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Stress and Childhood Asthma Risk: Overlapping Evidence
from Animal Studies and Epidemiologic Research
Rosalind J. Wright, MD, MPH

Rapidly expanding evidence increasingly strengthens the evidence linking psychological factors to asthma and allergy expression.

Parallel studies in animals and humans demonstrating the influence of prenatal maternal stress and early caregiving experiences on

the disrupted regulation of defensive biological systems [eg, sympathetic and adrenomedullary (SAM) system and the hypothalamic-

pituitary-adrenocortical (HPA) axis] provide strong proof of concept for this line of research. The consequent altered neuroimmune

responses may influence the expression of immune-mediated disorders such as asthma as well as enhance an individual’s

susceptibility to other environmental factors that may also contribute to asthma risk.
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Introduction

Efforts to understand the role of psychological stress in

asthma expression and atopy are currently undergoing

rapid expansion in the context of our increased under-

standing of both the neurobiology of stress and asthma

pathophysiology,1 as well as trying to determine why

asthma remains a leading cause of health disparities largely

unexplained by known physical environmental factors.2,3

Notably, consensus statements by both the National

Academy of Science and the National Institute of

Environmental Health Sciences4 support the position that

examining disparities in environmental health requires

attention to both environmental hazards and social

conditions.5 Although a number of theoretical models

explaining health disparities have been proposed, a

psychosocial stress model may offer the greatest pro-

mise.3,6,7

With an estimated half of all cases diagnosed by age 3

years and two-thirds diagnosed by age 5 years, asthma is a

developmental disease.8 This developmental framework

presupposes that adverse early-life experiences, including

prenatal exposures, may negatively influence neuroendo-

crine and immune developmental processes relevant to

asthma risk. Although studies of mechanisms by which

perinatal stress may increase the risk of childhood asthma

are only beginning to emerge,9,10 proof of concept is

provided by drawing from animal studies on the effects of

early-life adversity on stress neurobiology and develop-

ment and more recent human data that parallel the animal

research. This overview provides a framework grounded in

this theoretical rationale and may guide future studies that

examine the mechanisms underlying the role of stress in

asthma development in epidemiologic research.

Neurobiology of Stress

Psychological stressors have been associated with the

activation of the sympathetic and adrenomedullary

(SAM) system and the hypothalamic-pituitary-adrenocor-

tical (HPA) axis (see Wright1 for an extensive review).

Negative emotional responses disturb the regulation of the

HPA axis and the SAM systems; that is, in the face of

stress, physiologic systems may operate at higher or lower

levels than during normal homeostasis. The disturbed

balance of these systems is relevant to disease. Immune,

metabolic, and neural defensive biologic responses impor-

tant for the short-term response to stress may produce

long-term damage if not checked and eventually termi-

nated.11 The potential detrimental cost of such accom-

modation to stress has been conceptualized as allostatic

load (ie, wear and tear from chronic under- or overactivity

of the allostatic system). Hormones and neuropeptides
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released into the circulation when individuals experience

stress are thought to be involved in regulating both

immunomediated and neurogenic inflammatory processes.

Studies in animals and humans have shown that prenatal

maternal stress and disturbances in early caregiving may

have lasting effects on the stress pathways discussed

above.12–14

Critical Developmental Periods

Prenatal Maternal Stress and Perinatal Physiologic
Programming

Studies suggest that characteristics of the in utero

environment, independent of genetic susceptibility, influ-

ence fetal development, including immune development.

The concept that nongenetic factors act early in life to

permanently organize or imprint physiologic systems is

known as perinatal programming.15 The HPA axis

seems particularly susceptible to early-life programming.

