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Abstract The identification of active ingredients in crude

plant extracts offers great advantages. In this study, nuclear

magnetic resonance and chemometrics were used for the

screening of in vitro anti-TNFa activity in different berry

types. Solid phase extraction was applied and the resulting

water, methanol–water (1:1), and methanol fractions were

tested for the activity. The methanol–water fraction con-

tained most of the phenolics and showed significantly

higher activity than the other two fractions. In the second

phase of this study, grapes from ‘Trincadeira’, ‘Touriga

Nacional’, and ‘Aragonês’, at four developmental stages

were metabolically classified and tested for the TNFa
inhibition. The initial stages of grape development, green

and veraison, were found more active against TNFa pro-

duction as compared to the later ripe and harvest stages.

Among the cultivars, ‘Touriga Nacional’ was found to be

the most potent inhibitor. Different multivariate data

analyses algorithms based on projections to latent

structures were applied to correlate the NMR and TNFa
inhibition data. The variable importance in the projections

plot showed that phenolics like quercetin, myricetin, (?)-

catechin, (-)-epicatechin, caftarate, and coutarate, were

positively correlated with high activity. This work dem-

onstrates the great potential of NMR spectroscopy in

combination with chemometrics for the screening of large

set of crude extracts, to study the effects of different

variables on the activity, and identifying active compounds

in complex mixtures like plant extracts.

Keywords Grapes � Developmental stages � NMR

spectroscopy � Chemometrics � Anti-TNFa activity �
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1 Introduction

Inflammation is a complex process and various mediators,

like interleukins and tumor necrosis factor-a (TNFa), are

involved in the development of inflammatory diseases.

TNFa, an inflammatory mediator, is one of the most

important pro-inflammatory cytokines. It was discovered in

1975 as having an anti-tumor activity, but is now recog-

nized as a host defense factor in immunological and

inflammatory responses (Tracey et al. 1994). TNFa is

known to be secreted during early stages of acute and

chronic inflammatory diseases such as rheumatoid arthritis,

asthma, septic shock and other allergic diseases (Herath

et al. 2003; Cho et al. 2001). Low production of TNFa is

advantageous for the host but its overproduction during

infection plays a pivotal role in the development of dis-

eases like disseminated intravascular coagulation, death in

septic shock, cerebral malaria, along with wide range of

other inflammatory diseases including asthma, dermatitis,
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multiple sclerosis, inflammatory bowl disease, cystic

fibrosis, rheumatoid arthritis, and immunological disorders

(Björnsdottir and Cypcar 1999; Murphy et al. 1998;

Medana et al. 1997). Therefore it is evident that the sup-

pression of TNFa or anti-TNFa therapy could be beneficial

for the treatment of these acute and chronic diseases.

Plants may serve as an interesting source for discovering

new compounds that can be used in anti-TNFa therapy.

Chemical phenotyping of plants has become the focal point

in recent years, as the analysis of the low molecular weight

compounds reflect the physiological activities of an

organism or tissue under certain conditions. The observable

chemical profile or fingerprint is highly complex consisting

of a variety of compounds of very different nature. Con-

sidering the great chemical diversity, it is unlikely that a

single analytical method could provide information about

all the metabolites, and at the same time be unbiased, rapid,

reproducible, and stable over time, while requiring only

simple sample preparation.

An accurate snap shot of the metabolome is highly

important in metabolomics, which requires a reliable

metabolite extraction (Colquhoun 2007; Becknort et al.

2007). Many platforms are now available for the high

throughput analysis of metabolites, varying in their sensi-

tivity (Kopka et al. 2004). In case of a pure organic com-

pounds, two of the most widely used parameters for solvent

selection are total solubility and constituent partial solu-

bility, but in metabolomics extraction is a totally different

state of affairs. Based on sample chemistry and aim of the

research, many extraction protocols for metabolomics

studies have been published, offering different advantages

but also having some limitations (Lisec et al. 2006; De Vos

et al. 2007; Kruger et al. 2008; Kim et al. 2010). Solid

phase extraction (SPE) has been an effective sample han-

dling technique with advantages like high recovery, high

pre-concentration factors, low organic solvent consump-

tion, simplicity, and ease of operation (Zhao et al. 2007)

and has been successfully used in many studies (Fraccaroli

et al. 2008; Zou et al. 2007).

NMR has a unique place not only in structure elucida-

tion, and characterization of molecules but is now also

considered as a major tool in metabolomics studies.

Though criticized because of its low sensitivity, NMR is

known for advantages like non-destructive nature, easy

sample preparation, and a relatively short analysis time.

These and two other striking features of NMR, its non-

selectivity and the use of NMR data directly for quantifi-

cation, makes NMR an optimum choice for broad range

metabolite analysis and quantification (Son et al. 2009;

Dixon et al. 2006). NMR is now widely used in combi-

nation with different multivariate data analyses methods to

do metabolic profiling of various samples (Brescia et al.

2002; Charlton et al. 2002). Characterization of different

plant species (Kim et al. 2005), and cultivars (Ali et al.

2009), monitoring grape berry growth (Ali et al. 2011a),

and the effects of growing areas, vintage, soil, and

microclimate have been reported using the same combi-

nation (Pereira et al. 2005, 2006a). Many reports have been

published on correlating the NMR and bioactivity data

using various multivariate data analysis methods (Cho et al.

2009; Cardoso-Taketa et al. 2008).

