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ABSTRACT

The traditional mesoscopic paradigm represents
DNA as a series of base-pair steps whose
energy response to equilibrium perturbations is
elastic, with harmonic oscillations (defining local
stiffness) around a single equilibrium conformation.
In addition, base sequence effects are often
analysed as a succession of independent XpY
base-pair steps (i.e. a nearest-neighbour (NN)
model with only 10 unique cases). Unfortunately,
recent massive simulations carried out by the ABC
consortium suggest that the real picture of DNA
flexibility may be much more complex. The
paradigm of DNA flexibility therefore needs to be
revisited. In this article, we explore in detail one of
the most obvious violations of the elastic NN model
of flexibility: the bimodal distributions of some
helical parameters. We perform here an in-depth
statistical analysis of a very large set of MD
trajectories and also of experimental structures,
which lead to very solid evidence of bimodality. We
then suggest ways to improve mesoscopic models
to account for this deviation from the elastic regime.

INTRODUCTION

DNA is a large and flexible polymer that can easily change
its conformation to adapt to different interactions (1).
Early models of flexibility assumed averaged sequence-
independent elastic properties for DNA (2–4). Despite
this extreme simplicity, these models were successful in

describing several macroscopic properties of long frag-
ments of DNA (4,5). However, it very soon became
evident that not all DNA sequences respond in the same
way to mechanical stress, implying that sequence-
dependent models of DNA flexibility needed to be
developed (6–10). Since their origins, such models have
become very valuable for investigating the connection
between the sequence-dependent physical and biological
properties of DNA (11–13), shedding light on such im-
portant processes as the mechanisms of chromatin organ-
ization, or the physical basis of the indirect recognition of
DNA by regulatory proteins. The importance of these
models relies on their utility to link microscopic observ-
ables with macroscopic properties, and to bridge the gap
between the size of the systems and the length of simula-
tions that could be achieved with atomistic approaches
and the so-called ‘mesoscale’ where many of the most im-
portant biological events take place.

The most popular sequence-dependent flexibility models
of DNA assume that, first, DNA responds elastically to
mechanical stress, and, second, that sequence effects are
fully characterized at the base-pair step level (6,9,14). This
implies that there is a quadratic dependence between the
degree of geometrical deformation and the distortion
energy, and also that the parameters defining such a
response (namely the equilibrium value and the force-
constant) can be obtained using the nearest-neighbours
(NNs) approach, that is, for a given helical descriptor of
DNA there are only 10 sets of different parameters
(those corresponding to the 10 unique dinucleotide steps:
d(AA)·d(TT), d(AG)·d(CT), d(AC)·d(GT), d(AT)·d(AT),
d(GG)·d(CC), d(GA)·d(TC), d(GC)·d(GC), d(TA)·d(TA),
d(TG)·d(CA) and d(CG)·d(CG). The most popular
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mesoscopic model of flexibility originated from the
Zhurkin and Olson groups (6) and describes flexibility in
terms of equilibrium values and stiffness parameters
associated with six inter-base-pair coordinates (twist,
roll, tilt, slide, shift and rise). Olson et al. (6) derived the
parameters of their model by making Gaussian fits to the
helical parameter distributions for each type of dinucleo-
tide step within a database of DNA–protein complexes.
Then, maximum probability peaks are equated to equilib-
rium values and the widths of the distributions to the
associated stiffness constants (corresponding to the
diagonal elements of the full stiffness matrix). Lankas
et al. (15) refined Olson’s model with the help of conform-
ational sampling from molecular dynamics (MD)
trajectories of short duplexes (9,16), which allowed them
to obtain dense and homogeneous data for all steps in
naked DNA and enabled both diagonal and off-diagonal
elements of the stiffness to be derived. However, both
these models assumed the NN description of sequence
effects and simple elastic deformations.

In a massive community effort for characterizing
B-DNA flexibility, a large number of oligonucleotides
containing the 136 unique tetranucleotide steps were
studied by means of atomistic MD simulations (17). The
results provided a detailed and balanced map of DNA
flexibility, but also unexpected and intriguing features:
(i) in many cases non-neighbour effects modify the con-
formational preferences of the dinucleotide steps; and (ii)
some non-normal distributions were detected. Notably,
bimodal distributions were observed in some base-pair
steps for twist and slide (17), highlighting potential
caveats of the NN model and also of the harmonic ap-
proximation implicit in elastic analysis (18). It however
remains to be shown that the bimodality detected in
ABC simulations is not a force-field artefact, or an equili-
bration issue related to the length of trajectories. If
verified, it is also unclear how these effects should be ac-
counted for in mesoscopic models of DNA flexibility.

