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A B S T R A C T   

The DNA barcoding approach has been used extensively in taxonomy and phylogenetics. The 
differences in certain DNA sequences are able to differentiate and help classify organisms into 
taxa. It has been used in cases of taxonomic disputes where morphology by itself is insufficient. 
This research aimed to utilize hierarchical clustering, an unsupervised machine learning method, 
to determine and resolve disputes in plant family taxonomy. We take a case study of Leguminosae 
that historically some classify into three families (Fabaceae, Caesalpiniaceae, and Mimosaceae) 
but others classify into one family (Leguminosae). This study is divided into several phases, which 
are: (i) data collection, (ii) data preprocessing, (iii) finding the best distance method, and (iv) 
determining disputed family. The data used are collected from several sources, including National 
Center for Biotechnology Information (NCBI), journals, and websites. The data for validation of 
the methods were collected from NCBI. This was used to determine the best distance method for 
differentiating families or genera. The data for the case study in the Leguminosae group was 
collected from journals and a website. From the experiment that we have conducted, we found 
that the Pearson method is the best distance method to do clustering ITS sequence of plants, both 
in accuracy and computational cost. We use the Pearson method to determine the disputed family 
between Leguminosae. We found that the case study of Leguminosae should be grouped into one 
family based on our research.   

1. Introduction 

DNA barcoding is the use of Deoxyribonucleic acid (DNA) barcodes or specific portions of the DNA [1]. A single gene would ideally 
be effective in all different groupings of organisms or taxa, however, different portions of the DNA have been found to be more effective 
in different taxa [2]. For animals, the most effective barcode is a fragment of ~650 base pairs (bp) near the 5′-terminus of the 
mitochondrial cytochrome c oxidase I (COI) gene [3]. In fungi, the more appropriate barcode is the internal transcribed spacer (ITS) 
nuclear ribosome sequence [4]. In plant species, there are several difficulties with barcoding, one of which is the low nucleotide 
substitution rate of COI [5]. The Consortium for the Barcode of Life (CBOL) has recommended that the chloroplast ribulose-1, 
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5-bisphosphate carboxylase large subunit (rbcL) genes [6] and Maturase K (matK) [7] be used as plant barcode [8]. Another difficulty 
for plants is the higher identification success rate in animals compared to plants [9]. 

The method of obtaining DNA barcodes itself has multiple variations depending on the taxa [10]. In general, the process involves 
collecting a sample, isolation of DNA, matching specific primers, polymerase chain reaction (PCR), analysis of chromatogram, meeting 
the DNA barcoding standard, The Barcode of Life Data System (BOLD) submission, data analysis and validation, publication and data 
hosting, and finally the end user [2]. 

DNA barcoding can be helpful in many real-life applications [11]. It can be used for pest identification for biosecurity purposes to 
protect from potentially invasive species [12]. Authorities can use DNA barcodes to monitor the illegal trade of animals from protected 
species [13]. DNA barcoding has been described as being a powerful addition to the identification of wood despite the typical DNA 
quality of dry tissue being of middling to poor quality [14]. Aside from identification purposes, DNA barcodes can be used for grouping 
specimens when there is an ambiguity in the morphology, such as due to the lack of descriptions of morphological features [15]. It can 
also be used as a tool for determining whether unknown species should be grouped with earlier known species or as a new species 
based on DNA barcodes [16]. It can also be used as a supplement to other taxonomic datasets in the process of delimiting species 
boundaries [17]. 

There are several categories of computational approaches for analyzing DNA barcodes: tree-based, similarity-based, and character- 
based methods [18]. Other approaches include combination and alignment-free [1,19,20]. These approaches each came with their 
advantages and disadvantages. Similarity and tree-based methods, for example, are dependent on sequence alignment. Diagnostic or 
character-based methods experience more success than similarity and tree-based approaches, but the accuracies are still less than that 
of supervised machine learning-based approaches [1]. One such approach mapped barcode sequences into a vector based on k-mer 
frequencies and used a random forest classifier to identify sequences [21]. Several contemporary computational approaches used in 
DNA barcoding take the form of machine learning [22]. This is due to the complexity and variability of studies involved with genomics. 

Heralded as revolutionary for taxonomic discovery, DNA Barcoding was formalized as a broader natural history tool only two 
decades ago [23]. The formal classification of organisms in Western science dates back to around 1753 with work by Carl Linnaeus 
[24]. However, the classification of different organisms itself has always presented itself in different human cultures throughout 
history. The classification or more accurately taxonomy proposed by Linnaeus classified organisms into different ranks with each rank 
becoming more specific. Since it was first conceived, this design has gone through many revisions and changes [25]. Several sources 
used by the scientific community define the hierarchy in the following ranks in order of most to the least homogenous: realm, sub-
realm, kingdom, subkingdom, phylum, subphylum, class, subclass, order, suborder, family, subfamily, genus, and subgenus [26–29]. 
However, due to the inconsistencies of the ranking system [25] and other factors [30], discrepancies and disputes in taxonomy also 
arise [31–34] such as in the case of Leguminosae [35,36]. 

Leguminosae is a large group of agriculturally important flowering plants. The group consists of a variety of species including 
herbaceous plants, shrubs, and trees [36]. Humans use legumes in various ways, including as a staple food source, animal feed, and 
fertilizer. Additionally, legumes are also used to synthesize many products including flavorings, drugs, poisons, and colorings. This 
group of Plantae is also beneficial to other plants by converting atmospheric nitrogen into nitrogen compounds which are useful in 
biochemical processes. Leguminosae is the third largest group in the flowering plants after Orchidaceae [37] and includes 650 genera 
with 18,000 species [38]. Dhakad [39] describes this group as holding an important role in biodiversity in the ecosystem and 
dominating a majority of vegetation types in the world. In addition, Leguminosae also holds an important role in the composition of 
forests and the management of sustainable goals. 

The classification of Leguminosae as one family has become a disputed taxonomic grouping with experts taking several different 
stances on the issue. The first group of experts agrees that Leguminosae should be classified as a distinct order and subclassified into 
three distinct families which are Fabaceae (Papilionoid), Caesalpiniaceae, and Mimosaceae [40–42]. This includes the argument that 
Fabales [40,43] become an order that is subclassified into the three families mentioned above. There are several issues with this 
perspective. The nomenclature for Fabaceae is ambiguous as it can be used for a family but is also used just for the Papilionoids [39]. 
Both use cases of Fabaceae are accepted according to articles 18.5 and 18.6 in the International Code of Botanical Nomenclature [26]. 
Their placement stresses the close relationship between the three aforementioned families under the same order [35]. However, the 
placement of species and genera of Leguminosae is not systematically consistent [38]. The morphology by itself cannot ascertain 
phylogenetic relationships. Many species, such as Acacia and Mimosa, are hard to differentiate based on their morphological char-
acteristics [44,45]. Species in the Mimosaceae and Caesalpiniaceae families are mostly physically similar and are consistently different 
from Fabaceae which is dominated by herbaceous plants [35]. 

