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Abstract

Neuroimaging research frequently demonstrates load-dependent activation in prefrontal and 

parietal cortex during working memory tasks such as the N-back. Most of this work has been 

conducted in fMRI, but functional near-infrared spectroscopy (fNIRS) is gaining traction as a less 

invasive and more flexible alternative to measuring cortical hemodynamics. Few fNIRS studies, 

however, have examined how working memory load-dependent changes in brain hemodynamics 

relate to performance. The current study employs a newly developed and robust statistical analysis 

of task-based fNIRS data in a large sample, and demonstrates the utility of data-driven, 

multivariate analyses to link brain activation and behavior in this modality. Seventy participants 

completed a standard N-back task with three N-back levels (N = 1, 2, 3) while fNIRS data were 

collected from frontal and parietal cortex. Overall, participants showed reliably greater fronto-

parietal activation for the 2-back versus the 1-back task, suggesting fronto-parietal fNIRS 

measurements are sensitive to differences in cognitive load. The results for 3-back were much less 

consistent, potentially due to poor behavioral performance in the 3-back task. To address this, a 

multivariate analysis (behavioral partial least squares, PLS) was conducted to examine the 

interaction between fNIRS activation and performance at each N-back level. Results of the PLS 

analysis demonstrated differences in the relationship between accuracy and change in the 

deoxyhemoglobin fNIRS signal as a function of N-back level in eight mid-frontal channels. 
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Specifically, greater reductions in deoxyhemoglobin (i.e., more activation) were positively related 

to performance on the 3-back task, unrelated to accuracy in the 2-back task, and negatively 

associated with accuracy in the 1-back task. This pattern of results suggests that the metabolic 

demands correlated with neural activity required for high levels of accuracy vary as a consequence 

of task difficulty/cognitive load, whereby more automaticity during the 1-back task (less mid-

frontal activity) predicted superior performance on this relatively easy task, and successful 

engagement of this mid-frontal region was required for high accuracy on a more difficult and 

cognitively demanding 3-back task. In summary, we show that fNIRS activity can track working 

memory load and can uncover significant associations between brain activity and performance, 

thus opening the door for this modality to be used in more wide-spread applications.

Keywords

fNIRS; N-back task; Cognitive load; Partial least squares; Working memory; Neural efficiency

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging modality that has gained 

traction in recent years due to its versatility to studying brain activity in realistic natural 

environments. Compared to electroencephalography (EEG) and functional magnetic 

resonance imaging (fMRI), fNIRS is more robust to motion artifacts and environmental 

noise, making it an increasingly popular method for studying neural activity outside of 

standard laboratory experimentation (Pinti et al., 2018; Yücel et al., 2017). fNIRS uses light 

spectroscopy at near-infrared wavelengths to measure the same cerebral metabolic changes 

that are measured using functional MRI (Buxton, 2010; Huppert et al., 2006). In both 

methods, the measurements taken are metabolic proxies for neuronal activity. When neural 

activity increases, so does the metabolic demand, leading to increased blood flow in the 

surrounding vasculature. This blood flow causes an increase in concentrations of oxygenated 

hemoglobin and a decrease in concentrations of deoxygenated hemoglobin (Buxton, 2013; 

Huppert et al., 2006).

Historically, many of the typical fNIRS study paradigms and analysis techniques mirrored 

those of task-based fMRI. The vast majority of existing fNIRS studies involved initial data 

preprocessing (i.e., downsampling, bandpass or wavelet filtering, motion correction), before 

being converted into oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) concentrations 

(Huppert et al., 2009; Scholkmann et al., 2014). A general linear model was then applied to 

create contrasts in HbX changes between task conditions or between task and rest (Cooper et 

al., 2012; Pinti et al., 2018; Scholkmann et al., 2014). However, it was recently demonstrated 

that these typical approaches overall fail to account for specific statistical properties of the 

fNIRS signal, and in doing so, inflate the false positive rate of reported results (Barker et al., 

2013; Huppert, 2016).

Due to these issues, new analysis methods have been developed to account for these specific 

statistical properties of fNIRS. By applying pre-whitening to the linear model to reduce 

noise correlations and using robust regression to down-weight statistical outliers, these 
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methods perform better on sensitivity-specificity analyses and show better control of type-I 

errors (Barker et al., 2013; Huppert, 2016; Santosa et al., 2018). With proper statistical 

analysis to account for these unique noise properties, fNIRS provides an increasingly 

rigorous method of neuroimaging. Furthermore, the cost-effectiveness of fNIRS allows for 

larger sample sizes than in fMRI, lessening the risk of failures in replicability due to small 

samples (Turner et al., 2018).

One of the more well-studied effects in fMRI and fNIRS is that of cognitive load-dependent 

changes in frontal and parietal cortical regions (Cui et al., 2011; Fishburn et al., 2014; Herff 

et al., 2014; Mencarelli et al., 2019; Owen et al., 2005). That is, neural activity in these 

regions increases with more cognitively taxing and difficult tasks. Typically, this is achieved 

by increasing the number of items needed to be stored in working memory in a task 

requiring sustained attention, as in the N-back task (Conway et al., 2005; Kirchner, 1958; 

Owen et al., 2005). In an N-back task, participants are required to compare a current 

stimulus to a stimulus presented N items back during continuous presentation. This N may 

be manipulated (typical values include N = 0, 1, 2, or 3), thus indicating the number of items 

in working memory. While some previous fNIRS studies have shown linear increases in 

frontal activation based on N-back level (Ayaz et al., 2012; Fishburn et al., 2014; Kuruvilla 

et al., 2013), several others have found non-linear effects (i.e., activation that does not follow 

the pattern of 3-back > 2-back > 1-back > 0-back; Aghajani et al., 2017; Mandrick et al., 

2016). In cases of non-linear increases in activation with greater task demands, researchers 

have proposed that participants may simply disengage from tasks that are too difficult 

(Causse et al., 2017). It has also been posited that once participants reach a maximum level 

of cortical activation during a demanding (but achievable) task, no additional neural “output” 

can be tapped into to perform well on an even more difficult task (Mandrick et al., 2013).