We report here the results of a very large-scale analysis
of MD trajectories from our local trajectory database,
some of them covering multi-microsecond ensembles, in
addition to the ABC dataset and also experimental DNA
structures deposited in the Protein Data Bank (PDB).
This conformational data were processed by using a
wide repertory of statistical tests, including the Bayesian
Information Criterion (BIC; (19)), Bayes Factors metrics
(20) and generalized Helguerro’s theory (21). The results,
while raising concerns for some of the conclusions derived
from ABC data, provide solid support for others, suggest-
ing that deviation from the NN-elastic flexibility paradigm
can no longer be neglected.

MATERIALS AND METHODS

The experimental conformational space, defined as a set of
experimental structures in the PDB, was compared with a
collection of structures taken from many independent
MD trajectories (considered as a single theoretical
conformational space by combining all the trajectories).
The aggregated simulation time (for 160 individual

trajectories) presented here corresponds to more than
10 ms of simulation, and nearly reaches 1ms of sampling
for some base-pair steps.

Structural database

The 974 DNA segments analysed in this work were ob-
tained from 739 different PDB files determined experimen-
tally by X-ray techniques. Structure files were collected
from three on-line databases. (i) The 3DNA Landscapes
database (http://3dnascapes.rutgers.edu/) (22); (ii) the
Protein–DNA Interface database implemented by
Norambuena and Melo (http://melolab.org/pdidb/web/
content/home) (23); and finally (iii) the Nucleic Acid
Database (NDB; http://ndbserver.rutgers.edu/) (24).
On-line filters provided by the databases were applied
and in-house post-processing was performed to ensure
data quality. Thus, only X-ray structures with resolution
2.5 Å or better were selected. Sequences with three or more
modified bases, and those containing non-canonical
covalent bonds (e.g. thymine dimers, covalently bound
DNA–protein or DNA–DNA complexes) were removed.
When downloading naked-DNA structures, we only
retain DNA segments in the B-form (more than 50% of
the base pairs in the B-form, according to the criterion
used in the 3DNALandscapes database (22) based on
the positions of P atoms within individual base-pair
steps). Finally, base-pair steps with anomalous helical par-
ameters (more than three standard deviations from the
mean of the measured properties) were not included in
the statistical tests. Analysis was always limited to canon-
ical bases in their major tautomeric and ionic states.
After the selection procedure 7685 base-pair steps

remained: 86% come from DNA–protein complexes and
14% correspond to naked-DNA structures (i.e. structures
without protein or ligands in the crystal). The set of
DNA–protein structures is composed of 58% of
enzymes, 31% of transcription factors and 10% of struc-
tural binding proteins. To explore the potential impact of
non-normality in modulating DNA interactions we also
created an additional dataset using the X-Ray structures
of complexes of DNA with intercalators. The correspond-
ing PDB entries of all the files organized in these
categories are available in the Supplementary Data
(Table S1).

MD dataset

We analysed the flexibility of the different base-pair steps
in our local database of trajectories, which contains
trajectories typically in the 50–200 ns range, plus all the
trajectories of the different tetramers retrieved from the
ABC consortium (17). All trajectories were obtained
using state-of-the-art simulation conditions (16,17,25)
and the parmbsc0 refinement (26) to the parm99 force
field (27). Simulations were done using either SPC/E (28)
or TIP3P (29), water models (we did not find any major
difference between results obtained with these two solvent
models), K+ or Na+ were used as counterions, some cal-
culations were done with minimum cation concentrations
to achieve neutrality, others were performed using small
quantities of added salt (KCl or NaCl), and in a few cases

Nucleic Acids Research, 2012, Vol. 40, No. 21 10669

http://3dnascapes.rutgers.edu/
http://melolab.org/pdidb/web/content/home
http://melolab.org/pdidb/web/content/home
http://ndbserver.rutgers.edu/
http://nar.oxfordjournals.org/cgi/content/full/gks884/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks884/DC1


we used higher ionic strength (again, our analysis did not
show any significant dependence of DNA properties on
salt concentration, at least up to 500mM added salt).
The resulting dataset of trajectories covers the entire

sequence space (up to the tetramer level) and represents
more than 10 ms for the ensemble (Supplementary
Table S2), and nearly a millisecond of aggregated
sampling for some steps. In addition, in order to analyse
convergence issues, we extended our Drew–Dickerson
dodecamer simulation (25) to 4ms, which additionally
allows us to determine the expected timescale of multi-
modal transitions in B-DNA. To achieve the statistical
test described below, 1 million structures were randomly
extracted from the ensemble generated for each bps. This
procedure was repeated more than once to ensure that the
statistical measures did not change with the sampling
methods.