Both nonhuman primate and rodent models of

prenatal stress and early adverse caregiving13,14,16 have

helped us understand the consequences of similar

experiences in humans.17,18 Maternal and fetal stress

stimulates placental secretion of corticotropin-releasing

hormone, which, in turn, is elevated in the neonatal

circulation.19–22 This may stimulate the fetal HPA axis to

secrete glucocorticoids, amplifying fetal glucocorticoid

excess. Although these in utero responses may be adaptive

in the short term, being geared toward coping with

anticipated environmental challenges, ultimately they may

exact a toll in contributing to increased risk of disease in

later life.15

A well-known key characteristic of HPA axis function-

ing is the marked interindividual variability of responses to

challenge,23 and the understanding of the relevance of this

neuroendocrine system in human pathophysiology

(including that relevant to asthma) requires the identifica-

tion of the determinants of this variability. Genetic factors,

other in utero and postnatal environmental factors, and

the timing of exposures likely impact the differentiation of

this response. The notion that the influence of maternal

stress on such physiologic programming may vary based

on an individual’s genetic background is supported by

noted strain differences in hormonal and behavioural

responses to stress in rats and mice.15 Data suggest that

fetoplacental 11b-hydroxysteroid dehydrogenase, type 2

(11b-HSD2), may play an important role in modulating

the programming effects of prenatal endogenous gluco-

corticoid exposure.19,24 The type 2 isoform inactivates

cortisol to cortisone, plays a role in the ontogeny of the fetal

pituitary-adrenal axis, and protects the developing fetus

from the adverse effects of circulating maternal glucocorti-

coids.25 Interestingly, 11b-HSD2 has been colocalized in

human lung tissue and is expressed in human placenta.26,27

Interperson and interstrain (mouse) variability in the

expression and efficiency of 11b-HSD2 has been demon-

strated, suggesting genetic variability.28 Glucocorticoid

receptors are also highly expressed in virtually all fetal

tissues from midgestation or earlier.29 Variants of the

glucocorticoid receptor gene may contribute to interindi-

vidual variability in HPA axis activity and glucocorticoid

sensitivity in response to stress as well.30

The complexity of the measurement issues related to

prenatal physiologic stress responses is beyond the scope of

this overview. A number of recent reviews provide more

detail.31,32 Others highlight particular methodologic chal-

lenges and detail strategies for studying these processes

prenatally.33,34

Also central to consideration of the influence of

antenatal maternal stress on the postnatal development

of children are the putative effects of episodes of such

stress on the fetus. These are beginning to be explored

and documented.35 Prenatal cortisol dysregulation in

depressed pregnant women has been linked to prematurity

and low birth weight36 and postpartum depression.37

Gestational exposure to maternal stress has been shown to

alter the development of humoral immunocompetence in

offspring, as well as their hormonal and immunologic

responses to postnatal stress.38–41 Evidence in rhesus

monkeys suggests that stress experienced during pregnancy

impacts the infant monkeys’ response to antigens at

birth.42

In this light, there is also evidence that the asthma

phenotype could be programmed before birth. Both

genetic and environmental factors affecting maturation

of the immune system during pregnancy and early

childhood set the stage for the inflammatory processes

and altered reactivity to stimuli that are characteristic of

chronic asthma. Studies have shown a positive association

between maternal use of antibiotics during pregnancy and

the development of childhood asthma and a negative

association between maternal use of probiotics during

pregnancy and the development of childhood asthma.43

Others have considered the influence of maternal infec-

tions during gestation on asthma risk.44–48 Some speculate

that stress triggers hormones in early life, which influence

T helper (Th)2 cell predominance, perhaps through a

direct influence of stress hormones on cytokine produc-

tion,1,49 although this has not been studied directly to date.
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In particular, alterations in stress-induced maternal

cortisol levels may influence the fetal immune system

development and lead to an increased risk of atopic

disorders, as conceptualized in Figure 1.

In preliminary analyses in our laboratory, we examined

the relationship between diurnal salivary cortisol expres-

sion and total immunoglobulin E (IgE) among 89

pregnant mothers enrolled in the Asthma Coalition on

Community, Environment, and Social Stress (ACCESS)

project, a prospective cohort designed to study the effects

of early-life stress on urban childhood asthma risk.50

Salivary cortisol was collected five times per day over 3

consecutive days to assess basal awakening response,

morning rise, diurnal slope, and area under the curve.