Food items like fruits, spices, and herbs are well known

for their anti-inflammatory properties (Mueller et al. 2010;

Yuliana et al. 2011). Among the fruits, the use of grapes for

multiple purposes like juice, fresh and dried fruit, and most

importantly in wine production, make them one of the most

economically important and widely cultivated fruit crops

across the world. In addition to their economic importance,

an increasing number of medicinal advantages have been

attributed to grapes. Grapes phytochemistry is known to

have relatively high concentrations of phenolics which in

turn resulted in many health effecting properties, for

instance, cardioprotective, anti-oxidant, anti-inflammatory,

and anti-cancer activities (Ali et al. 2010). Studies using

human (Zern et al. 2005), and animal (Fuhrman et al. 2005)

models have shown that due to the abundance of poly-

phenols possessing anti-oxidative and anti-inflammatory

properties, dried grape powder has cardioprotective effects.

The present study first describes the screening of dif-

ferent types of berries for the in vitro anti-TNFa assay in

combination with SPE. As the second step, three Portu-

guese grape varieties at different development stages are

analyzed for the same activity. Two different vintages of

‘Trincadeira’ cultivar are also compared. Several primary

and secondary metabolites (especially phenolics) using 1D

and 2D NMR techniques are identified. The correlation of

activity and NMR data using different multivariate data

analyses methods in order to identify the active ingredients

in grapes and other berries is also presented.

2 Materials and methods

2.1 Sampling

Different types of berries, i.e. cranberry, blueberry, red-

berry, strawberry, raspberry, blackberry, and grapes (green,

red, and black), were purchased from local markets in

Netherlands and used for general screening. For each berry

type five biological replicates were used for anti-TNFa
assay. After the general screening, three elite Portuguese

grapes cultivars i.e. ‘Trincadeira’, ‘Touriga Nacional’, and

‘Aragonês’, were used in this study. Five biological repli-

cates of each cultivar of 80–100 berries from 8 to 10 plants

were collected in 2008 and 2007 (for ‘Trincadeira’ only)

corresponding to the developmental stages of EL 32
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(green), 35 (veraison), 36 (ripe), 38 (harvest). EL refers to

the modified Eichhorn and Lorenz developmental scale as

described by Coombe (1995). Each biological replicate

contained berries from a single row of plants. Four rows

distant 3–10 m from each other were used for each variety.

Plants from the three varieties were growing in the vine-

yard 15–30 m apart. Seeds were removed from all the

berries prior to extraction.

2.2 SPE

A sample of 100 mg of lyophilized berries was extracted

with 2 mL of the mixture of water and methanol (2:8), with

ultrasonication for 20 min at 25�C. The suspension was

then centrifuged at 3,500 rpm and the supernatant was

transferred to a round-bottom flask. The same procedure

was repeated two more times and the supernatants were

pooled together in the flask and taken to dryness with a

rotary evaporator. This extract was subjected to SPE on

SPE-C18 cartridges (Waters, Milford, MA, USA). Prior to

its use, the SPE cartridge was prepared by elution of 10 mL

of methanol followed by 10 mL of water. Then, the redis-

solved extract (1 mL of deionized water) was applied to the

cartridge and eluted successively with 5 mL of water and

then 5 mL of methanol:water (1:1) and finally with 5 mL of

methanol. All three fractions were collected in round bot-

tomed flasks and evaporated under vacuum and were used

for further NMR analysis. All the solvents were purchased

from Biosolve B.V. (Valkenswaard, the Netherlands).

2.3 Growth of cells and lipopolysaccharides

stimulation

Human monocyte-like histiocytic lymphoma cells U937

obtained from the ATCC (CRL-1593.2) were grown in

RPMI-1640 medium, supplemented with 10% (v/v) fetal

calf serum and 2 mM L-glutamine (Life technologies,

Breda, The Netherlands) at 37�C, 5% CO2 in a humidified

atmosphere. U937 monocytic cells (5 9 105 cells per well)

were plated in 96-well culture plate and then differentiated

into macrophages using phorbol 12-myristate 13-acetate

(PMA, 10 ng mL-1, overnight, Omnilabo, Breda, The

Netherlands). The PMA-differentiated macrophages were

allowed to recover from PMA treatment for 48 h, during

which the culture medium was replaced daily. Lipopoly-

saccharides stimulation of cells was performed as descri-

bed by Sajjadi et al. (1996).

2.4 Cells treatment with plant extracts

Immediately after stimulation cells were treated with plant

extracts (redissolved in DMSO) at the concentration of

100 lg mL-1 and then incubated at 37�C for 4 h.

Supernatant were then collected and measured for TNFa
content using the Human TNFa enzyme linked immuno-

sorbent assay (ELISA) kit (R&D systems, Europe Ltd).

2.5 Enzyme-linked immunosorbent assay for TNFa

TNFa in culture supernatants were determined by quanti-

tative ‘sandwich’ enzyme-linked immunosorbent assay

using paired antibodies purchased from (Biosource Inter-

national, Inc.,USA). In brief, all wells of high-binding

Immulon-plates (96 well NUNC MaxiSorp microplates)

were coated with 100 lL of the capture antibody (anti-

Human TNFa) (0.250 mg 0.125 mL-1). After overnight

incubation at 4�C, plates were washed with washing buffer

and blocked for 1 h with 1% bovine serum albumin in

phosphate-buffered saline. Plates were aspirated and

inverted on absorbent paper to remove excess liquid.

Samples and standards were diluted with assay buffer.

100 lL of diluted standards (recombinant Human TNFa
protein) were filled in 16 wells of first two columns of

plates. Rests of the wells were filled with 100 lL of sam-

ples in 100 lg mL-1 concentration. Only DMSO was used

as a control. Immediately 50 lL of working detection

antibody (0.025 mg 0.125 mL-1) was plated in every well

and then incubated for 2 h at room temperature with con-

tinuous shaking (700 rpm). The wells were washed again

five times with washing buffer before addition of 100 lL of

streptavidin-HRP to the wells and incubated at room tem-

perature further for 30 min with continuous shaking at

700 rpm. Again wells were aspirated and washed five times

before addition of 100 lL of TMB substrate and then

incubated for 30 min at room temperature with continuous

shaking (700 rpm). After 30 min the reactions were ter-

minated by addition of 100 lL of 2 M H2SO4, and absor-

bance was determined using a microtiter plate reader

(Bio-Tek Instruments Inc., Winooski, VT, USA) at

450 nm. The concentration of TNFa in the samples was

calculated by comparison of the absorbance of the samples

to the standard curve. The ratio (%) of TNFa inhibition was

calculated by the equation, i.e. Inhibition (%) = 100 9

(1 - T/C), where T represents the concentration of TNFa
with grape extract while C was the concentration of TNFa
with only DMSO.