While these discrepancies are attributed to performance-based limitations on very 

demanding tasks, not all studies have attempted to explicitly link the load-dependent 

activation results to task accuracy, and those which did have yielded mixed results. For 

example, in a study by Causse et al. (2017), correlations were conducted between fNIRS 

activity (HbO concentration change) and performance at different levels of task difficulty in 

three tasks: a spatial working memory task, an executive function task, and a flight 

simulator. To simplify the analyses, the researchers created average activation across 

experimenter-specified ROIs and collapsed across multiple levels of difficulty in the 3 tasks 

in order to decrease the number of potential correlations to 18. In that study, they only found 

one significant correlation between performance and fNIRS activity under high levels of 

difficulty on the executive function task. A study by Matsuda & Hiraki (2006) examined 

fNIRS activity in the dorsal PFC while older children and adolescents (7–14 years) played 

either a puzzle or fighting video game. They also failed to find a correlation between video 

game performance and HbO concentration change across any of the ROIs created by 

averaging nearby channels.

In the case of both the Causse et al. (2017) and Matsuda & Hiraki (2006) studies, the lack of 

significant correlations may have been reflective of an actual absence of link between task 

difficulty and cortical activity. However, this failure to find an association could also have 

resulted from methodological/analytic choices by the researchers such as the choice to 
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employ univariate analyses, which have limitations. Multivariate approaches consider the 

covariance between dependent variables, in this case channel activity, which differs from 

univariate analyses that treat each channel as being independent. This has several 

advantages. First, there can be interesting structure in modeling/examining the covariance 

between channels in addition to their mean effects. Second, performing mass univariate 

statistics requires multiple comparison correction, and thus researchers employ various 

techniques to limit the total number of statistical tests conducted. For these papers, the 

researchers averaged activity across channels and/or collapsed activity across difficulty 

conditions. While these are reasonable steps, the end result is that the potential results are 

constrained by the researcher choices. However, in a multivariate partial least squares (PLS) 

analysis (McIntosh and Lobaugh, 2004), only one test is conducted to test the significance of 

the multivariate pattern against a null distribution, so no multiple comparison correction or 

data averaging is required. A third advantage of a PLS approach is that it is a data-driven 

method that is less encumbered by particular researcher decisions. In summary, by adopting 

a multivariate analysis rather than running multiple bi-variate correlations (i.e., fNIRS 

activity in each condition with performance in each condition), this approach is able to 

identify whole-brain brain-behavior correlations that vary systematically by task type or 

difficulty.

Additionally, other work has identified negative relationships between task performance and 

cortical activation when participants undergo working memory training, resulting in 

increased neural efficiency (McKendrick et al., 2014). Results of one fNIRS study 

examining the role of expertise on prefrontal activity and task difficulty suggested that this 

relationship is a complex one but did not directly link activation to behavior (Bunce et al., 

2011). Thus, while there is evidence that performance influences task-evoked fNIRS 

activity, how exactly this relationship is affected by task demands remains an open question. 

However, by adopting a data-driven, multivariate approach such as behavioral partial least 

squares, these relationships can be more robustly investigated.

The primary goal of the current study was to conduct a well-powered validation of the load-

dependent fNIRS responses demonstrated in prior work using a traditional verbal N-back 

task, large sample, and utilizing recently developed robust statistical analytical procedures. It 

was hypothesized that during the N-back task, prefrontal and parietal cortical activity would 

be largest for the 3-back task (highest cognitive load), lessened for the 2-back task (medium 

cognitive load), and smallest for the 1-back task (lowest cognitive load).

A second, exploratory goal was to examine how individual differences in participant 

accuracy could affect load-dependent fNIRS activity. This work sought to examine whether 

the relationship between fNIRS activity and performance differed based on task difficulty, 

specifically by using a data-driven, multivariate partial least squares (PLS) analysis to 

evaluate this relationship. Behavioral PLS (McIntosh and Lobaugh, 2004) has been used in 

other neuroimaging modalities (such as fMRI, EEG, and magnetoencephalography (MEG)) 

as a data-driven approach to extract relationships between neural activity and behaviors of 

interest (Bialystok et al., 2005; Chang et al., 2017; Krishnan et al., 2011; Lobaugh et al., 

2001; McIntosh et al., 2008), but has not yet been implemented in fNIRS research. In the 

present work, PLS offers a distinct advantage for investigating the complex links between 
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performance and neural activation over the more standard approach of contrasting high and 

low performance participants. Specifically, as we are interested in performance and activity 

at multiple levels of difficulty and not all participants showed a linear load effect on 

performance (i.e., some participants specifically did poorly on the 3-back but similarly on 1-

back and 2-back, others performed similarly on 2-back and 3-back, etc.), the designation of 

“high” and “low” performers would be somewhat arbitrary. In contrast, the data-driven 

approach in PLS allows for these associations to be examined without imposing 

experimenter-specified grouping. As such, the current study also tested the utility of a 

multivariate PLS approach in fNIRS research to shed light on how the link between 

performance and neural activation may be affected by task demands.

In summary, the current study was designed to replicate the effect of load-dependent 

activation in frontal and parietal cortex in fNIRS using more robust statistical analyses. As 

with several previous studies, we found non-linear activation effects, which are likely 

attributable to poor performance on the 3-back task. To better elucidate the impact of 

performance on activation as a function by N-back level, a behavioral PLS analysis was 

conducted, and provided insight into how the relationship between accuracy and prefrontal 

activation differs based on task difficulty.

2. Method

2.1. Participants

Seventy adults participated in this study. All participants had normal or corrected-to-normal 

visual acuity. Participants gave written informed consent before participation and 

experimental procedures were approved by the University of Chicago’s Institutional Review 

Board (IRB). Participants were compensated $26 or 2 units of course credit, plus a 

performance-based bonus of up to $10. The full procedure included additional study 

elements related to a video intervention that were separate from the current work and lasted 

approximately 15 min. The total duration of the study was between 75 and 90 min.

