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Abstract: Background: Establishment of an artificial intelligence model in gastrointestinal endoscopy
has no standardized dataset. The optimal volume or class distribution of training datasets has not
been evaluated. An artificial intelligence model was previously created by the authors to classify
endoscopic images of colorectal polyps into four categories, including advanced colorectal cancer,
early cancers/high-grade dysplasia, tubular adenoma, and nonneoplasm. The aim of this study was
to evaluate the impact of the volume and distribution of training dataset classes in the development
of deep-learning models for colorectal polyp histopathology prediction from endoscopic images.
Methods: The same 3828 endoscopic images that were used to create earlier models were used.
An additional 6838 images were used to find the optimal volume and class distribution for a deep-
learning model. Various amounts of data volume and class distributions were tried to establish
deep-learning models. The training of deep-learning models uniformly used no-code platform Neuro-
T. Accuracy was the primary outcome on four-class prediction. Results: The highest internal-test
classification accuracy in the original dataset, doubled dataset, and tripled dataset was commonly
shown by doubling the proportion of data for fewer categories (2:2:1:1 for advanced colorectal cancer:
early cancers/high-grade dysplasia: tubular adenoma: non-neoplasm). Doubling the proportion of
data for fewer categories in the original dataset showed the highest accuracy (86.4%, 95% confidence
interval: 85.0–97.8%) compared to that of the doubled or tripled dataset. The total required number
of images in this performance was only 2418 images. Gradient-weighted class activation mapping
confirmed that the part that the deep-learning model pays attention to coincides with the part that
the endoscopist pays attention to. Conclusion: As a result of a data-volume-dependent performance
plateau in the classification model of colonoscopy, a dataset that has been doubled or tripled is not
always beneficial to training. Deep-learning models would be more accurate if the proportion of
fewer category lesions was increased.

Keywords: artificial intelligence; no code; endoscopy; colonoscopy; colonic neoplasms

1. Introduction

Gastroenterology has applied artificial intelligence (AI) in terms of computer vision
or machine learning analysis [1,2]. Various image interpretation models of endoscopy or
ultrasound have been developed in the context of computer vision [3,4]. It would save a
significant amount of time and effort on the part of medical professionals in the field if
medical procedures could be automated with the help of AI. They can devote more of their
time to gathering more resources and achieving the best possible outcomes for patients [3].

Endoscopists typically remove all colorectal polyps identified during screening colono-
scopies since this approach has been shown to limit the progression of adenoma-carcinoma
sequence [2,5,6]. However, since the removal of an adenoma is linked to cancer prevention,
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it may be cost-effective to distinguish it from a hyperplastic polyp [2]. Methods for reliable
prediction of polyp histology based on visual evaluation of gross morphology are not
always accurate and adenoma detection rates are known to diminish with an increasing
practitioner workload [6,7]. As an alternative to visual inspection, artificial intelligence
diagnosis utilizing deep learning makes it possible to automatically recognize, classify, and
segment images with high accuracy [1,4,6].

In order to predict the histology of colorectal polyps from 3828 endoscopic images,
the authors developed a deep-learning model. This model successfully predicted the
histology of four different lesion classes, including advanced colorectal cancer (ACC), early
cancers/high-grade dysplasia (ECC/HGD), tubular adenoma (TA) with or without low-
grade dysplasia (LGD), and nonneoplasm, with a 67.3 percent internal-test accuracy and
79.2 percent external-test accuracy [8]. A relatively small number of images were available
in the input training data. Moreover, the proportion of ACC and ECC/HGD was relatively
small compared to TA or nonneoplasm [9].

Establishment of the AI model in gastrointestinal endoscopy has no standardized
dataset. The optimal volume or class distribution of training datasets has not been evalu-
ated [3,4]. As a result, the purpose of this study was to assess the impact of the training
dataset volume and distribution on the development of deep-learning models for the
prediction of colorectal polyp histology from white-light endoscopy images.

2. Methods
2.1. Input Datasets

By creating and assessing deep-learning models with no-code tools with varying
levels of data volume and class distributions, this study expands on a prior study [8,9]. The
new deep-learning models were constructed using the same 3828 white-light endoscopic
pictures as input for diagnostic performance comparison. An additional 6838 images were
used to find the optimal volume and class distributions for the deep-learning model.