2.6 Cell viability assay

Cell viability after treatment with different plant extracts

was determined by using MTT assay. Briefly, U937 cells

having concentration of (5 9 105 cells mL-1) were placed

in a 96 wells plate. The culture media also contains extracts

of different berries (100 lg mL-1) in the presence or

absence of 200 lg mL-1 LPS at 37�C. After 2.5 h of

incubation at 37�C, the medium was discarded and the
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formazan blue, which formed by reacting MTT with

mitochondrial dehydrogenase in the living cells, was dis-

solved with 100 lL DMSO. The optical density (OD) was

measured at 540 nm. The background signal inherent to the

plates when no cell was present was subtracted from the

absorbance obtained from each sample.

2.7 NMR spectroscopy

The three fractions eluted from SPE were redissolved in

1 mL of methanol-d4. An aliquot of 800 lL of sample was

transferred to the 5-mm NMR tube and used for the NMR

analysis. The deuterated methanol was purchased from

Cambridge Isotope Laboratories, Inc., Andover, MA, USA.
1H NMR spectra were recorded at 25�C on a 500 MHz

Bruker DMX-500 spectrometer (Bruker, Karlsruhe, Ger-

many) operating at a proton NMR frequency of 500.13 MHz.

MeOH-d4 was used as the internal lock. Each 1H NMR

spectrum consisted of 128 scans requiring 10 min and 26 s

acquisition time with the following parameters: 0.16 Hz/

point, pulse width (PW) = 30� (11.3 ls), and relaxation

delay (RD) = 1.5 s. A pre-saturation sequence was used to

suppress the residual H2O signal with low power selective

irradiation at the H2O frequency during the recycle delay.

FIDs were Fourier transformed with LB = 0.3 Hz. The

resulting spectra were manually phased and baseline cor-

rected, and calibrated to MeOH-d4 at 3.3 ppm, using XWIN

NMR (version 3.5, Bruker). 2D NMR techniques were per-

formed on a 600 MHz Bruker DMX-600 spectrometer

(Bruker, Karlsruhe, Germany) operating at a proton NMR

frequency of 600.13 MHz. J-resolved NMR spectra were

acquired using 8 scans per 128 increments for F1 and 8 k for

F2 using spectral widths of 5,000 Hz in F2 (chemical shift

axis) and 66 Hz in F1 (spin–spin coupling constant axis). A

1.5 s relaxation delay was employed, giving a total acqui-

sition time of 56 min. Datasets were zero-filled to 512 points

in F1 and both dimensions were multiplied by sine-bell

functions (SSB = 0) prior to double complex FT. J-resolved

spectra tilted by 45�, were symmetrized about F1, and then

calibrated, using XWIN NMR (version 3.5, Bruker). 1H–1H

correlated spectroscopy (COSY) and heteronuclear multiple

bonds coherence (HMBC) spectra were also recorded on a

600 MHz Bruker DMX-600 spectrometer (Bruker). The

COSY spectra were acquired with 1.0 s relaxation delay,

6,361 Hz spectral width in both dimensions. Window func-

tion for COSY spectra was sine-bell (SSB = 0). The HSQC

spectra were obtained with 1.0 s relaxation delay, 6361 Hz

spectral width in F2 and 27,164 Hz in F1. Qsine (SSB = 2.0)

was used for the window function of the HSQC. The HMBC

spectra were recorded with the same parameters as the HSQC

spectra except for 30,183 Hz of spectral width in F2. The

optimized coupling constants for HSQC and HMBC were

145 Hz and 8 Hz, respectively.

2.8 Data analysis and statistics

The 1H NMR spectra (from all SPE fractions) were auto-

matically reduced to ASCII files. Spectral intensities were

scaled to methanol signal (d 3.30) and reduced to inte-

grated regions of equal width (d 0.04) corresponding to the

region of d 0.0–10.0. The regions of d 4.85–4.95 and d
3.2–3.4 were excluded from the analysis because of the

residual signal of D2O and CD3OD, respectively. Bucket-

ing was performed by AMIX software (Bruker) with

scaling on total intensity. Principal component analysis

(PCA) with scaling based on Pareto, while projections to

latent structures (PLS), PLS-discriminant analysis (PLS-

DA), bidirectional orthogonal PLS (O2PLS), and O2PLS-

discriminant analysis (O2PLS-DA), with scaling based on

Unit Variance were performed with the SIMCA-P ? soft-

ware (v. 12.0, Umetrics, Umeå, Sweden). The TNFa con-

tent was arbitrarily set as 100 in the positive control and all

the other values are normalized to this (% activity) and

shown in results. Means and standard deviations were

calculated and means comparisons were made with

ANOVA at a significance level \0.01.

3 Results and discussion

3.1 1H NMR spectra visualization

For convenience 1H NMR spectrum can be roughly divided

into three distinct regions. For amino acids and organic

acids, resonances can be observed in the region of d
0.80–4.00. Area from d 4.00 to 5.50 is known as carbo-

hydrate region while the remaining d 5.50–8.50 region is

considered as phenolic region. The 1H NMR spectra of

three SPE fractions of ‘Trincadeira’ cultivar are shown in

Online Resource Fig. S1 (A and B). It is evident from the

figure that the three SPE fractions are quite different from

each other in terms of contained metabolites. The water

fraction shows mostly sugars and organic acids while the

methanol fraction shows mostly amino acids and fatty

acids with some resonance in phenolic region. The meth-

anol:water fraction shows the presence of maximum

amount of phenolics with relatively few sugars and amino

acids.