Two participants were excluded from all data analysis due to participant non-compliance 

with the study procedures. Six additional participants were excluded from fNIRS analysis 

due to technical issues (2 participants) or low quality fNIRS data (4 participants), leaving a 

final sample of 62 participants. Of the 62 participants with usable fNIRS data, 28 were male 

and 34 were female, and the mean age was 23.6 years (SD = 6.3 years).

2.2. fNIRS data acquisition

fNIRS data were collected from a continuous-wave NIRSport2 device (NIRx Medical 

Technologies, LLC). The wavelengths of emitted light (LED sources) in this system were 

760 nm and 850 nm. The data were collected at a sampling rate of 4.5 Hz using the NIRx 

acquisition software, Aurora fNIRS. The fNIRS cap contained a total of 16 sources and 16 

detectors creating 43 total channels covering bilateral frontal cortex (33 channels) and right 

parietal cortex (10 channels).
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2.3. fNIRS optode locations (Montage)

The montage was created using fOLD (fNIRS Optodes’ Location Decider; Morais et al., 

2018), which allows placement of optodes in the international 10–10 system to maximally 

cover anatomical regions of interest, as specified by one of 5 parcellation atlases. The AAL2 

(Automated Anatomical Labeling, Rolls et al., 2015) parcellation was used to generate the 

montage, which was designed to provide as much coverage of the prefrontal cortex (PFC) as 

possible, covering bilateral superior and inferior frontal gyri. This emphasis on frontal 

cortical areas was decided based on evidence from other N-back studies using fMRI (see 

Owen et al., 2005 for a meta-analysis) and fNIRS, which have demonstrated that load-

dependent changes in HbO and HbR are found across areas of the PFC (Ayaz et al., 2012; 

Fishburn et al., 2014; Herff et al., 2014; Sato et al., 2013).

The right parietal region was selected as an additional ROI for this task due to evidence that 

parietal cortical regions are engaged during attention-demanding tasks in fNIRS (Hosseini et 

al., 2017; Murata et al., 2015). As parietal data quality is usually less consistent than 

channels unobstructed by hair (such as the forehead), the majority of optodes (12 sources 

and 12 detectors) were focused on prefrontal regions, leaving only 4 sources and 4 detectors 

to cover parietal areas. Rather than sparsely covering bilateral parietal cortex, better 

coverage of right parietal cortex was examined in the current study. Right parietal was 

chosen as participants would be required to use their right hand to respond (hence activating 

left motor/sensorimotor areas) during the task and our parietal montage overlapped 

somewhat with the standard sensorimotor fNIRS montage. As we did not want to have the 

more anterior channels in our parietal montage to be affected by differences in contralateral 

sensory or motor-evoked activity (i.e. due to less or more responding based on task 

difficulty), we opted to focus on right parietal coverage. While verbal working memory 

storage and rehearsal are more associated with left-lateralized regions of parietal cortex 

(Awh et al., 1996; Ravizza et al., 2004), some meta-analytic data demonstrate bilateral 

parietal activation across verbal and non-verbal N-back tasks (Mencarelli et al., 2019; Owen 

et al., 2005). [Fig. 2]

Gross ROIs from the montage (used in subsequent figures) were defined based on the Brain 

AnalyzIR Toolbox’s depth map function (Santosa et al., 2018). Depth maps show the 

distance from each fNIRS optode to the superficial cortex of several talairach daemon 

labeled regions of the Colin27 atlas (Lancaster et al., 2000), which can be used to determine 

coverage of an ROI based on the montage used. As a topological fNIRS layout cannot access 

depths greater than approximately 30 mm, the channels (lines) projected over yellow or 

orange regions in Fig. 3 (representing depths > 30 mm) are ones that do not reach the 

specified ROI, whereas channels covering green or blue areas are within range of the nearest 

cortical point within the ROI.

2.4. Procedure

After providing informed consent, experimenters measured the participants’ head to 

determine cap size and placement, then began to set up the cap while participants were taken 

through task instructions and given an opportunity to practice the N-back task. After the first 

round of practice, the cap was placed on the participant’s head, moving hair as needed to 
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provide clear access to the scalp for the sources and detectors. Cap alignment was verified 

based on the international 10–20 location of Cz (Klem et al., 1999). fNIRS data were then 

calibrated and checked for quality before proceeding. If any channels were not displaying 

sufficiently high-quality data, placement and hair-clearing were performed again before 

continuing. Next, participants completed a short round of additional practice (single block of 

each 1-back, 2-back, and 3-back without trial-by-trial feedback), before continuing to the 

main round of the N-back task. After completing the experiment, the cap was removed, and 

participants completed a demographics questionnaire. All experimental procedures were 

coded and presented using PsychoPy (Peirce et al., 2019).

2.5. N-back task

The experimenter took participants through step-by-step instructions of the N-back task 

before participants began practice. Participants were told that they would see a sequence of 

short words that are separated by brief fixations, and that every 2 seconds a word would be 

presented that should be compared to the word “N” trials back. In the current study, N was 1, 

2, or 3. Participants were instructed to press the “m” key every time the current word 

matched the word N trials back, and to press the “n” key every time the current word did not 

match the word N trials back [Fig. 1]. Each block began by displaying the N-back level and 

a fixation cross (5 s). Each task block contained a 15-length pseudorandom sequence of two 

words, presented for 2 s each for a total of 30 s, followed by 20 s of rest. Therefore, the 

length of each block was 55 s. To suppress sequence memory formation, the two words used 

in each block were randomly selected from the eight-word pool (‘WHAT’, ‘HOW’, 

‘WHEN’, ‘WHY’, ‘WHERE’, ‘WHO’, ‘THAT’, ‘BUT’), except during the first practice, in 

which the words “AXE” and “BOX” were used. In addition, the sequence of two words was 

determined using an m-sequence (base = 2, power = 4; thus one word appeared eight times, 

and the other word appeared seven times (Buracas and Boynton, 2002; Choe et al., 2014; 

Choe et al., 2016) to suppress its autocorrelation. In all cases, words were presented in white 

text on a black background.