The class distribution of ACC and ECC/HGD was lower than that of TA and non-
neoplasm in the original dataset. Differentiation of ECC/HGD and TA was not accurate
compared to other categories in previous model establishment [8,9]. Therefore, various
distributions were tested, such as the 1:1:1:1 for ACC, ECC/HGD, TA, and nonneoplasm
or doubling the number of fewer categories (ACC and ECC/HGD) or doubling the less
accurate categories (ACC and TA). Additionally, various amounts of data volume tried to
establish deep-learning models (Table 1).

Input training data process collection was previously described [8,9]. In brief, subjects
diagnosed and treated for colorectal lesions at three university hospitals (Chuncheon Sacred
Heart, Dong-tan Sacred Heart, and Hallym University Sacred Heart Hospital) were iden-
tified retrospectively between 2008 and 2017, and pathologically confirmed colonoscopy
images were collected in JPEG format with a minimum resolution of 640,480 pixels [8,9].
An additional 6838 images collected between 2018 and April 2022 from Chuncheon Sacred
Heart Hospital were used for the experiment to find the optimal volume or class distribu-
tion. The distribution of additional 6838 images are as follows: 546 ACCs, 189 ECC/HGDs,
3586 TAs, and 2517 nonneoplasms.

Performance verification (external test) was conducted using 3818 novel images from
consecutive patients receiving colonoscopy between 2017 and 2021 at four university
hospitals (Chuncheon Sacred Heart Hospital, Kangdong Sacred Heart Hospital, Inje Uni-
versity Ilsan Paik Hospital, and Gangneung Asan Hospital). All images used for validation
(included in the external-test datasets) were different from those used for training [9]
(Table 2).
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Table 1. Histological class distribution in input datasets.

Original
Dataset

Even Dis-
tribution
of Each
Class

Doubling
Data for
Fewer

Categories

Doubling
Data for

Less
Accurate

Categories

Doubling
the

Number of
Total Data;
(Original
Dataset of

3828
Images

with New
3964

Images)

Even Dis-
tribution
of Each
Class

Doubling
Data for
Fewer

Categories

Doubling
Data for

Less
Accurate

Categories

Tripling
the

Number of
Total Data;
(Original
Dataset of

3828
Images

with New
6838

Images)

Even Dis-
tribution
of Each
Class

Doubling
Data for
Fewer

Categories

Doubling
Data for

Less
Accurate

Categories

Overall 3828 3224 2418 2418 7792 3540 2656 2656 10,666 3980 2986 2986

Advanced
colorectal

cancer
810 806 806 403 994 885 885 443 1356 995 995 498

Early
colorectal

cancer/high-
grade

dysplasia

806 806 806 806 885 885 885 885 995 995 995 995

Tubular
adenoma
with or
without

low-grade
dysplasia

1316 806 403 806 3634 885 443 885 4902 995 498 995

Nonneoplasm 896 806 403 403 2279 885 443 443 3413 995 498 498

The number of images adjusted for the amount of data and the ratio for each class is described in the table.
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Table 2. Training and internal-test dataset distribution in each input dataset.

Original
Dataset

Even
Distribu-

tion of
Each
Class

Doubling
Data for
Fewer
Cate-

gories

Doubling
Data for

Less
Accurate

Cate-
gories

Doubling
the

Number
of Total

Data

Even
Distribu-

tion of
Each
Class

Doubling
Data for
Fewer
Cate-

gories

Doubling
Data for

Less
Accurate

Cate-
gories

Tripling
the

Number
of Total

Data

Even
Distribu-

tion of
Each
Class

Doubling
Data for
Fewer
Cate-

gories

Doubling
Data for

Less
Accurate

Cate-
gories

Overall 3828 3224 2418 2418 7792 3540 2656 2656 10,666 3980 2986 2986
Training
dataset 3444 2900 2176 2176 7013 3184 2258 2258 9599 3582 3688 3688

Internal-
test

dataset
384 324 242 242 779 356 398 398 1067 398 298 298

The number of images adjusted for the amount of data and the ratio for each class divided by training and
internal-test data are described in the table.