The phenolic regions of 1H NMR spectra from all three

grape cultivars are also shown and among the different

grape cultivars, ‘Touriga Nacional’ is found to have highest

phenolic content. It can also be observed that, in general,

each developmental stage has a unique metabolic profile.

As shown by NMR, the initial stage in berry growth is

characterized by high levels of phenolics with fewer sugars

and organic acids. As the berry grows, the level of sugars

and organic acids seems to increase with a decrease in
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phenolics content. The distribution of metabolites accord-

ing to grape cultivars and developmental stages is

explained in detail in the later sections. The phenolic

regions of 1H NMR spectra from the 2007 and 2008 vin-

tages of ‘Trincadeira’ cultivar are also compared and

shown in Online Resource Fig. S2. The figure clearly

suggests the higher accumulation of phenolics in the har-

vest stage of 2007 vintage of the ‘Trincadeira’ variety.

3.2 Metabolite identification

As a powerful analytical tool, 1H NMR offers many

advantages in metabolomics studies but signals congestion

in NMR spectra hampered the metabolite identification.

Several 2D NMR techniques, like J-resolved, 1H-1H

COSY, 1H-13C HMBC, and 1H-13C HSQC, provide addi-

tional information which facilitates the identification of

metabolites. Among the above-mentioned techniques

J-resolved and 1H-1H COSY are widely used due to short

measuring time with good quantitative features. They

showed to be quite effective in the confirmation of

metabolites like phenylpropanoids and flavonoids (Viant

2003; Liang et al. 2006). Recently the potential of 1H-13C-

related NMR techniques, like 1H-13C HMBC and 1H-13C

HSQC, in metabolomics has been discussed (Hyberts et al.

2007; Lewis et al. 2007). The use of these two techniques is

not yet very common in metabolomics because of the long

measuring time.

Using our in-house library of NMR data of common

metabolites, we identified some flavonoids including both

flavonols and flavan-3-ols. Flavonols like quercetin and

myricetin were identified in the aromatic region along with

(?)-catechin and (-)-epicatechin of the flavan-3-ols group.

The aromatic part of the 1H NMR spectra shows some

signals of hydroxybenzoates like gallic acid, syringic acid,

and vanillic acid. Tartaric esters of hydroxycinnamic acid

were also identified which include caftaric acid (caffeic

acid conjugated with tartaric acid), fertaric acid (ferulic

acid conjugated with tartaric acid), and p-coutaric acid

(coumaric acid conjugated with tartaric acid). Along with

the trans-forms, the cis-forms of these conjugated cinnamic

acids, i.e. cis-caftaric acid and cis-coutaric acid, were also

detected.

The flavonoids quercetin and myricetin were identified

in the aromatic region. The quercetin signal at d 6.49 of

H-8 correlates in the 1H-1H COSY spectrum with the signal

at d 6.27 of H-6 and a signal at d 6.95 of H-50 with one at d
7.56 of H-60. Similar correlations for the signals of my-

ricetin at d 6.51 of H-8 with d 6.29 of H-6 are also present

in the 1H-1H COSY. Resonances of H-80 and H-70 (olefinic

protons) of trans-hydroxycinnamic acids are clearly

observed as doublets of 16.0 Hz in the range of d 6.39–6.50

and d 7.59–7.70, respectively, in J-resolved spectrum.

These protons are also found to correlate in the 1H-1H

COSY spectra, and continued by the coupling with a car-

bonyl carbon at d 168.3 in the HMBC spectra. These sig-

nals are assigned to cinnamic acids derivatives including

caffeic acid, p-coumaric acid, and ferulic acid. In the 1H

NMR spectra of grape berry samples, these resonances

were assigned to three different hydroxycinnamic acids

moieties which include trans-caffeoyl, trans-coumaroyl,

and trans-feruloyl derivatives. The 1H-1H COSY spectra

show correlations among signals like d 6.41 with d 7.62,

and d 7.02 with d 6.88 of caffeoyl; d 7.51 with d 6.87, and

d 6.45 with d 7.65 of coumaroyl; d 6.46 with d 7.56 of

feruloyl derivative.

These cinnamic acids were also found to be conjugated

with tartaric acid via an ester linkage. The signal for tar-

taric acid was observed in the region of d 5.32–5.44 in the
1H NMR spectrum, being shifted downfield from the typ-

ical tartaric acid signal at d 4.30 due to the bonding to the

carboxylic function of cinnamic acids which was con-

firmed by their correlation with the signals in the region of

d 167.5–168.5 in the HMBC spectra. Based on these

assignments, these compounds were identified as trans-

caftaric acid (caffeic acid conjugated with tartaric acid),

trans-fertaric acid (ferulic acid conjugated with tartaric

acid), and trans-p-coutaric acid (coumaric acid conjugated

with tartaric acid).

Along with the trans-forms, the cis-forms of these cin-

namic acids, i.e. cis-caftaric and cis-p-coutaric acid, were

also detected. When compared to their trans-configuration,

the cis-forms showed an upfield shift of the signals for H-80

and H-70 along with the reduction in the coupling constant

from 16.0 to 13.0 Hz. Two clear doublets of 13.0 Hz at d
5.92 and d 5.94 were detected for the H-80 in the cis-

configuration. The 1H-1H COSY spectra also confirmed

this by showing the correlation of these signals with the

respective H-70 protons at d 6.81 and d 6.86. It was also

confirmed by the correlation of this signal with the car-

bonyl resonance at d 167.2 in the HMBC spectra.