It is worth noting that in the current N-back task design, only two stimuli were used in each 

block, as this would require a button press for each trial. By counter-balancing the correct 

response using m-sequence so that the number of hits and correct rejections was roughly 

equal, this design controls for motor-related and/or event-related global hemodynamic 

responses. That is, it minimizes the effects of brain activity due to slow ‘odd’ events such as 

pressing the key that corresponds to a hit when, for example, only 20% of trials include hits 

(Choe et al., 2014; Jack et al., 2006; Sirotin et al., 2012) and thus could confound the signals 

of interest (i.e., the amplitude of n-back block signal). Additionally, this task design using 

m-sequence counter-balancing of two-stimuli is less prone to two well-known characteristics 

of the N-back task that complicate the reporting and interpretation of its results, including 

dissociable effects of different types of errors (i.e., false alarms and misses; Meule, 2017; 

Oberauer, 2005) and the lure effect (i.e., lures eliciting more errors; Kane et al., 2007; Moore 

and Ross, 1963; Oberauer, 2005). An m-sequence of length of 15 (2^4 – 1) contains all 

permutations of length 4 by design (Buracas and Boynton, 2002), so it can automatically 

eliminate lures and the need for dissociating false alarms and misses.
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After the experimenter took participants through the N-back instructions participants 

performed the first round of N-back practice, consisting of 9 blocks. In this first practice, 

accuracy feedback was provided on a trial-by-trial level as well as at the end of each block. 

Participants completed 3 blocks of 1-back, then 3 blocks of 2-back, and then 3 blocks of 3-

back. After the fNIRS cap was set up, participants began the second round of practice 

designed to mimic the conditions of the real task more closely. In this practice, participants 

performed a single block of 1-back, then 2-back, then 3-back, without trial-by-trial 

feedback. The main N-back task involved 18 blocks, with 6 blocks of each N-back level, 

pseudorandomly presented.

Participants received a performance-based bonus during this round of N-back task, wherein 

performance > 90% on a block earned an additional 40 cents per block, > 80% earned an 

additional 30 cents per block, and > 60% earned an additional 20 cents per block. 

Performance under 60% did not yield a cash bonus in this study. Participants were informed 

of their performance on each block and total bonus directly following the 30 s of task.

2.6. Analysis

2.6.1. Behavioral analysis—Accuracy on the N-back task was calculated by taking the 

average accuracy over the 6 blocks of each N-back level. This accuracy measure was based 

on the number of correct responses out of the total number of trials which required a 

response (i.e., 14 trials required responses on 1-back, 13 trials on 2-back, etc.), and 

therefore, incorrect responses included misses and wrong key presses. Overall, rates of non-

responses were relatively low. Across the 6 blocks of each n-back level, participants failed to 

make a response on an average of 2.29 trials (SD = 1.56) out of 84 total for the 1-back task, 

an average of 2.6 trials (SD = 1.92) out of 78 total for the 2-back task, and an average of 2.6 

trials (SD = 1.82) out of 72 total for the 3-back task. Normalized across total trials per 

condition, on average participants failed to respond in 2.7% of 1-back trials, 3.3% of 2-back 

trials, and 3.6% of 3-back trials. Reaction time (RT) was examined both across all responses 

and for correct responses only, and average RT for each N-back level was also calculated by 

averaging across the 6 blocks. Statistical analysis was conducted using R version 3.5.1 (R 

Core Team, 2018). Accuracy- and RT-level differences between levels of the main N-back 

task, were analyzed with a repeated measures ANOVA using function ‘ezANOVA’ in the 

‘ez’ package (Lawrence, 2016), effect size was calculated using the function ‘eta_sq’ in the 

‘sjstats’ package (Lüdecke, 2020), and Bonferroni corrected post-hoc contrasts were 

conducted using paired t-tests in the R ‘stats’ package.

2.6.2. fNIRS data analysis: quality check—fNIRS data were first loaded into the 

HOMER2 software package (Huppert et al., 2009) for visual inspection and segmentation of 

the main N-back trials from practice trials. Visual inspection was done to examine overall 

data quality (at the level of the participant) and to assess the quality of the parietal data, 

which was much noisier and variable than the frontal data. Visual inspection was performed 

by examining the power spectral density plots for all channels to identify the presence of a 

cardiac oscillation, which is typically around 1 Hz (Tong et al., 2011). The presence of this 

cardiac signal is a good indicator that the optical density signals are successfully coupled 

with a physiological hemodynamic response (Hocke et al., 2018). This method was used to 
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do a first pass evaluation. Based on this visual inspection, 4 participants with unusable data 

(defined as 5 or fewer clean channels) were identified and excluded from further analyses. 

Parietal data quality was also examined and logged to determine whether analysis of this 

region would be fruitful. Of the 62 participants that were kept, 17 had fully usable parietal 

data, 20 had mostly usable parietal data (at least half of channels showing good 

physiological coupling), and 25 had unusable parietal data (only a few usable channels or 

none). It should be noted that, as the statistical analysis downweights noisy channels in the 

linear model (see next section), including these channels will not increase the likelihood of a 

false positive effect, but the power to detect an effect in this area is reduced.

2.6.3. fNIRS data analysis: pre-processing pipeline and task-based activation
—fNIRS data were then analyzed using the NIRS Brain AnalyzIR Toolbox (Santosa et al., 

2018). Using this toolbox, the .nirs data (raw light intensity) were loaded into the program, 

converted into optical density, then converted to oxygenated (HbO) and deoxygenated (HbR) 

hemoglobin concentrations using the modified Beer-Lambert law (Strangman et al., 2003).