The second group of experts has the opinion that Leguminosae is a family with three subfamilies of Mimosoideae, Caesalpinioideae, 
and Papilionoideae [46–48]. The naming changes proposed by several experts are also recorded in the International Code of Botanical 
Nomenclature, one of which is the change of Fabales into Fabaceae [35]. A few recent studies that covered this dispute by Mondal & 
Mondal [35] and Patel & Panchal [36] agree that the three groups are distinct. However, Patel & Panchal stresses that the distinction is 
made as different subfamilies of the same family. 

This study aims to assist in clarifying the dispute on the taxonomy of Leguminosae by leveraging machine learning in the form of 
hierarchical clustering and DNA barcodes. Hierarchical clustering is an unsupervised technique to perform data exploratory analysis. 
The main aim of the technique is to build a binary merge tree [49]. This technique was the first answer to the limits of similarity-based 
methods [18]. A dendrogram, the visual drawing of hierarchical clustering, gives rich information for either qualitative or quantitative 
evaluations [49]. Thus, this visualization created from hierarchical clustering can be used to assess this study. Many studies with DNA 
Barcoding continue to use hierarchical clustering techniques due to its ubiquity and relative simplicity [50–56]. In this study, hier-
archical clustering with DNA Barcodes will be used to achieve two objectives. First, we validate the usability of hierarchical clustering 
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Fig. 1. The proposed computational model.  
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and different distance methods for the problem. Second, we utilize the validated method to determine the grouping in the taxonomy of 
Leguminosae. This is done to determine which view on the taxonomy of Leguminosae the results from hierarchical clustering supports. 
In short, we aim to clarify whether Leguminosae should be classified as three distinct families, subfamilies, or another permutation 
altogether. 

Machine learning is naturally an interdisciplinary field. It draws on insights from a variety of disciplines, including artificial in-
telligence, probability and statistics, computational complexity theory, control theory, information theory, philosophy, psychology, 
and neurobiology. In a broad range of domains, machine learning algorithms are proven to be extremely useful, for example, in the 
domain of speech recognition algorithm-based machine learning outperforms any other approach that has been tried [57]. Machine 
learning as an approach has the advantage of learning with experience and the lack of need to manually account for the multitude of 
variations found in genetic data. The category of approaches in the literature does not have a consistent naming scheme. Several 
articles refer to machine learning as a separate category from tree-based, distance-based, and character-based [20,21,58], despite some 
approaches in the other categories also being machine learning, albeit unsupervised for the most part such as hierarchical clustering or 
in other words tree-based approaches [18,22]. 

2. Material and methods 

2.1. Proposed computational model 

This section of this paper will describe the computational model that was used in this study. This study uses R version 4.1.2, and the 
package used in this study is described as follows.  

1. rentrez [59]: This is an R package used for retrieving data from NCBI. We used version 1.2.3 of this package. 
2. Biostrings [60]: This package is run in R, the purpose of this package is for data manipulation and for dealing with biological se-

quences. The version that we use is 2.62.0.  
3. msa [61]: This package is used for sequence alignment for multiple DNA sequences, the default preset used in this package is 

ClustalW algorithm. We use version 1.26.0 of this package.  
4. ips [62]: ips is an R package for trimming the beginning and the end of the sequences. We use version 0.0.11 of this package.  
5. factoextra [63]: This is an R package providing additional distance methods that was used in this study. The version of this package 

that is used is 1.0.7. 

The full flow of the computational model in this study is depicted in Fig. 1. A detailed explanation of each stage is as follows.  

1. Data collection: First, we obtain a list of the available families and genera on the National Center for Biotechnology Information 
(NCBI) Taxonomy Databases [64] (http://www.ncbi.nlm.nih.gov/taxonomy). Subsequently, we identified families and genera 
with a representation of more than 25 records of ITS marker sequences. From this pool of families and genera that fulfilled the 
criteria, 3 families or genera were taken randomly over multiple iterations. The data sequences were retrieved with the help of the 
rentrez package [59] version 1.2.3. The sequences that were retrieved are in the FASTA format exemplified in Fig. 2. 

For the validation phase, we used a query to gather the data on individual organisms for each family and genera. The query also 
limited the results by the length of the DNA sequences and filtered by gene which in this case is ITS. For the case study data, we gather 
several references that divide Leguminales into three different groups, in this case, Fabaceae, Mimosaceae, and Caesalpiniaceae. We 
specifically selected sequences and their species names from websites and other previous research in GenBank to improve the quality of 
the sequences used in this study. The main references to the data that have been used are [35,36,65], and Plant Specimen Database 
Program & Publication (https://plantsp-eflora.bnh.gov.bd/family-list). Most of the sources just provide the name of the species. 
However, we need the corresponding DNA sequence from NCBI. 

Above is an example of retrieving data using the rentrez library. In the example, we try to fetch data from the Araceae family and the 
gene that we want to retrieve is ITS. Since the ITS gene usually ranges from 500 to 850 base pairs, we also filter the sequences based on 
this range of base pairs. Detailed information about the query in entrez_search() can be seen in this article https://www.ncbi.nlm.nih. 
gov/books/NBK49540/. The retmax parameter is to filter the maximum number of records that are retrieved. The function entrez_fetch 
() fetches the sequences from the NCBI Nucleotide database, this function returns a string in the FASTA format. The Nucleotide 
database itself is a collection of sequences from several sources, including GenBank, RefSeq, TPA, and PDB. 
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Fig. 2 is an example of FASTA formatted data. The main structure of the FASTA formatted data the outline of the FASTA format 
consists of two parts. The first part is the header starting with the character “>” and followed by the description of the sequence. The 
second part is the sequence itself which is a string composed of the characters “A”, “C”, “T”, and “G”. This research only considers the 
second part that is used in the computation. The length of the sequences varies depending on the part or gene that is used. 