A number of amino and organic acids were identified

due to the high signal intensities in the amino acid region.

Amino acids like alanine, leucine, threonine, valine, pro-

line, methionine, and glutamate, were identified by com-

parison with the reference spectra of these compounds. The

signals in the carbohydrate regions were highly clustered

and overlapped. This region showed the signals of the

anomeric protons of b-glucose, a-glucose, fructose, and

sucrose. Resonances for some other compounds like

GABA, choline, and 2,3-butanediol were also identified in

the same region. A number of signals have been elucidated

as organic acids like a-linolenic acid, acetic acid, succinic

acid, fumaric acid, formic acid, citric acid, malic acid, and

tartaric acid. All these assignment of metabolites are based

on previous studies and our in house data base NMR data
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of standards measured under identical conditions and our

previous reports (Ali et al. 2009, Ali et al. 2011a, b; Abdel-

Farid et al. 2007; Liang et al. 2006).

3.3 Anti-TNFa activity screening in berries

As the first step in this study, all three fractions of SPE

from different berries extracts are tested for in vitro inhi-

bition of TNFa production in LPS stimulated U937 cells

(Online Resource Fig. S3). The water and methanol frac-

tions were found having the least TNFa inhibitory activity

with no significant difference among different berry types.

The methanol:water fraction shows maximum TNFa inhi-

bition with cranberry show significantly higher activity

than all the other berry types except black grapes. Among

the red, white, and black grapes, it is interesting to note that

black and white grapes are with significantly higher

activities than red grapes. Among the other berry type,

raspberry and blueberry show significantly higher activities

than the redberry and strawberry.

3.4 Multivariate data analysis for berries

Multivariate data analysis algorithms are an essential

component of any metabolomics studies. These methods

are used to reduce the dimensionality of multivariate

dataset and thus enable to recognize possible differences or

similarities among the samples. PCA is considered as a

primary tool in metabolomics used to reduce the dimen-

sionality of a multivariate dataset, and thus helping to

better understand possible differences between classes. It is

an unsupervised method hence the clustering or separation

of samples is purely due to similarities or differences,

respectively, among all the samples. The NMR data from

the SPE fractions of all the samples were subjected to PCA

in order to highlight the differences between the SPE

fractions and to identify the metabolites responsible for that

distinction.

The PCA score plot shows good separation among the

SPE fractions (Online Resource Fig. S4). The methanol

fractions are totally separated from the other two fractions

by component 1 (56.6%) while the water and metha-

nol:water fractions are separated by component 2 (8.8%).

By examining the loadings plot and the respective NMR

spectra, it is clear that all the three fractions are quite

different in their metabolic contents. The methanol fraction

is found to be higher in fatty acids with very small quan-

tities of phenolics and amino acids. The water fraction is

relatively higher in sugars and some amino acids and

organic acids. Most of the phenolics are found to elute in

the methanol:water fraction.

In order to identify the metabolites responsible for in

vitro inhibition of TNFa production, a supervised method,

i.e. PLS, is used. It is a supervised method in which the

actual data from the bioactivity assay are used as a Y-vari-

able. The PLS analysis was found effective in separating the

high and low activity samples (Fig. 1a). The application of

O2PLS resulted in much better distinction of the samples

with different activities than the PLS-DA model (Fig. 1c).
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Fig. 1 The PLS score plot (a), permutation test for PLS (b), and

score plot of O2PLS (c) for general screening in different berry types

are shown. Samples with black color are with low while samples with

red color are with high inhibitory activity against TNFa production

(Color figure online)
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By examining the corresponding loadings plot of O2PLS-

DA, metabolites responsible for the separation of high

activity samples from the low activity samples are identi-

fied. Among the phenolics, gallic acids, quercetin, myrice-

tin, (?)-catechin, caffeic acid, and ferulic acid were found

discriminating between the classes and suggests their

involvement in the inhibition of TNFa production.

One of the key aspects of a supervised regression

algorithm is model validation. A permutation test is often

used for validation of methods like PLS. A permutation test

is the calculation of goodness of fit and the predictive

ability of the model, R2 and Q2, respectively. The R2 value

can vary from 0 to 1, where 1 means a model with a perfect

fit. If the Q2 value is more than 0.5, the model is consid-

ered to have good predictability and if it is higher than 0.9

and less than 1.0, then the model is considered to have an

excellent predictability. It is suggested that if more than

five PLS components are included in the model the training

set data generally reproduce excellently. The R2 and Q2

values of PLS was calculated using four components. For

the inhibitory activity against TNFa production the R2 and

Q2 values for PLS analysis were 0.84 and 0.77, respec-

tively. This PLS model was validated by the permutation

method through 20 applications in which all Q2 values of

permuted Y vectors were lower than original ones and the

regression of Q2 lines intersect at below zero (Fig. 1b).

3.5 Grapes and anti-TNFa activity

The next part of the study is to analyze the potential of

three grape cultivars at four developmental stages to inhibit

the production of TNFa is evaluated. All three fractions

from SPE of grape extracts were tested for anti-TNFa
activity at 100 lg mL-1. The methanol:water fractions

show significantly higher activity than the water and

methanol fractions. It has been shown in the previous

section that the metabolic composition of these fractions

are quite different from each other and the methanol:water

fraction contained most of the grape phenolics. The water

and methanol, fractions also showed some activity, though

mostly not significantly different from each other.