Once the data were in the form of HbO and HbR concentrations, first level (subject-level) 

statistics were calculated. As alluded to previously, fNIRS data have unique statistical 

properties that are not accounted for by typical fMRI-based analysis and can inflate the type-

I error rate (Huppert, 2016). In particular, unlike fMRI, fNIRS suffers from serially 

correlated errors (due to a higher sampling rate than the physiological signal of interest) and 

heavy-tailed noise distributions (due to motion-related artifacts and often, large differences 

in SNR between channels and between participants; Huppert, 2016). To correct for these 

issues, the first level general linear model run on individual participants’ data uses an 

autoregressive, iteratively reweighted least-squares model (AR-IRLS). The AR-IRLS model 

employs an auto-regressive filter (pre-whitening) to deal with the serially correlated errors 

and uses robust weighted regression to iteratively down-weight outliers due to motion 

artifacts (Barker et al., 2013). This model saves both the subject level regression coefficients 

and their error-covariance matrices to be used in statistical tests and contrasts for each 

subject, and eventually, for use in second level (group-level) analyses.

Based on research investigating the sensitivity and specificity of basis sets in fNIRS as a 

function of signal quality and task period (Santosa et al., 2019), a canonical HRF basis set 

was selected for this analysis. Work by Santosa et al. (2019) found that for tasks of 

sufficiently long durations (>10 s, as in the current study), the canonical HRF performs best 

in a sensitivity-specificity (ROC) analysis. The canonical model has lower degrees of 

freedom than a full deconvolution of the raw hemodynamic response (finite impulse 

response, or FIR model), which improves performance on ROC analysis. This is true at 

durations of more than 10 s, even though there may be a mismatch between the shape of the 

canonical HRF and the actual hemodynamic response (Santosa et al., 2019).

Based on the output of the first level statistical models, 3 subjects with undue leverage for 

the group analyses were calculated (those which contribute significant leverage towards the 

group results, defined by subject-level leverage of p < 0.05) and were removed from group-

level analyses. Next, second-level statistical models were calculated, which use the full 

covariance from the first-level models to perform a weighted least-squares regression 
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(Santosa et al., 2018). Robust regression was also applied to the second-level model to 

down-weight outliers at the group-level. The results of this analysis were used for group-

level contrasts between N-back levels at each channel.

Group activation results are reported as statistical maps using Benjamini-Hochberg false-

discovery rate-corrected p-values (e.g., q-values; Benjamini and Hochberg, 1995). This FDR 

correction was applied to all the data in the second-level analysis, including 43 channels, 

oxy- and deoxy-hemoglobin, and 3 conditions, making the correction very conservative over 

all tests.

2.6.4. fNIRS data: behavioral PLS analyses—Behavioral PLS analysis (Berman et 

al., 2014; McIntosh and Lobaugh, 2004; Krishnan et al., 2011; https://www.rotman-

baycrest.on.ca) was conducted to identify significant relationships between fNIRS activity 

and task performance as a function of N-back level. PLS (partial least squares) analysis is a 

multivariate, data-driven approach often used to examine brain-behavior associations in 

neuroimaging research by relating two sets of data to one another (Krishnan et al., 2011), in 

our data these two sets were channel activity and N-back level/condition. Because this was a 

behavioral PLS and not a task PLS, we were interested in how the correlation between 

performance and channel activity varied by n-back level. In this study, the fNIRS brain data 

consisted of the regression coefficients (β) from the first-level statistical model (AR-IRLS), 

corresponding to changes in HbO or HbR for each N-back level relative to baseline for each 

participant. The behavioral data consisted of average accuracy for each N-back level across 

blocks of the main N-back task for each participant. Thus, for each behavioral-PLS (HbO or 

HbR) analysis, each participant had 129 brain activity values (activation betas for each of 

three N-back levels for 43 channels) and three behavioral values i.e., average accuracy for 

each of three N-back levels.

Like other forms of PLS, behavioral PLS relies on the singular value decomposition (SVD) 

of a covariance matrix. For matrix X of brain activity (i.e., fNIRS activation betas) and Y of 

behavioral data (accuracy), X and Y were first independently mean centered and normalized 

within N-back condition. The brain data were 62 × 43, i.e., 62 subjects x 43 channels, and 

there were 3 of these matrices (one for each load). The behavioral matrix Y was a 62 × 1 

vector of average accuracy for that load level and there were 3 of these vectors (one for each 

load level). Then, the product between vector Y and matrix X was calculated, i.e., Y’*X, 

which yields a vector of correlations between X and Y of size 1 × 43. There are 3 such 

vectors, one for each n-back level. These vectors are then stacked on top of each other, 

yielding a 3 × 43 cross-product matrix R. This cross-product matrix R is the input for the 

SVD, which decomposes R into three matrices: R = UΔVT, where the singular vector U 

represents the decomposition of R in behavioral/condition space, the singular vector V 

represents the decomposition of R in neural activity space, and Δ is the diagonal matrix of 

singular values, that quantifies the weighting of each of the singular vectors. As such, the 

behavioral saliences (U) represent the N-back level-dependent differences in the brain-

behavior correlation between accuracy and channel activity, and the brain saliences (V) 

represent the fNIRS channel-dependent differences in this brain-behavior correlation by n-

back level.
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The goal of this analysis was to find the linear combination of conditions and brain activity 

that maximized their covariance. These weighted patterns are calculated from the saliences 

U and V and are referred to as latent variables (LVs). The LVs maximize the covariance 

between brain activity and accuracy as a function of N-back level. Ten thousand permutation 

tests were performed to obtain p-values for each latent variable (LV) and 10,000 

bootstrapped samples with replacement were created to generate the 95% confidence 

intervals for the mean correlation between fNIRS activity and performance by condition for 

each channel. The bootstrap ratios (salience[weights]/SE[reliability]) measure the reliability 

of the brain-behavior relationship at each channel, and a larger bootstrap ratio indicates a 

stronger and/or more consistent contribution to the LV. In this study, channels with bootstrap 

ratios larger than +2 or smaller than −2 were determined to be statistically significant as 

these bootstrap ratios can be interpreted as z-scores.

Before running the PLS analysis, histograms of the fNIRS beta values were plotted to 

examine whether the brain data contained any extreme outliers that may bias the PLS 

analysis and would ordinarily be removed in the AnalyzIR Toolbox’s robust regression 

(Huppert, 2016). One participant contained extreme outliers at channel 29 (i.e., beta values < 

−100 and > 100), and was therefore excluded from PLS analysis. However, the direction and 

significance of results did not change if this participant was included.