Structural analysis of the data

All the experimental structures were visually inspected
using VMD 1.9 (30) and hand-curated when necessary.
Before making any measurements, all non-DNA mol-
ecules were removed. Six inter-base pair helical parameters
were measured (rise, roll, shift, slide, tilt and twist) using
the Curves+ suite of programs (31).

Statistical analysis of data

A normal distribution is a continuous probability distri-
bution used to describe real-valued variables that tend to
cluster around a single average value. This distribution
follows a well-known Gaussian function:

fðxÞ ¼
1

�
ffiffiffiffiffiffi
2�
p e�

1
2

x��
�ð Þ

2

ð1Þ

where, � is the standard deviation of the variable x and �
the average value of the distribution. Note that a normal
distribution implies a harmonic response of the variable x
to deviations from the mean value �. For molecular
systems, a Gaussian distribution for a given coordinate
implies a harmonic response to perturbations of the
geometry with respect to such a coordinate:

E ¼
1

2
K�X2 ð2Þ

where K is the stiffness constant associated to the variable
and �X=x�X0 is the deviation of the variable from the
equilibrium value (X0).
A normal distribution is always symmetrical and

unimodal (in this particular case the average and the
mode, i.e. the most frequent value in the sample, have
exactly the same value). Deviations from normality can
be of many different types. One very common deviation
is asymmetry (skewness) of the distribution about the
mean. Another common deviation is multimodality (par-
ticularly bimodality), where instead of a continuum distri-
bution centred on one mode there is a continuum
distribution centred on two, or more, different local
means (32). In some cases, bimodal distributions can be

fitted to binormal distributions, which are defined as a
combination of two Gaussian functions (21):

gðxÞ ¼ prf1ðxÞ+ð1� prÞf2ðxÞ ð3Þ

where f1(x) and f2(x) are the two Gaussian components of
the binormal distribution g(x), and pr is the mixture
proportion.

Bayesian information criterion
This criterion serves for model selection, i.e. find a model
that allows to describe the distribution of our data using a
finite set of known functions (in this case, Gaussian func-
tions) (19). BIC is used here to test for the presence of
uninormality, binormality or multinormality depending
on the number of Gaussian functions used to fit the
data. This approach will optimally fit a given distribution
with an (a priori) undefined number of parameters, i.e. an
undefined number of Gaussian, by finding the set of par-
ameters that minimizes the BIC (the model with the lower
BIC is then chosen) (19):

�2 ln pðxjkÞ � BIC ¼ �2 lnðLÞ+k lnðnÞ ð4Þ

where x are the observed data, k is the number of free
parameters to be estimated, and p(xjk) is the probability
of the observed data given the number of parameters, or,
in other words, the likelihood of the parameters given the
dataset. L is the maximized value of the likelihood
function for the estimated model, and n is the number of
data points in x (the number of observations, or equiva-
lently, the sample size). Note that BIC controls the intro-
duction of extra-fitted parameters (second term in
equation (4)), which will be accepted only when they sig-
nificantly improve the representation of the distribution.
To reduce the risk of over-fitting (given that some distri-
butions are relatively sparse) we limit BIC to considering a
maximum of two Gaussians.