The example shown in Fig. 2 is from the Crataegus bretschneideri DNA sequence, and the sequence contains the internal transcribed 
spacer 1, 5.8 S, and internal transcribed spacer 2 genes. From the first letter of the header, we can see the “MZ686456.1” as the 
accession id that is used in NCBI, the detailed information on the sequence can be found at https://www.ncbi.nlm.nih.gov/nuccore/ 
MZ686456.1.  

2. Data preprocessing: The initial step of this part is to parse the DNA sequence. DNA sequence parsing is the process of parsing the 
data into the desired format, in this case, the DNAStringSet format or a collection of DNAString. The purpose of this change is to 
allow the data to work with several packages from Biostrings, the package allows the manipulation of large biological sequences. 
The FASTA formatted data that were gathered are then converted to DNAStringSet format using Biostrings [60] version 2.62.0. 

DNAStringSet is depicted in Fig. 3. It consists of several columns, including width for base pair length, seq for sequence, and names for 
the name or label of the sequence. By default, if the DNAStringSet data is called to be printed, it will show the first and the last five 
sequences on the set, indicated by the indexing on the very left of the data. 

To get the DNAStringSet data format, we can use the readDNAStringSet() function from Biostrings library [60]. The “fetchRes” 
variable is a String variable from the previous code block. We need to write the FASTA formatted string to some “.fasta” file, in this 
example, we use “output.fasta” as our FASTA formatted file. Afterward, we use the readDNAStringSet() function to read the FASTA file 
as the DNAStringSet format, and we save it in a variable (named “dna_data” in the example). This scenario will return DNAStringSet 
formatted data, saved in a variable called “dna_data”. 

Upon parsing the data, it is essential to proceed with the alignment of sequences through DNA sequence alignment. This process 
involves arranging multiple data sequences in a specific manner with the aim of identifying diagnostic patterns that characterize 
protein families. Such alignment is instrumental in predicting the secondary and tertiary structures of new sequences and serving as an 
initial step in molecular evolutionary analysis [66]. The dataset that has been aligned will have the same length. The alignment is 

Fig. 3. Example of DNAStringSet format.  

Fig. 2. Example of FASTA format of the Crataegus bretschneideri species.  
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performed using the msa package [61] version 1.26.0. We run the default preset of the msa package which is using the ClustalW 
alignment algorithm [66]. 

The input data type of this package is an object of the class XStringSet (which includes the class DNAStringSet). The data used in this 
example is in the variable “dna_data” which has a DNAStringSet data type. The output from this code will be of the class MsaDNA-
MultipleAlignment. In addition to the regular characters representing each base, an additional “-” character is added for alignment 
purposes. 

Afterward, we conducted DNA sequence trimming, a process that involves truncating the initial and final characters of the se-
quences. The objective of this process is to decrease sequence length, thereby accelerating the clustering process without adversely 
affecting the model’s accuracy. The package that was used for this in this study is the ips package [62] version 0.0.11. 

The example process of DNA trimming is presented in the code block above. The input of the process above is the variable 
“aligned_dna” which is retrieved from the alignment process. The parameter used is “min.n.seq” which is set to 75. From several 
experiments conducted, the parameter value of 75 speeds up the clustering algorithm, without reducing the accuracy of the algorithm. 

To enable us to compute the result of the sequence we do the One Hot Encoding process. One hot encoding is applied to the se-
quences to allow the data to be processed in the following stages. This process converts characters into numeric representations. 

Fig. 4 illustrates the operation of one hot encoding. For each character in the aligned sequence, five columns are established to 
denote the presence of one of the five unique characters. These columns represent the bases “A", “C", “G", and “T", along with the "-" 
character originating from the sequence alignment. As an example, if the character being represented is “G", the “G" column will be 
designated with “1″, while the remaining columns will be marked as “0". This process is iteratively executed for each character in the 

Fig. 4. One hot encoding.  
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sequence, and the results are then aggregated. Through this procedure, the sequence initially represented by characters is converted 
into a numeric format, rendering it suitable for processing in the subsequent stages. 

The following is the pseudocode of One Hot Encoding: 

The following is the implemented code: 

The full functionality of the one hot coding used in this study is illustrated in the code blocks above. The process converts a data 
frame containing a list of sequences into a data frame format based on the results of one-hot encoding. It requires the unmasking of the 
MsaDNAMultipleAlignment datatype back to DnaStringSet, followed by the use of the as. data.frame() function to transform the DnaS-
tringSet into a data frame. If the data is already presented in data frame format, then the oneHotDNA() function is executed as declared 
above.  

3. Finding the best distance method: To determine the most effective distance method for accurate clustering of biological data, we 
evaluated several distance methods, namely (i) Euclidean [67], (ii) Manhattan [67], (iii) Canberra [68], (iv) Minkowski [69], (v) 
Pearson [70], and (vi) Spearman [71] distances. We run all of the options with the ITS Marker. To perform hierarchical clustering 
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after obtaining the distances from the distance method, we used the hclust() function provided by the R programming language. The 
data used for this clustering consisted of established families and genera; we used genera from the same family to assess the ability 
of the clustering method to differentiate groups with higher similarity:  

We load the factoextra library [63] version 1.0.7 that provides the get_dist() function for using several distance methods. We loop 
through the different distance methods and run the clustering using them. We also capture the speed of each distance method based on 
the differences between the start and end times. 

The following is the pseudocode of hierarchical clustering: 

To validate our approach, multiple experiments were undertaken, after which the performance of each method was assessed. This 
assessment was centered on the distinctiveness of the groups based on the visualization of the dendrogram that was generated. These 
procedures were enacted with the intent to identify the most effective method for classifying both the families and the genera of the 
species under consideration. 

We examined three distinct genera after evaluating the outcomes of grouping three distinct family groups. This dual-level vali-
dation approach was designed to determine the functioning of the clustering not only in a less homogenous taxonomic rank but also in 
a more homogeneous one. 

Subsequently, we assessed the accuracy of each distance method. Accuracy was gauged by the ability of the method to differentiate 
between the three groups that were utilized in the validation process. This was performed over a series of experimental runs with 
varying combinations. Finally, the mean accuracy of each distance method was calculated, and the model with the highest accuracy 
was studied further. 

Following the evaluation step, we decided on the best distance approach to use in our case study to resolve the disputed family 
classification. The weighted average of the accuracy from the two-tiered validation procedure was used to identify the optimal distance 
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approach. This selection aims to achieve the best accuracy to solve the disputed problem in the case study, which follows that the result 
obtained is likely to be more valid and trustworthy.  