2.7. Data & code availability

Data, analysis code, results, and experiment code are publicly available at: https://osf.io/

sh2bf/.

3. Results

3.1. Behavioral results: N-back performance

Results of the repeated measures ANOVA examining accuracy as a function of N-back level 

in the main task yielded a significant effect of N-back level on accuracy, F(2,122) = 85.1, p 
< 0.001, ηp

2 = 0.58, 95% CI [0.47, 0.66]. As expected, accuracy for the 1-back task (M = 

0.90, SD = 0.11, 95% CI [0.88, 0.93]) was significantly better than accuracy for the 2-back 

task (M = 0.78, SD = 0.17, 95% CI [0.74, 0.82], p < 0.001) and for the 3-back task (M = 

0.72, SD = 0.16, 95% CI [0.68, 0.76], p < 0.001). Accuracy for the 2-back task was also 

significantly higher than for the 3-back task (p < 0.001). [Fig. 4]

Results for the repeated measures ANOVA examining reaction time (RT) across all 

responses by N-back level yielded a significant effect of N-back level on reaction time, 

F(2,122) = 50.1, p < 0.001, ηp
2 = 0.45, 95% CI [0.32, 0.55]. Pairwise comparisons 

demonstrated that RT for the 1-back task (M = 0.69, SD = 0.17, 95% CI [0.65, 0.74]) was 

significantly faster than RT for the 2-back task (M = 0.81, SD = 0.19, 95% CI [0.76, 0.86], p 
< 0.001) and the 3-back task (M = 0.81, SD = 0.19, 95% CI [0.76, 0.85], p < 0.001). 

However, reaction times for the 2-back and 3-back task were not significantly different (p = 

1) [Fig. 4]. When analyses were conducted on RTs for correct responses only, the results 

were the same (overall effect of N-back level (p < 0.001) driven by faster RTs on 1-back 
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relative to 2-back (p < 0.001) or 3-back (p < 0.001) with nearly identical RT on 2-back and 

3-back (p = 1)).

3.2. fNIRS activation results

3.2.1. Activation vs. baseline in main N-back task—In the GLM, baseline is 

defined by everything that is not a task event (i.e., is a test against the DC regressor in the 

model). Relative to baseline, significant increases in oxygenated hemoglobin (HbO) were 

found for 1 channel (medial superior frontal gyrus) for the 1-back task and for 5 frontal 

channels and 1 parietal channel for the 2-back task. No channels showed significant 

increases in HbO concentrations for the 3-back task. [Table 1] No channels showed 

significant changes in HbR for any N-back level. Group-level activation as the HRF time 

series for each of the N-back levels across 5 ROIs is plotted in Fig. 5.

3.2.2. fNIRS contrasts: 2-back vs. 1-back—For HbO, 18 channels in the bilateral 

frontal and right parietal cortex showed significantly larger (q < 0.05) increases during the 2-

back task relative to the 1-back task. No channels yielded larger HbO increases for the 1-

back task relative to 2-back.

For HbR, 7 channels, primarily in bilateral inferior frontal gyrus (IFG), displayed larger 

decreases for 2-back over 1-back. Additionally, 5 channels, primarily in the right middle 

occipital gyrus, yielded larger decreases in HbR for 1-back relative to 2-back. [Fig. 6, Top 

Panel]

3.2.3. fNIRS contrasts: 3-back vs. 1-back—For HbO, 8 channels, primarily in left 

and right IFG, yielded significantly larger increases for 3-back relative to 1-back. Larger 

HbO increases for 1-back over 3-back were found in 7 channels, primarily located in the 

right inferior parietal cortex and left superior frontal gyrus (SFG).

For HbR, 5 channels (4 prefrontal, 1 inferior parietal), demonstrated larger deactivation in 

the 3-back task compared to 1-back. Eight channels (4 frontal and 4 occipito-parietal) 

showed the opposite pattern. [Fig. 6, Middle Panel]

3.2.4. fNIRS contrasts: 3-back vs. 2-back—For HbO, 22 channels showed 

significantly larger increases during the 2-back task compared to the 3-back task. These 

channels covered bilateral frontal and right parietal areas. Only one frontal channel was 

greater for the 3-back relative to the 2-back task.

For HbR, 9 channels distributed across bilateral frontal and right parietal cortex showed 

larger decreases for the 2-back task relative to the 3-back, and 4 channels (2 in medial SFG 

and 2 in inferior parietal cortex) showed the inverse pattern. [Fig. 6, Bottom Panel]

3.2.5. fNIRS contrasts summary—Group level activation maps and contrasts between 

N-back conditions showed the most consistent results in the 2-back task relative to baseline 

and comparing activity during the 2-back task relative to the 1-back task. The consistently 

higher HbO and lower HbR concentration changes during the 2-back task, but not 3-back 

task, suggest that a minimum level of accuracy may be needed to elicit reliable activation in 
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the fronto-parietal cortical regions examined. By minimum accuracy, we mean that if 

participants are not performing with a high enough accuracy they may not actually be 

engaged in the task because it has become too difficult. Participants overall performed more 

poorly on the main 3-back task. For the 59 participants used in group-level analysis of the 

main N-back task,1 the average accuracy was 73.6% for the 3-back task. In comparison, 

average accuracy for these 59 participants was 80% for the 2-back task and 92.3% for the 1-

back task.