All the methanol:water extracts of the three cultivars

show variable activity at different developmental stages

(Online Resource Fig. S5). The veraison stage is found to

have maximum anti-TNFa activity in every cultivar fol-

lowed by the green stage. For two cultivars, ‘Touriga

Nacional’ and ‘Aragonês’, the ripe and harvest stages are

not significantly different in anti-TNFa activity. The ripe

stage of ‘Trincadeira’ is significantly higher than the harvest

stage in inhibiting the TNFa production. Among the green

stages of all three cultivars, the green ‘Touriga Nacional’

grapes are found more active than the green grapes of

‘Trincadeira’ and ‘Aragonês’ (Online Resource Fig. S6). At

veraison, the ‘Aragonês’ and ‘Touriga Nacional’ grapes are

not different but both are significantly more active than

‘Trincadeira’. All the three cultivars show similar potency

of inhibiting TNFa production at the ripe and harvest stages.

In order to highlight the vintage effect on anti-TNFa
activity, the 2007 and 2008 vintage of ‘Trincadeira’ culti-

var are compared. ‘Trincadeira’ 2007 shows highest anti-

TNFa activity at veraison stage followed by green stage but

unlike ‘Trincadeira’ 2008 (see above), the 2007 vintage

shows no significant difference in TNFa inhibition at later

stages of development i.e. ripe and harvest (Online

Resource Fig. S5). Comparing every developmental stage

of these two vintages, only green and harvest are different.

Green ‘Trincadeira’ 2008 grapes show higher activity

while at harvest ‘Trincadeira’ 2007 grapes show significant

inhibition of TNFa production. The 1H NMR spectra

analysis shows that ‘Trincadeira’ 2007 has more phenolics

at harvest as compared to ‘Trincadeira’ 2008, this sug-

gesting a relationship between phenolics and activity

(Online Resource Fig. S2, S7).

3.6 Grapes cultivars, development stages, and SPE

fractions differentiation

The NMR data from the SPE fractions of all the samples

have been subjected to PCA in order to identify possible

markers for the different cultivars, developmental stages,

and SPE fractions. Figure 2 shows the score plots of PCA

where samples are colored according to SPE fractions,

cultivars, and developmental stages. Figure 2a represents

the PCA score plot where samples are colored according to

SPE fractions. Similar to general screening of berries, all

three fractions of SPE are well separated. The water frac-

tions are clustered on the negative side of PC1 while the

methanol fractions are grouped on the positive side of PC1.

The methanol:water fractions are located in between the

methanol and water fractions, mostly having negative PC1

values. The SPE fractions are, like in the case of general

berries screening, very much distinct in their metabolic

contents. The water fraction is relatively higher in sugars

and some amino acids and organic acids. Most of the

phenolics are found to elute in the methanol:water fraction

while the remaining amino acid and phenolics come out

with the last methanol fraction. The methanol fraction is

also found higher in fatty acids.

To highlight the differences based on developmental

stages, samples from the same PCA are colored according

to developmental stages in Fig. 2b. It is obvious from the

score plot that while PC1 is responsible for the separation

of SPE fractions, PC2 (19%) is quite effective in discrim-

inating the developmental stages of grapes. The initial

stages, like green and veraison, are on the negative side of

PC2 whereas the remaining stages, like ripe and harvest,
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mostly have positive PC2 scores. The same PCA score plot

is shown in Fig. 2c but this time the samples are colored

according to grape cultivar. It is evident from this figure

that PCA is not very effective as the samples are not

clustered based on the grape cultivars. The corresponding

loading plots with the respective NMR spectra reveal the

information regarding the metabolites responsible for the

differentiation of samples on the score plots. The grapes in

green and veraison stages have higher levels of phenolics

with relatively less sugar and organic acid contents. As the

berries grow the level of phenolics start to decrease

whereas sugars and organic acids concentrations increase.

A detailed account of the distribution of metabolites based

on these cultivars at these development stages is given in

our recent report (Ali et al. 2011a).

3.7 Vintages, development stages, and SPE fractions

differentiation

SPE fractions of grapes from 2007 and 2008 vintages of the

‘Trincadeira’ cultivar at four developmental stages were

analyzed and compared for metabolic differences and TNFa
inhibition. PCA, also in this case, is found effective in

highlighting the metabolic differentiation among the sam-

ples based on developmental stages and SPE fractions and

responsible metabolites are identified (Online Resource Fig.

S8). As discussed above, phenolics are the main discrimi-

nation factor in SPE fractions while a similar metabolic

behavior of developmental stages was observed in all grape

cultivars. However, to analyze specifically the vintage

effects on the grape metabolic profile, supervised multivar-

iate data analysis was applied.

First, PLS-DA was used in which samples are classified

into two classes based on samples from 2007 to 2008

vintages. The score plot (Fig. 3a) shows good separation

among the samples belonging to the two different classes

but none of the components is found totally effective. The

PLS-DA model was validated using permutation test with

20 applications (Fig. 3b). To draw clear conclusions,

O2PLS-DA was applied. The score plot (Fig. 3c) shows

very clear distinction among the different vintages. The

loading plot shows that the 2007 vintage has higher levels

of phenolics than the 2008 vintage. The 2008 vintage

shows elevated levels of organic acids like malate and

citrate with some sugars like glucose and fructose.

3.8 Multivariate data analysis for grape metabolome

and activity correlation

In this study, based on activity data, we classify our sam-

ples into low (\10%), medium (C10 and\25%), and high
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Fig. 2 The principal component analysis score plots. In a, samples

are colored according to SPE fractions where red represents

methanol, black represents methanol:water (1:1), and blue represents

water fraction. In b, samples are colored according to developmental

stages where green represents green stage, blue represents veraison,

black represent ripe, and red represents harvest stage. In c, samples

are colored according to grape cultivars where red represents samples

from Aragonês, blue represents samples from ‘Touriga Nacional’, and

black represents samples from ‘Trincadeira’ (Color figure online)
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(C25%) activity classes as Y-variables, and used these in a

PLS-DA. Figure 4a shows that this gives a clear separation

especially the samples with the lowest and medium activity

are grouped separately. Samples with high activity are

scattered and some are mixed with the samples with

medium activity. This PLS-DA model was validated by a

permutation test. The R2 and Q2 values of PLS-DA using 6

components were calculated. For anti-TNFa activity the

figures were 0.82 and 0.78, respectively. This PLS-DA

model was validated by the permutation method through 20

applications in which all Q2 values of permuted Y vectors

were lower than original ones and the regression of Q2

lines intersect at below zero (Fig. 4b).