Bayes factor analysis
This method was used to process the BIC values obtained
in the statistical analysis described above. It allows
determining the strength of the evidence in favour of the
model chosen by BIC (uninormal or binormal). The dif-
ference in BIC between two models i and j is&�2 times
the natural logarithm of the Bayes factors (F) for model j
versus model i (20):

BICj � BICi � �2 lnðFjiÞ ð5Þ

and thus, to a good approximation, the Bayes factors are
related to the BIC values as follow:

Fji ¼ e0:5ðBICj�BICiÞ ð6Þ

Assuming that there is an equal probability of obtaining
an explanatory model with one (M1) or with two compo-
nents (M2), with BIC values BIC1 for M1 and BIC2 for
M2, the probability of a two-component model being
justified is defined as (20):

pðM2jdataÞ ¼
1

1+F21
¼

1

1+e0:5ðBICj�BICiÞ
ð7Þ
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Considering a pre-determined confidence level of 5%, we
consider that there is strong evidence in favour of M2
(i.e. the need for combining two normal distributions)
if p(M2jdata)> 0.95 and strong evidence in favour of
M1 if p(M2jdata)< 0.05. Between these two extreme
values, we should conclude that there is insufficient
evidence (IE) to support either models. Considering this
range of possibilities, results are reported as M1
(uninormal model supported), M2 (binormal model sup-
ported), or IE.

Testing modality
Despite the power of the BIC in distinguishing between
uni- and binormality, the concept of modality was
introduced as an additional criterion to distinguish
binormal distributions where the two peaks (the two
modes) are close together from those where they are sig-
nificantly separated. This is the most important distinction
in terms of understanding DNA dynamics. In the first
case, for practical purposes, the use of a single normal
distribution may often be justified to represent the data
(the overall distribution may be interpreted as unimodal),
while it cannot be in the second (binormal-bimodal distri-
butions). The modality for the mixture of two Gaussian
functions can be measured quantitatively through the gen-
eralization of Helguerro’s theorem (21,33), which defines
the separation factor S(r), based on the variance s2, as

SðrÞ ¼
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Then the mixture density g(x) is unimodal regardless of
the mixture proportion pr if and only if:

�2 � �1j j � SðrÞ � ð�1+�2Þ ð9Þ

and, otherwise, is bimodal (21). From here on, when g(x)
indicated unimodal or bimodal distributions, they are
labelled U or B, respectively.

RESULTS AND DISCUSSION

MD versus X-ray structures: equilibrium
helical parameters

Table S3 presents the average values and standard devi-
ations of the inter-base pair parameters (note that here, as
a first step, we assumed normality as in previous studies
with smaller databases (6,9,14,16)). We found that there
are cases where the equilibrium values obtained from the
analysis of naked-DNA structures are different to those
obtained from the analysis of DNA–protein complexes.
Some of these differences (Table S3) are so large that
they cannot be fully explained just by considering the
scarcity of structures in the naked-DNA database, sug-
gesting that either binding to the protein induces
non-negligible changes in the DNA conformation, or al-
ternatively that packing effects are significant in small,
naked-DNA oligomers. Comparing simulation data with

experimental structures for naked DNA, we found that for
85% of the 60 cases studied (6 parameters� 10 bp) the
agreement between simulations and X-ray structures is
very good. In most of the cases of significant differences
between experiment and theory, the experimental data are
so scarce that the corresponding averages are not robust
(this is the case, e.g., for AC, AG and TA steps). In the
cases where there is enough experimental data to obtain
robust averages, differences between simulation and X-ray
structures in PDB can be justified either by the lack of con-
vergence and/or force-field inaccuracies on the MD-side,
or to protein-induced distortions and/or crystal packing
artefacts on the X-ray side (for the rotational parameters
the differences can be as large as 10�, and in turn more
than 1 Å in the translational parameters). Overall, we
should stress the ability of simple force-field calculations
to reproduce known experimental information on DNA,
at least at the base-pair level.

Helical distributions from MD ensembles and
X-ray structures

A careful statistical analysis (see Materials and Methods
section) of the experimental and MD-derived datasets
reveals that 76% of the distributions fit better to
binormal rather than to normal distributions (Figure 1).
There are even some cases where more than two normal
distributions should be considered for an ideal fit.
However, even if most distributions are binormal (M2),
the individual Gaussians determined by Bayesian
analysis (BIC) in many cases have significant overlaps
(Supplementary Table S4). Following Helguerro’s
theorem this means that most of these distributions can
nevertheless be considered as unimodal (U). In these cases
(M2/U, dark blue squares on Figure 1), the distributions
can be characterized by a single set of weighted averages
and standard deviations (Supplementary Table S4), and
elastic models are still valid.
We will analyse in more detail in the following the cases

for which binormality and bimodality seem supported,
since from a structural point of view the finding of
binormal-bimodal cases indicate the presence of poly-
morphism, i.e. the existence of different possible conform-
ations for certain helical parameters where nucleotides are
in two or more, discrete (possibly, partially overlapping)
conformations.
Bimodal distributions are found for slide and rise in the