Total IgE was dichotomized above or below the population

mean (48.95 IU/mL). Repeated measures mixed models

were run controlling for race, income, and weeks pregnant

at the time of cortisol sampling. Higher levels of maternal

total IgE were significantly associated with a flatter diurnal

cortisol slope (p 5 .05). Examination of the cortisol

curves showed that those with higher IgE demonstrated

less of a decline during the evening. Thus, blunted HPA

functioning in pregnant women was related to higher

maternal total IgE expression. Other evidence suggests

that elevated maternal IgE in utero may potentiate fetal

sensitization to allergens and enhance atopic risk in

infancy.51 Stress-induced altered activity of the maternal

HPA axis may have immunomodulatory effects that

influence expression of IgE during pregnancy, which, in

turn, may have implications for fetal sensitization and

childhood allergy and asthma risk. These findings warrant

further study.

Figure 1. Conceptual model linking
prenatal maternal stress with child-
hood immunity. CNS 5 central ner-
vous system; CRH 5 corticotropin-
releasing hormone; NS 5 nervous
system.
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Early Childhood Caregiving Experience

The early childhood environment and caregiving experience

can also impact these processes.52–54 Studies in both rodents

and primates have shown that environmental manipula-

tions that increase maternal stress result in elevated cortisol

levels and dysfunctional behaviours in offspring that are

evident later in life.55–57 In parallel to the animal studies,

evidence linking the social environment and social stress to

regulation of the HPA axis during early development in

humans is also growing.17 Numerous retrospective studies

in human HPA functioning suggest that increased reactivity

of the HPA system is associated with early-life trauma58–61

and severe deprivation.62 Studies of infants and toddlers

have linked maternal depression to dysregulation of the

child’s HPA axis in both cross-sectional63 and long-

itudinal64 studies. Other studies of preschoolers and older

children suggest that children’s cortisol levels are positively

correlated with numerous social stresses65–67 and to broader

family characteristics known to be associated with higher

stress levels (eg, low socio-economic status [SES]).65 Essex

and colleagues examined the relationships of maternal stress

beginning in infancy and concurrent stress on preschoolers’

(aged 4.5 years) HPA activity and later mental health

outcomes.68 A cross-sectional analysis revealed that pre-

schoolers exposed to high levels of concurrent maternal

stress had elevated cortisol levels. Longitudinal analyses

showed that concurrently stressed children with elevated

cortisol also had a history of high maternal stress exposure

in infancy. Importantly, children exposed only to high levels

of concurrent or early stress had cortisol levels that did not

significantly differ from those never exposed to stress. Also

of note, further analysis of the specific components of stress

indicated that maternal depression beginning in infancy was

the most potent predictor of children’s cortisol.

