The parameters of the yield
predictor are modified (via gradient descent) to minimize the mean cross-entropy
for the batch. The encoder’s parameters are not changed during predictor training.

Barcodes. Document IDs are integers in the range 0-16,777,215. Because our
database only contains 1.6 million entries, we space out their IDs by mapping them
to an ID in the full range using a pseudo-random permutation. To construct a
DNA barcode from an ID, the randomized ID is first split into to four six-bit
symbols. These are encoded with a Reed-Solomon error-correcting code to produce
a codeword with six symbols. Each symbol is converted into a five-nucleotide
homopolymer-free DNA subsequence using a codebook with 64 entries. The final
30-nucleotide barcode is the concatenation of these subsequences.

To decode a 30-nucleotide barcode, it is split into six five-nucleotide
components, and each step of the code is reversed. Limited substitutions can be
corrected, but if the sequence cannot be decoded, or it decodes to an ID that is
unused, it is rejected as an invalid barcode.

Oligo layout. Supplementary Figure S4 depicts the layouts of our synthesized DNA
oligomers, as well as the layouts of double-stranded complexes formed during
processing. Each document in the database is associated with a single DNA oli-
gomer (Supplementary Fig. S4A) that contains the barcode and feature regions that
are unique to that document. In addition to these unique regions, each database
oligo contains three conserved regions (denoted FP, RP, and IP) that are the same
across all documents. PCR with FP and RP* is used to create additional copies of
all database strands (Supplementary Fig. S4B), to prepare for hybridization and
sequencing. Linear PCR with IP* is used to create partially double-stranded copies
of each database strand that leave the feature region exposed (Supplementary
Fig. S4C). Primer sequences are in Supplementary Table 1.

Supplementary Fig. S4D depicts the layout of a query oligo. During retrieval, the
reverse complement of the query document’s features are synthesized along with a
5’ biotin, a short spacer, and the reverse complement of first six bases of RP (which
serve as a hybridization toehold). The biotinylated query can react with the exposed
feature region of any database oligo (Supplementary Fig. S4E). If the resulting
complex is sufficiently stable, it can be filtered from the rest of the database using
streptavidin-conjugated magnetic beads.

Benchmarking of in silico algorithms. The in silico similarity search algorithms
we compare against in Fig. 4 all perform an Approximate Nearest-Neighbor (ANN)
search. Given a dataset, they create an index structure that is traversed using a given
query’s feature vector, to retrieve the documents whose feature vectors are nearest to
that query. An approximate search does not scan the entire database, but this may
cause it to miss some of the nearest neighbors. We define the candidate set as the
subset of the database that is scanned (i.e., retrieved from memory and compared to
the query). The candidate set is analogous to the set of “retrieved” documents we
define by varying the read depth threshold for our lab experiments.

For each algorithm in Fig. 4, and for each of the three queries, we collected the
candidate sets for a variety of algorithm-specific parameters that give users control
over the specificity of the ANN search. The size of each candidate set (divided by
the size of the full database) gives us the proportion retrieved (the y-axis of Fig. 4),
whereas the number of true nearest neighbors in each candidate set (out of 100)
gives us the 100-nearest-neighbor recall (the x-axis of Fig. 4).

Some algorithms could not retrieve candidate sets below a certain size for any of the
attempted parameters. For these, we assume that uniform subsampling would equally
limit both the size of the candidate set and the number of nearest neighbors retrieved.
This assumption gives us the dashed colored lines for each algorithm in Fig. 4.

Reagents. The 1.6 million oligos that make up the database were ordered from
Twist Bioscience. Biotinylated probe oligos were ordered from IDT. Streptavidin-
coated magnetic beads (Dynabeads MyOne Streptavidin T1) was purchased from
Thermo Fisher Scientific. USER enzyme was ordered from New England Lab.

Laboratory protocol. The general workflow of a similarity search experiment is
divided into eight steps (Fig. S5): (1) enrichment of a synthesized oligo pool using
PCR, (2) linear amplification of the pool using a forward primer, (3) linear
amplification using an internal primer, (4) hybridization experiment using a query
strand, (5) magnetic bead extraction, (6) releasing of bead captured strands using
digestion of USER enzyme, (7) PCR enrichment of the released oligos, and (8)
ligation to Illumina adapters for sequencing.

A DNA pool synthesized from Twist Bioscience was PCR amplified by mixing
1 uL of 1 ng/uL of the pool, 1 pL of 10 uM forward primer, 1 uL of 10 uM reverse
primer, 10 uL of 2X KAPA HIFI enzyme mix, and 7 puL of molecular grade water.
PCR was performed in a thermocycler with the following protocol (1) 95 °C for 3
min, (2) 98 °C for 20s, (3) 56 °C for 20, (4) 72°C for 20, (5) go to step 2 for
about 15 cycles, and (6) 72 °C for 30s. The amplified product was purified using
QIAGEN PCR Purification Kit (Cat No: 28104). The sample concentration was
measured using Qubit 3.0 fluorometer.