3.3. Behavioral PLS analysis: fNIRS activity ~ task performance

Separate behavioral PLS analyses were run to relate performance to concentration changes 

in HbO and HbR by condition (i.e., 1-back, 2-back, and 3-back). Though no statistically 

significant LVs were found for oxyhemoglobin (HbO), the first latent variable from the 

analysis with deoxyhemoglobin concentrations (HbR) was significant and explained 51% of 

the crossblock covariance (p = 0.025). LVs 2 and 3 in this analysis were not significant (all p 
> 0.9). For the significant LV 1, eight superior frontal gyrus (SFG) channels (#1, #3, #4, #8, 

#9, #12, #16, and #25) showed N-back level dependent changes in the relationship between 

HbR and task accuracy [Table 2]. All of these significant SFG channels had bootstrap ratios 

> 2, indicating the direction of the brain-behavior relationship was the same across all eight 

channels. In addition, one channel in the left inferior frontal gyrus had a bootstrap ratio in 

the opposite direction (BSR = −2.4). For the eight superior frontal gyrus channels, a larger 

reduction in HbR (equivalent to increased neural activity) was positively correlated with 

higher performance on the 3-back task, unrelated to activity on the 2-back task, and 

negatively correlated with performance on the 1-back task. In summary, this suggests that 

the metabolic demands placed on the prefrontal cortex that are necessary to achieve a high 

level of accuracy varies as a consequence of how difficult the task is. [Fig. 7]

4. Discussion

The initial, confirmatory aim of this study was to further validate the use of fNIRS for 

measuring cognitive load with a large sample and utilizing recently developed robust 

statistical tools. Though a number of previous fNIRS studies have examined prefrontal 

activity using attention demanding working memory tasks such as the N-back (Aghajani et 

al., 2017; Ayaz et al., 2012; Fishburn et al., 2014; Kuruvilla et al., 2013; Sato et al., 2013), 

recent work has demonstrated that due to the unique statistical properties of fNIRS, the 

standard analysis approach (based on fMRI) can severely inflate the false positive rate 

(Huppert, 2016). In addition, discrepancies between studies that may be related to task 

performance have been demonstrated across several studies. Therefore, to provide 

convergent evidence for previous studies examining load-dependent changes in PFC and 

parietal cortex, a standard N-back task was employed with a large sample of participants, 

and using the recently developed Brain AnalyzIR Toolbox (Santosa et al., 2018) to deal with 

these fNIRS-specific statistical properties. As an exploratory aim, a behavioral PLS analysis 

was conducted to directly examine how performance and activation might be dependent 

1Three of the 62 usable fNIRS participants (#s P42, P67, and P70) were removed due to undue group-level leverage, see section 2.6.3. 
fNIRS Data Analysis: Pre-processing Pipeline and Task-Based Activation.
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upon cognitive load, which may explain non-linear load effects in this study and in previous 

work.

Overall, the fNIRS results were consistent with the general hypothesis that tasks placing 

higher demands on attention and working memory would lead to increased frontal and 

parietal activation as measured by HbO and HbR concentration changes. This was most 

evident by the widespread frontoparietal activation elicited by the 2-back task relative to the 

1-back task.

However, activity in the 3-back task did not follow the hypothesized pattern. As mentioned 

previously, this non-linear load effect has been demonstrated in other fNIRS studies 

(Aghajani et al., 2017; Mandrick et al., 2013; Mandrick et al., 2016), and seems likely due to 

poor performance on the task. These results are consistent with the idea that when task 

demands exceed the current mental capacity of participants, they may disengage from the 

task and potentially, fail to recruit the necessary cognitive resources (Mandrick et al., 2013).

Interestingly, results of the PLS analysis that incorporated individuals’ accuracy by N-back 

level demonstrated evidence for an interaction of load and performance in the recruitment of 

the PFC. Specifically, this multivariate approach showed that changes in deoxyhemoglobin 

concentrations (HbR) in the medial SFG, which were only uncovered when examining the 

relationship between brain-behavior, but not when behavioral performance was not 

accounted for. Here, greater reductions in HbR (i.e., more activation) was positively related 

to performance on the 3-back task, unrelated to accuracy in the 2-back task, and negatively 

related to accuracy in the 1-back task. This pattern of results suggests that more automaticity 

during the 1-back task (i.e., less activation) led to better performance on this relatively easy 

task, and extensive recruitment of the PFC was required for high accuracy on the more 

difficult, cognitively demanding 3-back task.

This effect may reflect what has been proposed by the neural efficiency hypothesis: that 

participants with overall greater cognitive processing ability will show less activation during 

easy tasks and more during difficult tasks (Dunst et al., 2014; Neubauer and Fink, 2009). 

This is thought to result from the lower metabolic demands that a “more efficient” brain 

requires during cognitive tasks. Though the neural efficiency hypothesis is often framed as 

reflecting individual differences in intelligence, there is also evidence that this effect occurs 

as a result of more efficient strategies after adequate practice on a specific task (Sayala et al., 

2006). Thus, one possibility for this interaction of task difficulty and prefrontal activation is 

that this reflects individual differences in the learning and adoption of effective strategies 

during practice. Interestingly, recent neuroimaging work has shown that individuals whose 

brains are in a more scale-free or fractal state tend to reap the benefits of practice to a greater 

degree than do those starting in a less scale-free state (Kardan et al., 2020). Though scale-

free neural dynamics have been demonstrated in fMRI and EEG (Churchill et al., 2016; 

Kardan et al., 2020), whether this signal can be extracted from fNIRS data remains an open 

question.

While fNIRS differs from fMRI in its spatial specificity and instrumentation, both 

techniques are well-suited to measure the task-evoked hemodynamic response in the cerebral 
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cortex. As these methods are believed to measure the same underlying biological signal 

(Buxton, 2010; Huppert et al., 2006), it is worth noting the clear correspondence between 

our results and those found in functional MRI. Specifically, the load-dependent increase in 

fronto-parietal metabolic activity for the 2-back task relative to the 1-back task in our study 

replicates many similar findings in the fMRI literature (Mencarelli et al., 2019; Owen et al., 

2005; Rottschy et al., 2012; Schmidt et al., 2009). Further recent fMRI studies have 

indicated that well practiced tasks may result in reduced PFC activation as a result of 

increased neural efficiency (Miró-Padilla et al., 2019; Thompson et al., 2016), which is 

consistent with the negative relationship between mid-frontal activity and performance on 

the 1-back task demonstrated by the behavioral PLS analysis in the present study.