X-ray DNA–protein distributions, and are present for
slide and twist in the MD database. They also appear
for shift, slide and twist in the X-ray naked-DNA
database (even though here the analysis is limited by the
scarcity of data for most steps). Analysis of the dataset
reveals that the rise bimodality found in the X-ray struc-
tures for CG and TA steps is the result of large, anhar-
monic perturbations induced by the proteins, namely the
partial or complete intercalation of amino acid side chains
in these steps (e.g. see the PDB entries: 1CDW, 1D3U,
1BF4 and 1EWQ). In several cases, the bimodality
found in slide for TA steps is directly correlated with the
bimodality observed in rise (data not shown). No
indication of bimodality is found in these cases in the
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naked-DNA structures, or in the MD sampling.
Accordingly, in these cases, we can conclude that
proteins distort the DNA away from the elastic regime
valid for a naked-DNA structure. In contrast, for the un-
perturbed DNA, there is no spontaneous sampling of two
distinct conformational regions and its behaviour remains
unimodal. Bimodal distributions were however found for
the shift and slide of GC steps in the X-ray naked-DNA
database. These distributions are wide for shift and asym-
metric and weighted towards lower values for slide,
although again the statistical results are limited by the
scarcity of data (for the same number of occurrences,
the Bayes factors were unable to support the normality
for twist and roll). No matching behaviour was found
with the protein–DNA structures, or with the MD
ensemble, for either shift or slide, raising doubts as to
whether these bimodality signals can be fully justified.
A detailed analysis of the different helical distributions

is time consuming, but also extremely informative (see,
e.g. Figures 2–3 and Supplementary Figures S1–S4).
Among other observations, we find the well-known
coupling (6) of some helical deformations (e.g. the
negative correlation of twist and roll), and these trends
are evident in all the datasets. As found in previous
studies (14), MD reproduces the shape of experimental
distributions well and, interestingly, MD-derived
sampling easily covers the range of DNA conformations
seen not only in naked DNA, but also in DNA–protein
crystals. Considering that the aggregated MD data

considered here spans the micro to millisecond timescale,
this implies that most DNA–protein binding, at least
locally (at the base-pair step level), could obey the ‘con-
formational selection’ paradigm (34), since the thermally
induced oscillations of naked DNA encompasses the dis-
tortions required for protein binding. However, analysis
of the crystal structures lying outside the MD conform-
ational distributions also reveals clear, but infrequent,
cases of induced fit mechanisms (35) involving large, an-
harmonic deformations of DNA (see Discussion on
unusual rise above and examples in Supplementary
Figures S1–S4), well beyond the grasp of elastic models.
These results are only part of the complete evidence
needed to conclude on the relative importance of ‘con-
formational selection’ versus ‘induced fit’ paradigms.
This would require computing the correlated conform-
ational changes in many parameters, over many base-
pair steps, something that is far beyond the present study.

MD simulations of naked DNA found evidence of
bimodality in slide for AG and CC, and also in twist for
CG. A detailed analysis of the slide distributions in AG
and CC (Figures 1 and 2) reveals, that in both these cases,
bimodality is related to the population of a secondary
free energy minima located at negative slide values
(around� 1.5 Å). These minima are populated in
protein–DNA complexes (Figure 2) and, in fact, some
qualitative similarity exists between MD and protein–
DNA X-Ray distributions (Figure 2), although the statis-
tical tests failed to report bimodality for the corresponding
DNA–protein distributions. This, combined with the
reduced number of naked DNA complexes in experimen-
tal database, precludes a direct experimental validation of
the bimodality of the slide distributions for AG and CC
steps. There is thus currently insufficient experimental
data for ApG and CpC slide to support the two-state
polymorphism observed in MD simulations.