This enriched Twist pool was mixed with 100 times more of the Forward Primer
(e.g., [FP]/[pool] = 100) at 500 nM of the pool. 20 pL of this mixture was mixed with

20 pL of 2X KAPA HIFI enzyme mix, followed by linear amplification with the

following protocol: (1) 95 °C for 3 min, (2) 98 °C for 20, (3) 62 °C for 20, (4) 72°C
for 20's, (5) go to step 2 for 2 time, and (6) 72 °C for 30 s. The mixture contains 250
nM of double-stranded DNA (dsDNA) and 750 nM of single-stranded DNA (ssDNA).

The sample was linearly amplified again using an Internal Primer (IP) by
mixing 40 pL of the 250 nM dsDNA mixture, 12 uL of 10 uM Internal Primer (IP),
and 12 pL of 2X KAPA HIFI enzyme mix. Linear amplification was performed with
the following protocol: (1) 95 °C for 3 min, (2) 98 °C for 20's, (3) 56 °C for 20s, (4)
72°C for 20 s, and (5) 72 °C for 30 s. The mixture contains 156 nM of fully dsDNA
pool and 468 nM of partially dsSDNA with feature region exposed (feature region
will hybridize to a query strand).

6.4 uL of the mixture (containing 156 nM of the fully dsDNA pool and 468 nM
of partially dsDNA) was mixed with 1 uL of a query strand at 10 nM, 10 uL of 2M
sodium chloride buffer, and 2.6 uL molecular grade water. This resulted in a 1:100
ratio of query to the fully dsDNA pool and a final concentration of the fully dsDNA
pool at 50 nM. This mixture was annealed in a thermocycler by heating up to 95 °C
for 3 min and then slowly cooling down to 21 °C at the rate of 1 °C per 20 min.

Thirty micrograms of Streptavidin-coated magnetic beads (Dynabeads MyOne
Streptavidin T1, Thermo Fisher Scientific) was used for 1 pmole of a query strand.
The beads were washed three times in binding and washing buffer (5 mM Tris-HCl
(pH 7.5), 0.5 mM EDTA, 1 M NaCl), then added to the hybridization sample at
room temperature. After incubating at room temperature for 15 min, the samples
sat on a magnet rack to recover the beads and binding DNA. The supernatants
were removed, and the beads were washed three times using 100 uL of binding and
washing buffer. The beads binding DNA was resuspended in 50 uL 1x elution
buffer containing 10 mM tris-Cl, at pH 8.5. The resuspended samples were digested
using USER enzyme by mixing 50 pL of the sample with 2 uL of USER enzyme, and
5.8 uL of NEB 10x cut smart buffer at 37 °C for 20 min. The sample sat on a
magnetic rack for 1 min, and the supernatants was recovered.

Two microliters of the recovered solution from the previous step was mixed
with 1 uL of 10 uM forward primer, 1 pL of 10 uM reverse primer (RP), 10 uL of 2X
KAPA HIFI enzyme mix, and 6 pL of molecular grade water for PCR. PCR was
performed in a thermocycler using the following protocol (1) 95 °C for 3 min, (2)
98 °C for 205, (3) 62°C for 20, (4) 72°C for 20, (5) go to step 2 for a varying
number of times depending on the recovery yield of beads extraction, and (6) 72 °C
for 30 s. 2 uL of the amplified sample was mixed with 1 pL of 10 pM forward primer
with an overhang of a randomized region (25N), 1 puL of 10 uM reverse primer
(RP), 10 puL of 2X KAPA HIFI enzyme mix, and 6 pL of molecular grade, followed
by the following thermocycling protocol: (1) 95 °C for 3 min, (2) 98 °C for 20's, (3)
62 °C for 205, (4) 72°C for 205, (5) go to step 2 for a varying number of times
depending on the recovery yield. This PCR step added a randomized region to the
sample for the diversity need of Illumina NextSeq. The size of the PCR product was
verified using QIAGEN bioanalyzer. The amplified product was ligated to Illumina
sequencing adapters with TruSeq Nano reagents and protocol. The ligated samples
were sequenced using Illumina NextSeq.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Target images are publicly available via Google: https://storage.googleapis.com/
openimages/web/download_v4.html. VGG16 feature vectors can be extracted from
images using a publicly available model (via Keras): https://keras.io/api/applications/vgg/
#vggl6-function. Encoded DNA sequences, query images, sequencing data, and analysis
generated in this study have been deposited in the Github database:https://github.com/
uwmisl/primo-similarity-search (https://doi.org/10.5281/zenodo0.5090717)%”. With the
exception of the query images, all images were collected from Open Images V4, a dataset
of over 9 million URLs for images with Creative Commons licenses. Of these, ~1.7
million are hosted by the CVDF and available for download; the rest are raw Flickr URLs
and may or may not be available. For the image database used in our experiments, we
took 1.6 million images from the hosted set. For training, we took images from the full set
of 9 million that were not used for training, testing, or experiments.

Code availability
The code is available here: https://github.com/uwmisl/primo-similarity-search (https://
doi.org/10.5281/zen0d0.5090717)37.
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