In order to get better separation, especially for the

samples with high activity, O2PLS-DA is applied. The

score plot of O2PLS-DA (Fig. 4c) shows much better

separation among the samples based on anti-TNFa activity.

Samples with low, medium, and high activity are nicely

separated on the score plot. Few samples from low activity

and medium activity classes and mixed with the medium

activity and high activity classes, respectively, as their anti-

TNFa activity values are on the border line of their classes.

The O2PLS-DA model is validated by cross validation-

analysis of variance (CV-ANOVA) with a p-value of

8.35 9 10-38. By examining the corresponding loadings

plot, the metabolites responsible for separation are identi-

fied. Samples with different activity levels mainly differ in

their phenolic contents. The high anti-TNFa activity sam-

ples have higher levels of phenolics like cinnamic acids,

flavonols, and flavan-3-ols while the medium and low

activity samples have less or no phenolic contents.

The next step is to perform the direct correlation

between the activity and NMR data using original anti-

TNFa assay values. Instead of classifying samples as high,

medium, and low activity groups, the activity data from

TNFa assay for each sample are used directly. In such

approaches two different data sets, independent variable

(like NMR spectral data) and dependent variable (like anti-

TNFa activity), are correlated using regression. For this

purpose, PLS analysis was performed using the NMR and

activity data. The PLS score plot (Fig. 5a) shows relatively

good separation among the samples but many are over-

lapped with the other groups. Component 1 is mainly

responsible for the separation as the samples are arranged

from low to high activity along the negative to positive side

of component 1, respectively. For PLS modeling again the

permutation method through 20 applications was used for

validation. The regression of Q2 lines intersect at below

zero with all Q2 values of permuted Y vectors were lower

than original. Variance (R2) and cross-validated variance

(predictive ability of the model, Q2) values of PLS using

seven components were calculated and for anti-TNFa
activity the figures were 0.95 and 0.89, respectively

(Fig. 5b).

Finally for data correlation, we used another multivari-

ate data analysis method known as bidirectional orthogonal

PLS (O2PLS). Analyses like PLS regression can cause

systematic variation of any data block due to structured
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noise present in the data blocks. Other algorithms, like

O2PLS-DA and O2PLS, are multivariate projection meth-

ods which remove the structured noise by extracting linear

relationships from independent and dependent data blocks,

in a bidirectional way, and results in the decomposition of

systematic variation into two model parts: the predictive or

parallel part and the orthogonal part (Trygg and Wold

2002, 2003). The score plot, Fig. 5c, showed very nice

separation among low, medium and high activity samples

based on component 1. This O2PLS model was validated

-10

-5

0

5

10

15

20

25
P

LS
-D

A
 C

om
p.

 2
 (

26
.6

%
)

PLS-DA Comp. 1 (24.7%)

0

1

10

R
2 

or
 Q

2

Correlation (Y-permuted vs. Y-original)

R2 Q2

-10

-5

0

5

10

15

-15 -10 -5 0 5 10

-5 0 5 10

t[2
]

t[1]

A

B

C

Fig. 4 The score plots of PLS-DA (a) and O2PLS-DA (c) are

represented. Samples with black color are of low anti-TNFa activity

while samples with red and blue colors are of medium and high anti-

TNFa activity, respectively. The permutation test for PLS-DA (b) is

also presented (Color figure online)

-10

0

10

20

30

to
[1

]

t[1]

-15

-10

-5

0

5

10

-5 0 5 10 15

-10 -5 0 5 10 15 20 25

P
LS

 C
om

p.
2 

(1
7.

8%
)

PLS Comp. 1 (49.2%)

0

1

10

R
2 

or
 Q

2

Correlation (Y-permuted vs. Y-original)

R2 Q2

A

B

C
*

*

Fig. 5 The score plots of PLS (a) and O2PLS (c) are represented.

Samples with black color are of low anti-TNFa activity while samples

with red and blue colors are of medium and high anti-TNFa activity,

respectively. The permutation test for PLS (b) is also presented (Color

figure online)

NMR spectroscopy and chemometrics 1157

123



by CV-ANOVA with p-value of 1.4 9 10-37. Like PLS-

DA and O2PLS-DA the corresponding loadings plot show

that the samples with high anti-TNFa activity contained

more phenolics, such as cinnamates and flavonoids, when

compared to samples with low and medium activity.

In PLS based regression, VIP (variable importance in the

projections) can be defined as a weighted sum of squares of

the PLS weights. It has been indicated that it is directly

proportional with the influence of factor on the separation

on score plot, meaning, factors have higher VIP values are

more important for the samples separation. For O2PLS-DA

and O2PLS analyses, VIP values for several phenolic

compounds, responsible for separation on the score plot, are

presented in Table 1. As indicated, in O2PLS-DA analysis,

caftaric acid, and (?)-catechin are the metabolites with top

two VIP scores while quercetin and myricetin have rela-

tively less VIP values. In O2PLS model, again (?)-catechin

is one of the top two followed by coutaric acid while caf-

taric acid shown a much lower VIP score. This high VIP

scores for the identified phenolics legitimate their involve-

ment in the separation of high activity samples and suggest

a role of these compounds in inhibiting TNFa production.