Bimodality in twist at CG steps in the MD trajectories
corresponds to populating a second minimum in a region
of low twist (around 25�; Figure 3). In this particular case,
the naked-DNA database is sufficiently populated (more
than 200 occurrences) to allow us to use Bayesian statistics
and to confirm the presence of polymorphism in the CG
twist of the experimental DNA structures. The analysis of
DNA–protein structures also reveals binormality, since a
simple visual inspection (Figure 3) suggests the presence of
a secondary peak of probability at low twist. However, the
two fitted distributions (for low and high twist) show sig-
nificant overlap and Helguerro’s metric reveals that use of
a bimodal distribution is not warranted. It therefore seems
that proteins tend to favour high-twist CG conformations.
Bimodality is however very clear (Figure 4) if we consider
DNA duplexes bound to intercalators. These molecules,
which have a very marked preference for CG steps, often
lead to untwisting DNA at the intercalation site, with twist
values typically in the range 22�–25�, corresponding to the
low-twist values expected for the minor peak of the
bimodal distribution found in MD ensembles of naked
DNA. Clearly, spontaneous bimodality appears to be a
major factor in explaining the sequence preference of a
number of intercalators.

Figure 1. Normality and modality of the 6 inter-base pair helical par-
ameters for the 10 unique base-pair steps. Within each bp (indicated on
the left), the complete conformational space of X-ray structures (first
row) is compared with the complete MD simulations space (second
row). For CG and GC (for which we have enough experimental data
on naked DNAs) the comparison (on the right) is made between:
naked-DNA structures (first row), all the X-ray structures (second
row) and MD simulations (third row).
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Figure 3. Scatter plot in the twist-roll plane of the CG base-pair step for MD simulations (black), all PDB files (red) and naked-DNA structures
(green). In the scatter plot, the grey vertical-dashed lines define the range of values used for twist in the BIC analysis. Histograms on the edges of the
scatter plot represent the non-normalized distributions (count). The upper right quadrant shows the results of the analysis carried out with BIC for
twist. The Gaussian curves in dashed grey are a qualitative representation of the normal components obtained, while the vertical lines represent the
corresponding averages. For sake of clarity, only a subset of 25000 conformations from the MD simulations was used to build the scatter plot and
corresponding histograms.

Figure 2. Scatter plots in the slide-twist plane of the AG, and CC base-pair steps (left, and right, respectively), for MD simulations (black), all PDB
files (red) and naked-DNA structures (green). In the scatter plot, the grey vertical-dashed lines define the range of values used for twist in the BIC
analysis. Histograms on the edges of the scatter plot represent the non-normalized distributions (count). The upper right quadrant shows the results
of the analysis carried out with BIC for twist. The Gaussian curves in dashed grey are a qualitative representation of the normal components
obtained, whereas the vertical lines represent the corresponding averages (solid) and standard deviations (dashed). For sake of clarity, only a subset
of 25000 conformations from the MD simulations was used to build the scatter plot and corresponding histograms.
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Origin of bimodality: intrinsic bimodality versus
non-NN effects

Bimodality, as described up to this point, can occur in two
different situations: (i) two different equilibrium
geometries are sampled depending on next-nearest neigh-
bouring nucleotides (i.e. equilibrium parameters for AB in
XABY and ZABW environments are significantly differ-
ent); and (ii) bimodality is intrinsic for a given step and
two distributions are visible within a single tetramer en-
vironment. The first case will challenge the NN model, but
not the elastic hypothesis, since the harmonic approach
could still be used by using tetramer rather than
dimer-linked parameters (17). The second case will be
much more challenging, since it would imply a direct chal-
lenge to the elastic response model. ABC trajectories (17)
contain at least three independent ensembles for each
tetramer within the set of 136 unique cases. This allows
us to explore whether bimodality is an intrinsic property,
or just a consequence of the use of the NN model. Results
shown in Supplementary Figure S5 clearly suggest that
bimodality can be an intrinsic property of some DNA
steps, since two distributions are visible within a number
of tetranucleotide environments. However, caution should
be taken with these ABC results, since 50 ns sampling
might not allow full convergence of trajectories. To
support then our suggestions of bimodality, we extended
four ABC sequences up to 750 ns. Results displayed in
Figure 5 and Supplementary Figure S6 confirm the exist-
ence of bimodality, the intrinsic nature of the phenomena
and also confirms our original concerns on the conver-
gence of some of the individual ABC simulations pub-
lished in 2010 (17). It is important to note the similarity
between the distributions obtained from the four extended
sequences (Figure 5) and distributions shown in the
previous section using the ensemble of trajectories
(Figures 2 and 3). This implies that convergence issues
can be solved using either an ensemble of trajectories rep-
resenting microsecond conformational sampling, or a
single very long simulation. More evidence on these
aspects is also provided in the next section.