4. Determining disputed family: Upon identifying the most suitable distance method, we applied it with hierarchical clustering to 
assess the taxonomic family under dispute. The procedure in this section parallels the steps delineated earlier. Firstly, we initiated 
data collection for the disputed family. Following data acquisition, the data underwent a data preprocessing stage. The most 
effective distance method, as determined in the preceding steps, was then used to cluster the disputed family. Subsequent to this, an 
evaluation was carried out, and conclusions were drawn based on the results of the clustering process. This methodology allowed us 
to objectively address the taxonomic disputes. 

2.2. Experimental setup 

In the initial phase of our experiment, the selection of the optimal model for cluster analysis, aimed at addressing the case study 
issue, was paramount. Subsequently, Internal Transcribed Spacer (ITS) sequence data from individuals of undisputed taxonomic 
classifications were obtained from the National Center for Biotechnology Information (NCBI). The acquired data was then parsed into 
the DNAStringSet format, which subsequently facilitated string manipulation operations on the sequences. Following this, a sequence 
alignment was conducted to detect distinctive patterns within the data. Subsequently, One Hot Encoding was implemented to 
transmute our string data into a numerical format. Once the data conversion process was complete, clustering was performed using an 
array of selected distance methods for this study. Upon completion of this process, the results were scrutinized in order to identify the 
most effective distance method for implementation in hierarchical clustering on ITS sequences. 

Having determined the most suitable distance method, we proceeded to conduct clustering using data from the Leguminosae 
family. This data was gleaned from a variety of scholarly journals and a website. The sequences retrieved were parsed into the 
DNAStringSet data type, aligned, and then subjected to the One Hot Encoding process. Finally, clustering was conducted using the 
selected optimal distance method in order to scrutinize the familial classification dispute within the Leguminosae family. 

2.2.1. Data collection for validating the best distance method 
In the initial phase, the data used in this study were retrieved from GenBank [72] (accessed August 2022). Datasets contain Internal 

Transcribed Spacer (ITS) from the ribosomal RNA gene of the plant. Detailed information about the data that was used in this study is 
explained in Table 1. All of the information in Tables 1 and 2 can be accessed at https://www.ncbi.nlm.nih.gov/nuccore using the 
filter.  

● “species_name” [Organism] filter for filtering the family or genera of the organism.  
● (internal transcribed spacer 1 [Title] OR ITS1 [Title]) AND (internal transcribed spacer 2 [Title] OR ITS2 [Title]) filter to obtain the 

ITS gene sequences.  
● 500:850 [SLEN] filter to refine the result to the ITS gene which is generally 500 to 850 bp in length.  
● NOT UNVERIFIED filter to exclude the unverified data on NCBI. 

Table 1 
Detailed information on validation data at the family level.  

No Family Total Record Average Base Pair Length No Family Total Record Average Base Pair Length 

1 Cannabaceae 25 640.72 9 Alismataceae 25 707.8 
Cucurbitaceae 25 671.24 Arecaceae 25 712.8 
Zosteraceae 25 597.24 Burseraceae 25 680.96 

2 Cleomaceae 25 676.88 10 Chrysobalanaceae 25 692.44 
Dilleniaceae 25 614.72 Hypericaceae 25 675.68 
Typhaceae 25 709.72 Iridaceae 25 670.52 

3 Brassicaceae 25 621.08 11 Boraginaceae 25 637.88 
Hydrangeaceae 25 645.68 Convolvulaceae 25 685.16 
Linaceae 25 616.76 Haloragaceae 25 688.04 

4 Buxaceae 25 650.84 12 Clusiaceae 25 693.44 
Cactaceae 25 634.24 Menispermaceae 25 596.24 
Haloragaceae 25 693.48 Zosteraceae 25 585.52 

5 Iridaceae 25 666.32 13 Brassicaceae 25 639.12 
Linaceae 25 617.36 Ceratophyllaceae 25 658.08 
Malvaceae 25 697.64 Haloragaceae 25 661.2 

6 Amaryllidaceae 25 645.8 14 Araliaceae 25 623.84 
Eriocaulaceae 25 743.04 Elaeocarpaceae 25 634.12 
Urticaceae 25 643.72 Meliaceae 25 676.92 

7 Cymodoceaceae 25 614.64 15 Buxaceae 25 664.16 
Ericaceae 25 672.2 Ceratophyllaceae 25 655.72 
Urticaceae 25 657 Chrysobalanaceae 25 712.88 

8 Ceratophyllaceae 25 644.04 Average 25 658.6702 
Haloragaceae 25 700.44 
Juncaceae 25 612.84  
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The example of the filter will look like this: 

After we get the result from the rentrez library, we take the random sample of the ids to be used. 
The validation dataset contains a total of 1875 sequences of ITS markers from various families and genera among the Plantae 

Kingdom. The validation dataset was retrieved by using the family and the genera on the NCBI that were not disputed and contained 
more than 25 records. The family and the genera that were used were collected randomly from the list of eligible families. We used the 
data on different genera to make sure that the model that we have developed can cluster groups with higher levels of similarity or in 
other words are more homogenous. 

2.2.2. Case study data 
The case study data were collected from GenBank [72]. The dataset used in this study contains Internal Transcribed Spacer (ITS) 

from the ribosomal RNA. The brief information about the data is explained in Table 3 and the detailed information can be accessed in 
Appendix 1. 

The case study family data consist of 63 data on Caesalpiniaceae, 95 data on Fabaceae, and 41 data on Mimosaceae, 199 data in 
total. The length of the sequences is varying from 510 bp to 785 bp and has an average length of the sequences of 672,105. 

2.2.3. Hardware specification 
All of the programs in this study run on an 8-core CPU computer, with a RAM capacity of 52 GB, and storage using Solid State Disk 

(SSD). The programming language used in this study is R version 4.1.2 which runs in RStudio. The libraries used can be found at CRAN 
and Bioconductor III. 

3. Results and discussion 

3.1. Validation phase 

The aim of the validation phase is to get the best distance method that can cluster the DNA sequences data clearly, the method that 
was retrieved and then used in the case study to assess the dispute between the Leguminosae group. The distance method that is 
examined in this phase is Euclidean [67], Manhattan [67], Canberra [68], Minkowski [69], Pearson [70], and Spearman [71] dis-
tances. The test was run 25 times using random data from the family and genera that are not in dispute, the list of the family is shown in 
Table 1 and 2. 

Table 2 
Detailed information on validation data at the genera level.  