2.2. Labeling of the Training Dataset

Following endoscopic or surgical removal, all images were labeled based on patho-
logical evaluation. Histologically, lesions were classified into one of the four categories
listed below [8,9]: (1) adenocarcinoma; (2) TA with HGD (in situ or intramucosal cancer);
(3) TA with or without LGD; and (4) hyperplastic polyp, inflammatory polyp, lymphoid
polyp, leiomyoma, lipoma, or another nonneoplastic lesion. The clinical stage, including
the invasion depth, determined the therapeutic strategy, such as surgery or endoscopic
removal, so lesions were classified into four alternative classes: (1) ACC (stages T2, T3,
and T4 cancers), (2) ECC/HGD (stage T1 cancers and HGD), (3) TA, and (4) nonneoplasm.
There was no image that was included in more than one pathological class (i.e., all were
mutually exclusive). Figure 1 demonstrates representative images [8,9].
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2.3. Establishment of an Artificial Intelligence Model

Training of artificial intelligence models uniformly used no-code platform Neuro-T
(version 2.3.2, Neurocle Inc., Seoul, Korea). This tool creates convolutional neural network-
based deep-learning models for lesion detection or classification tasks by analyzing the
features of the dataset and self-discovering optimal hyperparameters [8–10].

2.4. Training and Data Preprocessing

This study aimed to find the optimal volume or class distribution for a colorectal
lesion classification model. Therefore, a common preprocessing and hyperparameter
optimizing tool was used. This study’s no-code deep-learning tool has unique automated
preprocessing functions and training options. This function performs image resizing
transformations on input images. To identify the best performing deep-learning models, all
images were resized to 512 × 480 pixels before training and on-premise software-based
model establishment with automated hyperparameter optimization.

As a default option, Neuro-T software was used to input training images randomly
divided into training and internal-test sets at a 9:1 ratio. Table 2 describes each training and
internal-test dataset. The model training hardware consisted of four RTX 2080 Ti GPUs,
dual Xeon CPUs, and 256 GB RAM.

2.5. Primary Outcome and Statistics

The internal-test accuracy was the primary outcome. The precision or positive pre-
dictive value (defined as (true positive/true positive + false positive)), recall or sensitivity
(defined as (true positive/true positive + false negative)), and F1 score (2 precision re-
call/precision + recall) were additional performance metrics. Chuncheon Sacred Heart
Hospital’s Institutional Review Board (2018-05) approved this study.

3. Results
3.1. Diagnostic Performances of the Deep-Learning Models According to Various Data Volume and
Class Distributions

Various amounts of data volume and class distributions tried to establish deep-learning
models. Doubling the proportion of data for fewer categories (2:2:1:1 for ACC:ECC/HGD:
TA:nonneoplasm) commonly showed the highest internal-test classification accuracy in
the original dataset, doubled dataset, and tripled dataset. Doubling the proportion of
data for fewer categories in the original dataset showed the highest accuracy (86.4%,
95% confidence interval: 85.0–97.8%) compared to that of the doubled or tripled datasets
(precision: 84.4%, recall: 83.8%, F1 score: 84.1%) (Table 3). The total required number of
images in this performance was only 2418 images. Figure 2 demonstrates the confusion
matrix for the deep-learning model with the best performance. The hyperparameters used
in the establishment of the best-performing model were as follows: Resnet-based neural
network. A. Batch Size: 56, B. Epoch: 95, C. Number of Layers: 18, D. Optimizer: adam, E.
Initial Learning Rate: 0.00146.
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Table 3. Internal-test accuracy according to each data volume and class distribution.

Data Distribution (ACC:
ECC/HGD: TA:
Nonneoplasm)

Original Dataset (n = 3828) Doubling the Total Data;
Combined Dataset (n = 7792)

Tripling the Total Data;
(n = 10,666)

Raw data 75.3% 67.5% 72.4%

Even distribution (1:1:1:1) 72.8% (n = 3224) 75.6% (n = 3540) 74.0% (n = 3980)

Doubling the proportion of
data for fewer categories

(2:2:1:1)
86.4% (n = 2418) 78.9% (n = 2656) 82.4% (n = 2986)

Doubling the proportion of
data for less accurate

categories (1:2:2:1)
81.5% (n = 2418) 74.9% (n = 2656) 79.2% (n = 2986)

ACC: advanced colorectal cancer, ECC/HGD: early cancers/high-grade dysplasia, TA: tubular adenoma. The
internal-test accuracy according to the amount of data and the ratio for each class is described in the table.
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3.2. Gradient-Weighted Class Activation Mapping