Additional support for our hypothesis that bimodality is
intrinsic, and not only a consequence of the failure of the
NN model, comes from the analysis of the experimental
naked-DNA structures. Unfortunately, experimental data
at the tetramer level are far too scarce as to test bimodality
in all different tetramer environments, but at least for one
CG tetramer environment (GCGA) clear evidence exists in
the naked-DNA structural database supporting intrinsic
polymorphism at CpG steps (Supplementary Figure S7).
In this work the analysis was conducted up to the
tetra-nucleotide level, beyond the current mainstream
analysis of DNA. From one side, the bimodality in CpG
tetramers appears to be intrinsic, while from the other, the
scarcity of data prevents the finding of higher order effects
(exa, octa-nucleotides, etc.); thus leaving some uncertainties
derived from the use of di- or tetra- oligonucleotide units
as transferable blocks for the study of DNA.

Convergence and the timescale of transitions

The significant changes found between 50 and 750 ns
trajectories of the same oligomer (see above) raise ques-
tions on the time-dependence of transitions between
bimodal states. To answer these questions we performed

Figure 5. Comparison of the normalized frequency distributions
obtained from the original ABC simulations (blue bars) and the four
sequences extended in this work (red bars). Three bps are shown: AG
and CC for slide, CG for twist (from top to bottom). The overlap
between the two histograms is shown in purple.

Figure 4. Twist distribution for CG dinucleotide steps found in X-ray
structures of non-covalent complexes of DNA with intercalators. Only
the CG bps interacting with the intercalators are shown.
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a very long (4 ms) simulation of Drew–Dickerson
dodecamer (see ‘Materials and Methods’ section). The
ensemble results are summarized in Figure 6, whereas a
detailed time-analysis is displayed in Figure 7. Both plots
confirm that bimodality is not an equilibration artefact,
given that high-twist/low-twist transitions persist even
after 4 ms of trajectory. Analysis of the averages collected
for different trajectory lengths show that a single 100 ns
trajectory is not converged, since the population of the
low-twist state is significantly overestimated. However,
distributions seem converged after 500 ns (Figure 6), i.e.
within a timescale readily accessible for current simula-
tions. The transitions between high- and low-twist con-
formations can be considered fast (with average residence
time around 0.1 ns) and are coupled to BI$BII transitions
(17). It is important to note (Figure 7) that the frequency of
these transitions (5.5 transitions/ns) is constant along the
entire trajectory, increasing confidence in the true conver-
gence of MD results presented here.

Refinement of the elastic model

Once a helical distribution has been characterized as
bimodal, the elastic model can be modified, by defining
two stiffness matrices associated to each of the states using
the BIC fittings to define the reference state of each of the
collected snapshots. Accordingly, for a given deformation
in a dinucleotide pair step, we have two potential deform-
ation energies, which transform the standard elastic
equation (2) into equation (10):

Eef ¼ minðGi,GjÞ ð10Þ

where, Gi ¼
1
2Ki�Xi and Gj ¼

1
2Kj�Xj+�Gij.

Here i and j refer to the two distributions, Ki,j stands for
the corresponding stiffness matrices, DXi,j refers to the
difference between the given helical parameter and the
means of i and j distributions, and DGij is the difference
in free energy between the peaks of distributions i and j.
Note that if bimodality affects more than one parameter
(in a given step) equation (10) needs to be expanded since
the number of stiffness matrices and equilibrium values
scales with 2n�1 (n being equal to the number of helical
coordinates affected by bimodality).
Although this model can be used for simple energy cal-

culations, it is inappropriate for optimization or dynamics
because of the discontinuous derivatives at the crossover
point between the two quadratic curves. An elegant
solution to this issue was developed by de Marco and
Varnai to derive structure-based empirical potential for
DNA (36), but here we use a simpler solution based on
a continuous function Hij of the type used for dealing with
surface crossing in two-state quantum systems (37), and
already exploited for modelling transitions between two
conformations using elastic networks (38,39):