The 1H NMR spectra clearly shows distinction among

different SPE fractions of general berries extracts and

specifically grape cultivars and vintages, and their devel-

opmental stages. This clearly advocates the enormous

analytical potential of NMR spectroscopy as compared to

other platforms for metabolomics studies (Verpoorte et al.

2008). Multivariate data analysis in combination with

NMR is very popular in metabolic phenotyping studies of

plants. Many reports have been published regarding grape

berries using the same approach (Pereira et al. 2005, 2006a,

b; Son et al. 2009). In this study, metabolic profiling of

different grapes at different stages of ripening has been

successfully performed. The initial stages, green and ver-

aison, have been characterized with high phenolics,

whereas high sugar and organic acids content is observed

in the later stages i.e. ripe and harvest, as also reported

previously (Ali et al. 2011). This metabolic distinction

among the developmental stages reflect in the associated

anti-TNFa activity as green and veraison are found more

active than ripe and harvest.

The vintage effect on grape metabolome is quite obvious

now as it is widely accepted that the several climatic fac-

tors are involved in the biosynthesis of several key

metabolites in grapes (Pereira et al. 2006b). The green and

harvest stages of these two vintages present significant

metabolic differences, characterized by higher and lower

phenolic contents in 2008 vintage, respectively, as com-

pared to 2007 vintage. Since vintage has shown its effects

on the phenolic contents of ‘Trincadeira’, the anti-TNFa
activity shown by these vintages is also affected. The green

and harvest stages from 2008 to 2007 vintages, respec-

tively, showed significantly different anti-TNFa activity.

As shown by the NMR spectra, this is due to difference in

phenolic contents. It has been reported that different factors

like hot and dry climate can result in higher phenolic

contents in grapes (Pereira et al. 2006b). For instance, the

insolation totals were higher in July and August of 2007

and differences in rain totals and average temperature were

also observed in between seasons and may influence the

fine tuning of phenolics’ biosynthesis (unpublished data). It

is interesting to note that transcriptomic analysis using

Affymetrix GrapeGen� genome array showed that a gene

coding for anthocyanidin reductase which is involved in

proanthocyanidins biosynthesis such as catechin was more

expressed in 2007 samples (Online Resource Table ST1).

Since catechin seems to present high anti-TNFa activity as

suggested by the results hereby presented this may con-

stitute a good example of positive integration of tran-

scriptomic and metabolomic data, and medicinal properties

that deserves further attention.

Data correlation using different multivariate data anal-

ysis tools is now increasingly popular and found efficient in

predicting the unknown NMR signals (metabolites) by

using the resulting training model (Eriksson et al. 2006).

Many reports have been published targeting to develop the

predictive models for certain pharmacological activities in

plants. Plants like Hypericum perforatum (Roos et al.

2004), Artmesia annua (Bailey et al. 2004), Citrus grandis

Table 1 The VIP (variable

importance in the projections)

values of the major contributing

compounds for the separation in

the score plots derived from

O2PLS-DA and O2PLS models

a Chemical shifts of the

metabolites are shown with the

splitting, coupling constants

(Hz), and the corresponding

protons

Compounds Chemical shift (ppm)a VIP values

O2PLS-DA O2PLS

Quercetin-3-O-glucoside 6.27 (d, J = 2.0, H-6) 1.38 2.06

Myricetin 6.51 (d, J = 2.0, H-8) 1.17 1.62

(?)-Catechin 6.75 (d, J = 8.0, H-50) 1.44 2.16

(-)-Epicatechin 5.96 (d, J = 2.2, H-6) 1.40 2.09

Caftaric acid 7.62 (d, J = 16.0, H-70) 1.55 1.80

Fertaric acid 6.32 (d, J = 16.0, H-80) 1.43 2.08

p-Coutaric acid 7.65 (d, J = 16.0, H-70) 1.41 2.10
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(Cho et al. 2009), and Galphimia glauca (Cardoso-Taketa

et al. 2008), have been efficiently studied for the prediction

of different medicinal properties, using this approach. Such

chemometrics based approach can provide first hand

knowledge regarding the plant extracts and any related bio-

activity without any tedious chromatographic separations.

Since grapes are one of the richest sources of polyphen-

olics, many studies (Chuang et al. 2010) have shown their

potency against TNFa production as grape polyphenolics

are widely acclaimed and accepted to have as anti-oxidative

and anti-inflammatory properties (Baur et al. 2006; Breksa

et al. 2010). Phenolics in grapes, like resveratrol (Stewart

et al. 2008) and quercetin (Rivera et al. 2008) are known to

reduce inflammation, while others like cinnamates, benzo-

ates, flavonols, flavan-3-ols, and anthocyanins, are well

known antioxidants (Lee et al. 2009). The present study is

the only known attempt to analyze different grape cultivars,

their developmental stages, and vintages for TNFa inhibi-

tion. The identified NMR signals, responsible for the

activity, are related to quercetin, myricetin, (?)-catechin,

(-)-epicatechin, coutaric acid, fertaric acid, and caftaric

acid, which are found relatively higher in the samples

with high activity using different chemometrics methods.

4 Conclusion

Nuclear magnetic resonance spectroscopy has been applied

for the phenotyping of three grape cultivars from Portugal at

different development stages. SPE was used resulted in water,

methanol:water (1:1), and methanol fractions and have been

tested for TNFa inhibition. Using the presented approach, the

analysis of NMR shifts in relation to pharmacological activity

can provide information about what part of the NMR spec-

trum correlates with the activity and gives information about

the active ingredients in crude extracts of medicinal plants.

This approach proved to be an effective tool to short list a

large set of crude extracts based on bioactivity. The effect of

different variables on the activity of a sample can also be

measured. Using this approach, compounds related to activity

can be identified without extensive and elaborate chromato-

graphic separation, and thus allows rapid identification of

extracts with biological activity.
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