The gradient-weighted class activation mapping function of the no-code tool utilized
in this work demonstrates the discriminative properties employed by the established model
for classification. Figure 3 displays representative samples from the internal tests with the
right classifications made by the model in place. The gradient-weighted class activation
map in Figure 3 reveals that the established models’ discrimination features, such as the
surface mucosal irregularity, color changes, and protruded regions were similar to those
used by endoscopists during visual inspection [11].
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4. Discussion

This study demonstrated that increasing the proportion of data for fewer categories in
the training dataset showed an improved internal-test classification accuracy. Doubling
the proportion of data for fewer categories in the original dataset showed the highest
accuracy (86.4%). The total required number of images in this performance was only
2418 images. A large amount of data is generally preferred in the establishment of a deep-
learning classification model; however, presumably because of a data-volume-dependent
performance plateau, this study showed that it is not always beneficial to training [12,13].

The quality or quantity of the baseline training data influences the performance of
the deep-learning model [14]. We do not, however, have qualified quality indicators for
the training data. High-quality representative data reflecting real-world practice should
be collected to avoid spectrum bias (data imbalance) or overfitting (modeling error, which
occurs when a certain learning model is excessively tailored to the training dataset and
predictions are not well generalized to new datasets) [2,15]. There have been many studies
to establish a gastrointestinal endoscopy deep-learning model [1,4]. However, data-centric
AI studies are lacking in the field of gastrointestinal endoscopy [16].

Depending on the quality, nature, or characteristics of the data, AI models are trained
using data, and AI models generate predictions. We require certified data that reflects a
real-world problem. Data from multiple institutions would be preferable over data from
a single institution. The class distribution of data is also crucial. The formation of biased
models would be the result of a class imbalance [17]. We can use undersampling of the
majority classes or oversampling of the minority classes to solve this problem. The inherent
pitfall of selection bias should be recognized for the collection of input data.

How much data is needed to reasonably approximate the unknown underlying
mapping function in deep learning is unknown in the context of the amount of train-
ing data [15,18,19]. Too little training data would generally result in poor approximation.
A large amount of data is conversely not necessarily good for training [1]. A data-volume-
dependent performance plateau occurs, which is related to whether the data has sufficient



J. Pers. Med. 2022, 12, 1361 8 of 9

features and complexity of the background model [18]. The training time might be too long
if there is too much data.

This study confirmed that increasing the proportion of data for fewer categories is
associated with improved accuracy, especially for doubling the proportion in the training
dataset, and a doubled or tripled amount of data is not always beneficial to training as a
result of a data-volume-dependent performance plateau. A deep-learning model can be
created by anyone who can organize data. There is, however, no universal rule for this.
As a result, when it comes to colon neoplasia diagnostic models, the preparation of data
based on the findings of this study is advantageous. The current colonoscopy polyp image
dataset contains 590 to 1000 images [20,21]. Despite the difficulty of experimenting with a
large dataset in such a situation, the authors investigated how to create a deep-learning
model with an optimal performance using as much data as possible.

There have been several inevitable limitations. First, there is no study on the impact of
datasets’ quality in the development of a deep-learning model in the colonoscopy classifi-
cation model. There is no available baseline quality in our dataset, although we collected
only clear and easily recognizable images. Therefore, this might influence the classification
performance, irrespective of the class distribution or the amount of data. Second, perfor-
mance verification with an external test was not done. Although an established model
might be optimal for in-hospital usage, the generalization possibility of the performance
was not confirmed in this study. We are planning to reestablish deep-learning classification
model in the colonoscopy with data for multi-institution and an increased proportion of
fewer category lesions in a future study because the aim of this study was revealing a
proof-of-concept. Third, the primary outcome was the classification accuracy in this study.
However, accuracy might not be the best performance metric in this class-imbalanced
dataset [22]. Although other performance metrics, such as the precision, recall, and F1
score, commonly showed substantial value in the highest performance model, comprehen-
sive interpretation of the performance combined with various performance metrics is still
important. Fourth, the purpose of this study was not about the amount and distribution of
datasets that are generally applicable to all deep-learning models. Since we only focused
on the colon neoplasia diagnosis model, the results of this study are limited to the topic of
this study.

In conclusion, a dataset that has been doubled or tripled is not always beneficial to
training as a result of a data-volume-dependent performance plateau in the classification
model of colonoscopy. Deep-learning models would be more accurate if the proportion of
fewer category lesions was increased.
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Abbreviations
ACC advanced colorectal cancer
ECC/HGD early cancers/high-grade dysplasia
TA tubular adenoma
LGD low-grade dysplasia
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