Hij ¼
1

2
Gi+Gj � Gi � Gj

	 
2
+e

h i1=2� �
ð11Þ

where e is a small positive value.
As a proof of concept, we used this model to evaluate

the impact of bimodality in a mesoscopic representation of
the flexibility of a CpG step. We found that the stiffness
constant matrices for the 6 inter-base pair parameters are
relatively insensitive to the changing twist states with the
possible exception of the shift-rise coupling constant
(Supplementary Figure S8). That is, when going from
low to high twist the differences in the pure stiffness con-
stants (roll–roll, slide–slide, etc.) are very low, meaning
mild effects in these parameters when changing twist
states, except for the shift–shift and rise–rise terms
(see the diagonal constants in the bottom matrix of
Supplementary Figure S8). The same coupling was also
observed when changing slide states in ApG and CpC
steps (Supplementary Figure S9). This naturally simplifies
the problem of deriving an appropriate bimodal elastic
model for DNA. Our calculations reveal that, while for
qualitative, and sometimes semi-quantitative, purposes
unimodal results can be informative, detailed modelling
requires taking bimodality into account. Note that the
location of the energy minimum in a unimodal model of
a true bimodal distribution is, in reality, a local maximum.
Supplementary Figure S10 shows the error can reach
1 kcal/mol at this position. Similarly, the energy penalty
assumed in a unimodal model is too small, especially for
high-twist values, leading to a significant (and asymmetric)
overestimation of the flexibility of DNA.
Although the results in Supplementary Figure S10

point out the improvements achieved by the bimodal
model in a test case, we further highlight its utility by
calculating the elastic deformation energy connected to
intercalation or protein–DNA interactions for specific
experimental cases (Supplementary Figure S11).
We computed the deformation energy for the family of
intercalators used to build Figure 5, for the cases when

Figure 6. Helical twist for CG dinucleotide steps at bp 3 (top) and bp 9
(bottom) during the 4 ms long simulation of the Drew–Dickerson
dodecamer for increasing simulation periods. All analysed steps corres-
ponds to CG steps in the GCGA environment, based on symmetry
considerations, bp steps 3 and 9 should be identical.
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those intercalators induced in DNA extreme-twist values.
The same was done with the few protein–DNA complexes
that directly interact with CpG steps producing low-
twist values. Our calculations, based on the average distor-
tion energy, reveal that using only the unimodal approach
can lead to errors that span from a half to two kbT.
Unfortunately, to date, there are not many available ex-
perimental complexes inducing large deformation in
DNA, so data are too scarce to explore these issues by
now in more detail.
Considering its simplicity, we believe that the

bimodality correction outlined here could easily be int-
roduced into a second generation of elastic models that
would be better equipped to reproduce the response of
DNA to a wider range of deformations.

CONCLUSIONS

The combined analysis of X-ray and MD databases
provides clear evidence of the existence of binormality
in many dinucleotide pair steps, and robust evidence of
more intriguing bimodality in the distribution of a small
numbers of helical parameters at given dinucleotide pair
steps. This result is particularly clear in the case of d(CpG)
steps, where two-state polymorphism is strongly

supported by both experimental and theoretical
evidence. Bimodality is an intrinsic property of some di-
nucleotide steps (in certain tetranucleotide environments),
and not simply due to averaging over non-NN effects.
Very long MD trajectories reveal that, even though
caution is needed when dealing with individual short
trajectories (<100 ns), convergence can be fully achieved
in accessible simulation times (around 500 ns), or by using
ensembles of trajectories, since bimodal transitions occur
on the picosecond to nanosecond timescale. As we have
shown, correcting the elastic model to account for this
kind of structural polymorphisms is possible; it does not
dramatically increase the complexity of the parameteriza-
tion process and significantly improves the model, espe-
cially in the case of extreme deformations.

The analysis of a large set of DNA–protein complexes
allows proposing, at least at the bps level, the prevalence
of the ‘conformational selection’ paradigm to explain
the distortions, out of the DNA canonical values,
produced upon protein binding. Examination of the ex-
perimental structures lying outside the MD conformation
distributions also reveals clear, but infrequent, cases of
‘induced fit’ mechanisms. Nucleosomes, TATA-box
binding proteins, some endonucleases, the Catabolite
Protein Activator, and some zinc finger proteins are
found, almost exclusively, outside the naked-DNA MD

Figure 7. Time evolution of the twist parameter for CG dinucleotide step at bp 3 in the MD simulation of the Drew–Dickerson dodecamer. Changes
in twist over the entire simulation (4 ms) are shown in the upper graphic. Four segments of 50 ns taken at t=0 and then every 1000 ns are depicted in
the graphics below. Note the transitions in twist between a low and high state. Identical results are obtained with CpG step in bp 9 (data not shown).
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conformation distributions, suggesting that the ‘induced
fit’ mechanism can be operating in these few cases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4 and Supplementary Figures
1–11.
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