The current study has a few limitations. Specifically, though it would have been ideal to get 

clean data from bilateral frontal and parietal cortex, the montage was only able to cover the 

right parietal cortex and the overall the signal-to-noise ratio (SNR) in these channels was 

very poor compared to the frontal channels. By design, the Brain AnalyzIR Toolbox 

performs robust regression to downweight outliers and low SNR channels, which is 

necessary to avoid high false positive rates (Barker et al., 2013; Santosa et al., 2018). 

However, it is unclear whether the weaker effects in this area are due to lack of good signal 

(a false negative) or actually due to a lack of parietal cortical involvement in the N-back task 

relative to prefrontal cortex. Relatedly, this robust regression and conservative multiple 

comparisons correction (using q-values with 43 channels, 3 N-back levels, and both HbO 

and HbR) may explain the limited number of channels demonstrating statistically significant 

activation for task relative to baseline. Lastly, as our sample was relatively young (average 

age = 23.6 years), these results may not generalize to older populations. Future research with 

a larger age range would be beneficial to examine whether this load-dependent pattern of 

accuracy and fNIRS activation is altered in an older cohort.

Group-level results as an HRF time series, averaged across 5 general ROIs with 8–10 

channels each. Color-coded montage in lower right indicates the channels included in each 

ROI.

Additionally, it is unclear from these data why the PLS analysis found the load-dependent 

relationship in deoxyhemoglobin (HbR) concentration changes but not in oxyhemoglobin 

(HbO). In general, the HbO signal is larger than HbR which makes it easier to detect 

significant effects in task-based fNIRS, as is the case in this study’s N-back contrasts. 

Relative to HbO, the HbR signal is slower and more tightly coupled with the BOLD 

response of fMRI (Huppert et al., 2006). Therefore, one possibility is that the relationship 

between task performance and activation got stronger with increasing time performing the 

task, which may be reflected to a larger extent in the slower HbR signal. Additionally, as 

HbR is more sensitive to oxygen metabolism (and HbO is more sensitive to blood flow 

changes), it may be that this effect is more driven by metabolic changes. However, future 

investigations would be required to directly test these possibilities.

Only significant channels (q < 0.05) are shown. Channels are displayed on top of 10–20 

coordinates and grayscale depth maps for left and right Inferior Frontal Gyri, medial 

Superior Frontal Gyri, and right Superior and Inferior Parietal Gyri. For HbO contrasts, 
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positive t-values (red) correspond to relatively larger activity for the first term in the contrast, 

and negative t-values (blue) correspond to larger activity for the second term. The opposite 

pattern applies to HbR contrasts.

In conclusion, the present study demonstrates that fNIRS activation is sensitive to cognitive 

load and is differentially affected by performance based on task difficulty. This work 

demonstrates the efficacy of using robust statistical procedures to deal with unique statistical 

properties of fNIRS signals and the utility of implementing data-driven, multivariate 

techniques to elucidate more nuanced relationships between brain activity and behavior.
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Fig. 1. 
N-back Task. Example of 1-back task (Top) and 3-back (Bottom). 2-back task not shown.
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Fig. 2. 
fNIRS Montage in international 10–10 coordinate space. Montage with 16 × 16 frontal 

source-detector pairs and 4 × 4 right parietal source-detector pairs. Sources are indicated in 

red, detectors are indicated in gray, and channels are indicated by purple lines. Cz 

highlighted in green.
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Fig. 3. 
Gross ROI depth maps with superimposed montage. fNIRS montage (registered to Colin27 

atlas) and depth map for 6 ROIs taken from the talairach daemon parcellation: Left and 

Right Inferior Frontal Gyrus, Medial Superior Frontal Gyrus, Medial Orbitofrontal Cortex, 

Right Superior Parietal Gyrus, Right Inferior Parietal Gyrus.
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Fig. 4. 
Boxplots of Average Accuracy & RT by N-back Level for all participants.
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Fig. 5. 
Group Average HRF plots by N-back level.

Group-level results as an HRF time series, averaged across 5 general ROIs with 8–10 

channels each. Color-coded montage in lower right indicates the channels included in each 

ROI.
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Fig. 6. 
N-back level contrasts for HbO (left) and HbR (right).

Only significant channels (q < 0.05) are shown. Channels are displayed on top of 10–20 

coordinates and grayscale depth maps for left and right Inferior Frontal Gyri, medial 

Superior Frontal Gyri, and right Superior and Inferior Parietal Gyri. For HbO contrasts, 

positive t-values (red) correspond to relatively larger activity for the first term in the contrast, 

and negative t-values (blue) correspond to larger activity for the second term. The opposite 

pattern applies to HbR contrasts.
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Fig. 7. 
LV 1 demonstrated an N-back load-dependent relationship between changes in 

deoxyhemoglobin concentrations (HbR) and performance. (A) The left panel shows 

correlation between accuracy and HbR concentration change separately by N-back level. 

Error bars are 95% confidence intervals around the mean correlation. The right panel shows 

channels (labeled by number), which had bootstrap ratios (BSR) > |2|. (B) Scatterplots 
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showing the correlation between HbR (β for task-evoked change from baseline) and 

performance (accuracy) at 4 channels with BSRs > 3, separated by N-back level.
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Table 2
Significant Channels for LV 1

Channel number based on source (S) - detector (D) pair. ROI label defined by maximal coverage of talairach 

daemon ROI. Channels ordered by size of bootstrap ratio. Bootstrap ratios > |2| were considered significant.

Channel # S D ROI Bootstrap Ratio

25 9 1 R Middle/Superior Frontal Gyrus 4.3

8 3 2 Medial Superior Frontal Gyrus 3.8

12 4 2 L Superior Frontal Gyrus 3.5

4 2 1 R Superior Frontal Gyrus 3.3

16 5 3 L Middle/Superior Frontal Gyrus 2.6

1 1 1 Medial Superior Frontal Gyrus 2.3

3 1 3 Medial Superior Frontal Gyrus 2.3

9 3 4 Medial Superior Frontal Gyrus 2.2

22 7 8 L Inferior Frontal Gyrus −2.4
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