No Family Genera Average Base 
Pair Length 

Total 
Sequences 

No Family Genera Average Base 
Pair Length 

Total 
Sequences 

1 Orchidaceae Anoectochilus 693.52 25 6 Poaceae Brachypodium 596.56 25 
Bulbophyllum 662.24 25 Briza 641.6 25 
Coelogyne 639.96 25 Chusquea 657.64 25 

2 Orchidaceae Anoectochilus 696.04 25 7 Rosaceae Acaena 684.64 25 
Calopogon 675.96 25 Alchemilla 638.84 25 
Cypripedium 709.8 25 Crataegus 633.2 25 

3 Orchidaceae Aerides 648.2 25 8 Rosaceae Acaena 677.88 25 
Anoectochilus 700.08 25 Alchemilla 640.64 25 
Coelogyne 631.92 25 Amelanchier 603.16 25 

4 Asteraceae Ambrosia 613.44 25 9 Sapindaceae Acer 699.92 25 
Chrysanthemum 699.08 25 Aesculus 625.56 25 
Coreopsis 651 25 Cardiospermum 603.6 25 

5 Brassicaceae Aethionema 655.48 25 10 Ranunculaceae Adonis 608.08 25 
Alyssum 668.96 25 Caltha 614.32 25 
Brassica 633.84 25 Coptis 647.88 25 

Average 651.768 25  

Table 3 
Detailed information on case study data.  

Case study data 

Family Average bp length Total records 
Caesalpiniaceae 700.35 63 
Fabaceae 668.33 95 
Mimosaceae 637.46 41  
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The summary of the Validation phase is mapped in Table 4, The table shows a summary of the accuracy and computational time of 
each method in each experimental run. The family validation phase consists of 15 experiments (Table 1), each experiment using 3 
different families with 25 sequences each. Whereas the genera validation phase consists of 10 experiments (Table 2), each experiment 
using 3 different genera from the same family with 25 sequences each. The weighted average column is the weighted average of family 
validation and genera validation phase, calculated by: 

waa=
(fva × 15) + (gva × 10)

25
(1)  

wat=
(fvt × 15) + (gvt × 10)

25
(2)  

where: 
waa = Weighted average accuracy (%) 
fva = Family validation accuracy (%) 
gfa = Genera validation accuracy (%) 
wat = Weighted average time (s). 
fvt = Family validation time (s). 
gft = Genera validation time (s). 
The first equation (1) is used to calculate the weighted average accuracy that is used in Table 4, and the second equation (2) is used 

to calculate the weighted average computational time that is used in Table 4. 
During the validation phase, the aggregated results indicated that the Pearson correlation emerged as the best distance method, 

resulting in an overall accuracy of 99.04% and an execution time of 0.0150 s. The highest accuracy was observed in Pearson, Man-
hattan, and Spearman methods, each achieving 99.04% accuracy, correctly classifying nearly all the cases used in this study. Any 
instances of misclassification could be due to anomalies or imbalances inherent in the data. However, in terms of execution time, the 
Pearson method proved to be the fastest, completing classification in 0.0150 s, followed closely by the Euclidean and Manhattan 
methods, requiring 0.0156 and 0.0157 s, respectively. 

In the family validation phase, where we assessed three different families to identify the best distance method, a total of 15 test 
scenarios were implemented. The specifics of these tests are elaborated in Table 1. In this phase, the Minkowski method (p = 3) proved 

Table 4 
Result of the Validation phase.   

Family Validation (15 Experiments) Genera Validation (10 Experiments) Weighted Average 

Method Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) 

Canberra 98.22% 0.0377 99.33% 0.0328 98.67% 0.0357 
Euclidean 98.22% 0.0165 99.47% 0.0143 98.72% 0.0156 
Manhattan 98.76% 0.0164 99.47% 0.0146 99.04% 0.0157 
Minkowski (p = 3) 98.93% 0.0566 98.53% 0.0453 98.77% 0.0521 
Pearson 98.76% 0.0160 99.47% 0.0136 99.04% 0.0150 
Spearman 98.76% 0.0645 99.47% 0.0528 99.04% 0.0598 
Average 98.61% 0.0346 99.29% 0.0289 98.88% 0.0323  

Fig. 5. Example of the well-separated families. The color represents the family of the sequence. Family: Haloragaceae (Turquoise), Cactaceae 
(Pink), and Buxaceae (Green). 
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to be the most effective for classifying the three different families, with an accuracy rate of 98.93%. Nevertheless, this method attained 
the lowest accuracy in the genera validation phase, scoring 98.53%. The Pearson correlation, alongside the Spearman and Manhattan 
distances, earned the second-highest accuracy of 98.76%. Regarding speed, the Pearson correlation method was the fastest, averaging 
0.0160 s to classify different families, followed by the Manhattan and Euclidean methods, which required 0.0164 and 0.0165 s, 
respectively. 

Genera validation is the phase that uses 3 different genera from the same family, the purpose of this phase is to examine whether the 
methods can classify the sequence with higher similarity, the detailed information about this phase is explained in Table 2. The overall 
accuracy in this phase shows a higher average accuracy than the family validation phase with 99.29% accuracy compared to the family 
validation phase with 98.61% accuracy. In a term of computational speed, Pearson correlation gains the fastest run time with 0.0136 s 
on average to cluster the different genera, followed by Euclidean and Manhattan methods at 0.0143 and 0.0146 s respectively. In 
contrast, although the Spearman method has high accuracy at 99.47%, it takes the longest run time to cluster the genera at 0.0528 s. 

Based on the result, the ITS marker, despite being recommended for fungi, can be used to distinguish the families and the genera of 
the data in the experiment, and all of the distance methods give the consistently good result with more than 98.22% percent accuracy 
for all distance methods as long as the data used is not disputed or has problems with their taxa. We can also see that the genera 
validation phase is more accurate and less time-consuming than the family validation phase. Fig. 5 shows how genera of the same 
family are well separated using the Euclidean distance method. 

The distribution of the data that we used in this validation experiment in Fig. 6 explains that most of the sequences fall into 600–675 
bp (Fig. 6a) on the family validation experiments (Table 1) and 575–675 bp (Fig. 6b) on the genera validation experiments (Table 2). 
Fig. 5 shows us the example of visualization of the hierarchical clustering that can cluster each of the families clearly, the result is from 
the experiment on 3 different families: Haloragaceae (Turquoise), Cactaceae (Pink), and Buxaceae (Green). 