In this context, it is notable that our laboratory has also

linked early-life caregiver stress to repeated wheeze9 and

dysregulation of immune function10 in a birth cohort

predisposed to atopy. Specifically, caregiver stress assessed

during infancy predicted antigen-specific T-cell prolifera-

tive responses in children at approximately 2 years of age.10

There is growing evidence that these cytokine patterns are

already present in the first year of life69 and may have their

roots in utero.70

Need to Consider Environmental Interactions with
Stress

Another notion that we have explored in an ongoing

Boston cohort is whether there is increased asthma risk in

lower-income urban environments that can be explained,

in part, by a combination of increased contaminant

exposures and greater susceptibility to their effects. It has

long been noted that air pollution, for instance, may be

higher near major roadways, power plants, and industrial

sites, where property values are lower and lower-income

populations reside. Increased life stress among subgroups

living in lower-income neighborhoods has also been

proposed as a primary pathway through which socio-

ecomic position (SEP) impacts health.7 These observations

suggest that chronic social stressors, such as violence, may

be more prevalent or severe in the same communities

where pollution is elevated, resulting in both greater

exposures and greater susceptibility.71

Traffic-related air pollution is linked to asthma

exacerbation and respiratory outcomes.72,73 In the

United States and Europe, children living or attending

school near truck routes and highways show increased

asthma symptoms,72 hospitalizations,74 allergic rhinitis,75

and reduced lung function.73 Traffic-related pollutants

may also influence etiology.76

In parallel, chronic stress has been linked to asthma

symptoms in cross-sectional population studies77 and in

prospective studies linking caretaker stress to infant

wheeze9 and IgE and immune mediator production.10

Some evidence indicates that violent events may trigger

asthma episodes.78 Chronic stress may induce HPA axis

and cortisol dysregulation,79,80 glucocorticoid resistance,81

SAM activation, catecholamine production,82 immune

mediator function, inflammation,82 and cytokine produc-

tion.10,83 Finally, stress and pollution impact common

physiologic systems, facilitating synergistic effects; early-

childhood environmental exposures and catecholamines

affect Th1-Th2 balance.1 For example, studies show that

psychological stress,84 diesel exhaust, cigarette smoke, and

ozone affect oxidative stress, asthma, and chronic obstruc-

tive pulmonary disease.85

Traffic-health relationships have been examined using

many traffic indicators,75,86 with no consensus on which

best capture variability in traffic-related pollution or health

outcomes in different settings. Previous studies have

successfully extrapolated traffic-related exposures from

sampling homes to larger cohorts using predictive land-use

regression (LUR) models.73,86 LUR shows strong predic-

tive power for intraurban nitric oxide (NO2) variability,87

using traffic and land use characteristics (ie, population

density, major sources).

My research group investigated the potential for

exposure to violence (ETV), as a chronic stressor, to

increase pollution susceptibility.88 We developed GIS-

32 Allergy, Asthma, and Clinical Immunology, Volume 4, Number 1, 2008



based models to retrospectively estimate residential

exposures to traffic-related air pollution for 413 children

in a community-based pregnancy cohort recruited in East

Boston, Massachusetts, between 1987 and 1993, using

monthly NO2 measurements for 13 sites collected over 18

years. Merging pollution estimates with questionnaire data

on lifetime ETV (considered here as a chronic stressor)

and prospectively collected repeated measures data on

asthma onset in these urban children, we explored the

hypothesis that stress may enhance the susceptibility to air

pollution in childhood asthma etiology.

After correcting for potential confounders, including

gender, SES, race/ethnicity, tobacco smoke exposure, and

lower respiratory tract illnesses, we found an elevated risk

of asthma with a 1 SD (4.3 ppb) increase in NO2 exposure

solely among children with above-median violence expo-

sures (odds ratio [OR] 5 1.63; 95% confidence interval

[CI] 5 1.14–2.33; p 5 .03). Among children always living

in the same community, with lesser measurement error,

this association was magnified (OR 5 2.40; 95% CI 5

1.48–3.88; p 5 .0009).

Summary

Evidence from both animal and human studies supports

the notion that HPA functioning and other stress pathways

may be altered by in utero stress and early caregiving

experiences. Both nonhuman primate and rodent models

of early adverse caregiving13,14,16 have helped us under-

stand the consequences of similar experiences in

humans.17,18 Disturbed regulation of stress systems (eg,

HPA axis and the SAM system) related to chronic stress

suggests that immune function, which is modulated by

these systems, may also be disrupted in these individuals.

This, in turn, may have implications for asthma develop-

ment.89 Future studies that incorporate these strands of

overlapping scholarship and strategies for studying stress

reactivity during pregnancy, infancy, and early childhood

are needed to continue to elucidate the mechanisms

underlying the links between stress and asthma develop-

ment. Specifically, these studies need to address how fetal

exposure to stress may influence human immune and

neuroendocrine development, whether such effects are

independent of postnatal exposures, and how these

pathways may, in turn, influence asthma development.

The role of exposure timing and critical windows of

development will need to be considered in these study

designs. By so doing, we will be better able to translate this

research into more effective intervention strategies and

treatments.

Moreover, given the potential spatial covariance across

exposures, and because stress and physical environmental

factors (eg, pollution) may influence common physiologic

pathways (ie, oxidative stress) and health outcomes (ie,

respiratory disease),1 stronger methods are needed to

disentangle their effects and investigate synergies.3,7,90

Similar hypotheses could be developed in relation to stress

and tobacco exposure.
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