3.2. Case study: Leguminosae 

This phase aimed to resolve the disputed classification of the Leguminosae family, specifically whether it should be categorized as 
one or three distinct families. The data used in this study consisted of the ITS sequences of Fabaceae (Papilionoid), Caesalpiniaceae, 
and Mimosaceae, procured from various journals and a website featuring species from this group. If a source did not provide the NCBI 
accession id for the data, researchers located the corresponding sequence for that species and included it in this study. The Pearson 
method, due to its best accuracy and computational speed as demonstrated in the validation phase, was employed to ascertain the 
familial placement of the Leguminosae group. 

Following the validation phase, we applied the most effective distance method to perform clustering on the case study data, which 
resulted in a dendrogram (Fig. 7) that advocated for the consolidation of the three families into a single family termed Leguminosae. 
The arrangement of each data sample on the dendrogram was determined by the similarity of the DNA sequences; the more closely the 

Fig. 6. Base pair distribution that is used in the validation phase of this study. a.) Family validation base pair length distribution from Table 1, b.) 
Genera validation base pair distribution from Table 2. 
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two samples resembled each other, the more closely they were positioned on the dendrogram. 
Fig. 7 shows the dendrogram visualization of the members of Fabaceae indicated with green labels on the dendrogram, Cae-

salpiniaceae with red labels, and Mimosaceae with black labels. We can see that some of the groups are clustered correctly, like at the 
top branch of the visualization, the group of Fabaceae (green) gathered in one place. However, overall, most were mixed and were not 
gathered in the same branch with the other group members. This is different compared to the visualization presented in Fig. 5, where 
each of the groups gathered on the same branch of the dendrogram. Samples from three families did not converge to produce clusters 
for their own families. This indicates that the three families are not different enough to be grouped into separate families. Thus, we can 
conclude that the group of Fabaceae, Caesalpiniaceae, and Mimosaceae should be grouped into one family. The morphological sim-
ilarities among these three families are further reinforced by the resemblance in the shape of their fruits. The fruit from the Fabaceae 
family, illustrated in Fig. 8 a, resembles the fruit from the Mimosaceae family, shown in Fig. 8 b, as well as the fruit from the Cae-
salpiniaceae family, depicted in Fig. 8 c. 

Fig. 7. Clustering result from case study.  

Fig. 8. a.) Fabaceae fruit, adapted from Ref. [73], b.) Mimosaceae fruit, adapted from Ref. [74], c.) Caesalpiniaceae fruit, adapted from Ref. [75].  
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The purposed method in this study uses common mathematical distance measures such as Euclidean, Manhattan, Canberra, 
Minkowski (P = 3), Pearson, and Spearman and does not use pairwise distance methods like Kimura 2-parameter (K2P) distance and 
Jukes and Cantor distance [76]. We also did not compare the result with the biological approach like electrophoretic analysis to cluster 
the species [35]. The machine learning approach may also be inconsistent if the libraries used in this approach receive an update or 
adjustment in their parameters, which is not a significant concern in traditional methods. This inconsistency directly ties into another 
limitation of this research which is that the dendrogram result needs to be validated by an expert to interpret the result. This human 
interpretation is limited to the bigger picture homogeneity of clusters. A computational method for interpreting the dendrogram may 
be able to parse out further details in the finer structures of the dendrogram [77], but this approach may be debatable. Finally, this 
research only uses a hierarchical clustering algorithm, any other algorithms like K-means [78], DBSCAN [79], Gaussian Mixture [80], 
etc. Can be used for this purpose and may give a different result. 

The results from our experiment support several previous works that classify legumes as one family. Lewis [47] argues that the 
argument for three separate families is untenable because of two reasons. First, apparently, Mimosoideae and Papilionoideae are 
unique and distinct lineages arising in the Caesalpinioid alliance and are not comparable to it on the same taxonomic level. Second, 
Caesalpinioideae are under scrutiny and once further detailed studies are concluded it seems inevitable for divisions into more 
definable groups comparable in rank to the other two subfamilies. Hsuan [46], while not providing any arguments for the one-family 
classification, address the three groups as subfamilies in describing their morphology. Takhtajan [48] and Patel & Panchal [36] both 
refer to Leguminosae as one family. 

On the other hand, a number of works argue against the one-family classification and instead classify legumes as three families. One 
such work by Cronquist [40] describes the author’s preference for this classification because it is more in harmony with the customary 
classifications of families within angiosperms. Other works refer to a specific group in the legumes as a family such as Hou [41] for 
Caesalpiniaceae and Nielsen [42] with Mimosaceae. The argument for three families is also supported by other works that refer to the 
whole group as Fabales as an order, such as the works by Cronquist [40] and Dahlgren [43]. 

IV. Conclusion. 
In this study, we validated our proposed machine learning, namely hierarchical clustering, for the objective of clustering a disputed 

group of Plantae–the Leguminosae. There are four main steps in this research, as follows: (i) data collection, (ii) data preprocessing, 
(iii) finding the best distance method, and (iv) determining the disputed family. According to the third step, our study shows that the 
Pearson correlation method is the best distance method to cluster different groups of families and genera. Through the application of 
the Pearson correlation approach within our hierarchical clustering experiments, the case study of the Leguminosae family, we 
ascertained that the Fabaceae, Mimosaceae, and Caesalpiniaceae are appropriately clustered into a single family. This conclusion is 
supported by the classification used or referred to by a number of previous works [36,46–48]. 

Author contribution statement 

Lala Septem Riza: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, 
analysis tools or data; Wrote the paper. Muhammad Iqbal Zain; Ahmad Izzuddin; Yudi Prasetyo: Performed the experiments; Wrote the 
paper. Topik Hidayat: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, 
analysis tools or data. Khyrina Airin Fariza Abu Samah: Analyzed and interpreted the data; Wrote the paper. 

Data availability statement 

Data associated with this study has been deposited at http://www.ncbi.nlm.nih.gov/taxonomy. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Appendix 1 

To get access to sequence link in NCBI you can access through http://www.ncbi.nlm.nih.gov/nuccore/[Accession Number].   

No Full Name Accession Number Family Name 

1 Adenanthera pavonina KP092694.1 Mimosaceae 
2 Mimosa diplotricha MH768250.1 Mimosaceae 
3 Prosopis glandulosa AF174630.1 Mimosaceae 
4 Prosopis juliflora JX139107.1 Mimosaceae 
5 Mimosa pudica KX057889.1 Mimosaceae 
6 Leucaena leucocephala MH070604.1 Mimosaceae 

(continued on next page) 
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(continued ) 

No Full Name Accession Number Family Name 

7 Desmanthus pumilus AF458845.1 Mimosaceae 
8 Desmanthus virgatus AF458843.1 Mimosaceae 
9 Neptunia oleracea KX057891.1 Mimosaceae 
10 Entada abyssinica KX057869.1 Mimosaceae 
11 Albizia julibrissin FJ572041.1 Mimosaceae 
12 Samanea saman JX870770.1 Mimosaceae 
13 Calliandra surinamensis JX870747.1 Mimosaceae 
14 Acacia lycopodiifolia AF360716.1 Mimosaceae 
15 Dichrostachys paucifoliolata AF458812.1 Mimosaceae 
16 Leucaena lanceolata JF339948.1 Mimosaceae 
17 Archidendron utile KT767599.1 Mimosaceae 
18 Archidendron lucidum KT321363.1 Mimosaceae 
19 Acacia victoriae DQ029281.1 Mimosaceae 
20 Gleditsia triacanthos AF509980.1 Caesalpiniaceae 
21 Gleditsia microphylla AF510029.1 Caesalpiniaceae 
22 Caesalpinia pulcherrima JX856420.1 Caesalpiniaceae 
23 Haematoxylum campechianum KX372832.1 Caesalpiniaceae 
24 Haematoxylum brasiletto KX372834.1 Caesalpiniaceae 
25 Haematoxylum dinteri KX372830.1 Caesalpiniaceae 
26 Cassia fistula JX856430.1 Caesalpiniaceae 
27 Senna odorata HM116996.1 Caesalpiniaceae 
28 Senna siamea KJ638423.1 Caesalpiniaceae 
29 Chamaecrista choriophylla KR134122.1 Caesalpiniaceae 
30 Chamaecrista potentilla KR134123.1 Caesalpiniaceae 
31 Maniltoa grandiflora MG949352.1 Caesalpiniaceae 
32 Bauhinia purpurea JX856406.1 Caesalpiniaceae 
33 Bauhinia syringifolia AY258398.1 Caesalpiniaceae 
34 Cynometra letestui MG949304.1 Caesalpiniaceae 
35 Maniltoa gemmipara KY306626.1 Caesalpiniaceae 
36 Crudia papuana MH535137.1 Caesalpiniaceae 
37 Tamarindus indica MG949357.1 Caesalpiniaceae 
38 Flemingia macrophylla MN165994.1 Fabaceae 
39 Flemingia mengpengensis MN177611.1 Fabaceae 
40 Phaseolus sinuatus AF115194.1 Fabaceae 
41 Glycine pindanica AY433933.1 Fabaceae 
42 Pisum sativum AY143482.1 Fabaceae 
43 Phaseolus amblysepalus AF115218.1 Fabaceae 
44 Glycine max FJ609734.1 Fabaceae 
45 Cicer arietinum DQ312219.1 Fabaceae 
46 Medicago sativa AF053142.1 Fabaceae 
47 Cicer microphyllum KP338131.1 Fabaceae 
48 Glycyrrhiza pallidiflora EU591998.1 Fabaceae 
49 Glycyrrhiza astragalina GQ246134.1 Fabaceae 
50 Pueraria montana AF338215.1 Fabaceae 
51 Lupinus albus AF007481.1 Fabaceae 
52 Ulex parviflorus AF007470.1 Fabaceae 
53 Trifolium buckwestiorum AF053148.1 Fabaceae 
54 Lathyrus aphaca AY839345.1 Fabaceae 
55 Vicia sativa MH808491.1 Fabaceae 
56 Pongamia pinnata AF467493.1 Fabaceae 
57 Melilotus indicus MK918730.1 Fabaceae 
58 Acacia nilotica JX139101.1 Mimosaceae 
59 Acacia auriculiformis KC955519.1 Mimosaceae 
60 Acacia farnesiana AF360728.1 Mimosaceae 
61 Albizia lebbeck MN181375.1 Mimosaceae 
62 Leucaena leucocephala MH050230.1 Mimosaceae 
63 Senna alata MH050234.1 Caesalpiniaceae 
64 Celtis occidentalis DQ499147.1 Caesalpiniaceae 
65 Delonix regia KY321088.1 Caesalpiniaceae 
66 Phaseolus vulgaris MW843824.1 Fabaceae 
67 Sesbania grandiflora AF536354.1 Fabaceae 
68 Tephrosia purpurea MH768297.1 Fabaceae 
69 Abrus precatorius MF440357.1 Fabaceae 
70 Butea monosperma KJ436384.1 Fabaceae 
71 Cicer arietinum MW424513.1 Fabaceae 
72 Clitoria ternatea MH260279.1 Fabaceae 
73 Crotalaria pallida MH050227.1 Fabaceae 
74 Crotalaria retusa KP698625.1 Fabaceae 
75 Dalbergia sissoo JX856444.1 Fabaceae 
76 Erythrina variegata MT023961.1 Fabaceae 

(continued on next page) 
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No Full Name Accession Number Family Name 

77 Glycyrrhiza glabra MT350378.1 Fabaceae 
78 Indigofera tinctoria MN879515.1 Fabaceae 
79 Melilotus albus MN560612.1 Fabaceae 
80 Melilotus indicus MW241661.1 Fabaceae 
81 Pisum sativum AY839340.1 Fabaceae 
82 Phaseolus vulgaris MW843825.1 Fabaceae 
83 Vigna mungo MF467912.1 Fabaceae 
84 Canavalia lineata KT751442.1 Fabaceae 
85 Lathyrus odoratus AY839377.1 Fabaceae 
86 Trifolium repens MT481887.1 Fabaceae 
87 Sesbania sesban MW560073.1 Fabaceae 
88 Sesbania bispinosa MH768288.1 Fabaceae 
89 Tephrosia purpurea MH768296.1 Fabaceae 
90 Desmodium gangeticum KP092721.1 Fabaceae 
91 Guilandina bonduc MH768079.1 Caesalpiniaceae 
92 Senna alata MH050233.1 Caesalpiniaceae 
93 Cassia fistula MW367522.1 Caesalpiniaceae 
94 Senna occidentalis MH558633.1 Caesalpiniaceae 
95 Senna siamea KJ638421.1 Caesalpiniaceae 
96 Senna sophera HQ833042.1 Caesalpiniaceae 
97 Senna tora KP092708.1 Caesalpiniaceae 
98 Tamarindus indica KF055236.1 Caesalpiniaceae 
99 Saraca asoca MW301610.1 Caesalpiniaceae 
100 Delonix regia KX057862.1 Caesalpiniaceae 
101 Acacia mangium KC955551.1 Mimosaceae 
102 Acacia catechu KC952019.1 Mimosaceae 
103 Pithecellobium dulce JX856483.1 Mimosaceae 
104 Adenanthera pavonina KP092695.1 Mimosaceae 
105 Leucaena leucocephala MG755502.1 Mimosaceae 
106 Bauhinia purpurea MH548397.1 Caesalpiniaceae 
107 Bauhinia tomentosa KX057838.1 Caesalpiniaceae 
108 Libidibia coriaria JX856416.1 Caesalpiniaceae 
109 Caesalpinia pulcherrima KX057841.1 Caesalpiniaceae 
110 Chamaecrista absus KT279729.1 Caesalpiniaceae 
111 Cassia fistula MW367497.1 Caesalpiniaceae 
112 Senna italica KY576676.1 Caesalpiniaceae 
113 Cassia javanica MW386314.1 Caesalpiniaceae 
114 Chamaecrista mimosoides KX057847.1 Caesalpiniaceae 
115 Senna obtusifolia KX057900.1 Caesalpiniaceae 
116 Senna occidentalis MW326931.1 Caesalpiniaceae 
117 Cassia roxburghii MW326753.1 Caesalpiniaceae 
118 Senna siamea KC984644.1 Caesalpiniaceae 
119 Senna surattensis MW367670.1 Caesalpiniaceae 
120 Senna tora MH712712.1 Caesalpiniaceae 
121 Delonix elata KY321105.1 Caesalpiniaceae 
122 Delonix regia KY321089.1 Caesalpiniaceae 
123 Parkinsonia aculeata KF379226.1 Caesalpiniaceae 
124 Tamarindus indica JX856519.1 Caesalpiniaceae 
125 Vachellia farnesiana KF532059.1 Mimosaceae 
126 Prosopis juliflora OK184559.1 Mimosaceae 
127 Mimosa pudica MN081594.1 Mimosaceae 
128 Leucaena leucocephala KF048811.1 Mimosaceae 
129 Senegalia senegal KY688828.1 Mimosaceae 
130 Pithecellobium dulce KX057895.1 Mimosaceae 
131 Albizia amara MW699936.1 Mimosaceae 
132 Albizia lebbeck MW699948.1 Mimosaceae 
133 Albizia procera MW699953.1 Mimosaceae 
134 Samanea saman EF638210.1 Mimosaceae 
135 Medicago lupulina MW241681.1 Fabaceae 
136 Medicago polymorpha OK036671.1 Fabaceae 
137 Trifolium repens MT481888.1 Fabaceae 
138 Melilotus albus MW241669.1 Fabaceae 
139 Lathyrus odoratus JN115031.1 Fabaceae 
140 Vicia hirsuta MH808488.1 Fabaceae 
141 Vicia sativa MW540820.1 Fabaceae 
142 Lupinus albus MK532380.1 Fabaceae 
143 Aeschynomene indica MN718416.1 Fabaceae 
144 Arachis hypogaea MT230611.1 Fabaceae 
145 Gliricidia sepium AF398816.1 Fabaceae 
146 Sesbania sesban KY968926.1 Fabaceae 

(continued on next page) 
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147 Indigofera tinctoria MH595834.1 Fabaceae 
148 Dalbergia lanceolaria JX856439.1 Fabaceae 
149 Erythrina suberosa MT023956.1 Fabaceae 
150 Clitoria ternatea KT876054.1 Fabaceae 
151 Cajanus cajan MK253074.1 Fabaceae 
152 Rhynchosia minima MH768286.1 Fabaceae 
153 Butea monosperma MN700631.1 Fabaceae 
154 Pueraria montana JN407470.1 Fabaceae 
155 Glycine max MW391260.1 Fabaceae 
156 Lablab purpureus MH518283.1 Fabaceae 
157 Phaseolus vulgaris MW843826.1 Fabaceae 
158 Vigna aconitifolia JN008333.1 Fabaceae 
159 Abrus precatorius MN091943.1 Fabaceae 
160 Tephrosia candida HE681571.1 Fabaceae 
161 Tephrosia villosa MN173946.1 Fabaceae 
162 Smithia sensitiva MF281645.1 Fabaceae 
163 Alysicarpus vaginalis MH768274.1 Fabaceae 
164 Lathyrus aphaca KJ864924.1 Fabaceae 
165 Vigna radiata MW366905.1 Fabaceae 
166 Vigna unguiculata JN008290.1 Fabaceae 
167 Mimosa pigra KT364060.1 Mimosaceae 
168 Albizia procera JX856397.1 Mimosaceae 
169 Cynometra ramiflora MG949301.1 Caesalpiniaceae 
170 Senna hirsuta KJ638428.1 Caesalpiniaceae 
171 Senna occidentalis MZ505523.1 Caesalpiniaceae 
172 Senna siamea KJ638422.1 Caesalpiniaceae 
173 Senna alata MH915657.1 Caesalpiniaceae 
174 Mezoneuron hymenocarpum KX372820.1 Caesalpiniaceae 
175 Moullava digyna KX372803.1 Caesalpiniaceae 
176 Brownea coccinea MH535219.1 Caesalpiniaceae 
177 Senna tora MH050240.1 Caesalpiniaceae 
178 Caesalpinia sp KP003675.1 Caesalpiniaceae 
179 Cassia javanica MW386313.1 Caesalpiniaceae 
180 Bauhinia acuminata JX856404.1 Caesalpiniaceae 
181 Guilandina crista KX372808.1 Caesalpiniaceae 
182 Crotalaria juncea KP698651.1 Fabaceae 
183 Crotalaria calycina KP698617.1 Fabaceae 
184 Crotalaria pallida MH050226.1 Fabaceae 
185 Crotalaria verrucosa KP698648.1 Fabaceae 
186 Crotalaria saltiana KX371754.1 Fabaceae 
187 Desmodium triflorum LC377412.1 Fabaceae 
188 Uraria crinita JN407474.1 Fabaceae 
189 Aeschynomene americana MT902905.1 Fabaceae 
190 Mucuna bracteata LC494604.1 Fabaceae 
191 Millettia pinnata KF848293.1 Fabaceae 
192 Dalbergia volubilis KM276224.1 Fabaceae 
193 Trigonella foenum-graecum MH645773.1 Fabaceae 
194 Derris trifoliata MT312808.1 Fabaceae 
195 Grona heterocarpos MK933480.1 Fabaceae 
196 Vigna marina MH768299.1 Fabaceae 
197 Pongamia pinnata MN076243.1 Fabaceae 
198 Flemingia strobilifera MW732036.1 Fabaceae 
199 Derris scandens JX506450.1 Fabaceae  
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