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Surveillance represents an important informational tool for planning actions to monitor emerging antimicrobial resistance. 
Antimicrobial resistance surveillance (ARS) programs may have many different designs and can be grouped in 2 major categories 
based on their main objectives: (1) public health ARS programs and (2) industry-sponsored/product-oriented ARS programs. In 
general, public health ARS programs predominantly focus on health care and infection control, whereas industry ARS programs 
focus on an investigational or recently approved molecule(s). We reviewed the main characteristics of industry ARS programs 
and how these programs contribute to new drug development. Industry ARS programs are generally performed to comply with 
requirements from regulatory agencies responsible for commercial approval of antimicrobial agents, such as the US Food and Drug 
Administration, European Medicines Agency, and others. In contrast to public health ARS programs, which typically collect health 
care and diverse clinical data, industry ARS programs frequently collect the pathogens and perform the testing in a central labora-
tory setting. Global ARS programs with centralized testing play an important role in new antibacterial and antifungal drug devel-
opment by providing information on the emergence and dissemination of resistant organisms, clones, and resistance determinants. 
Organisms collected by large ARS programs are extremely valuable to evaluate the potential of new agents and to calibrate suscep-
tibility tests once a drug is approved for clinical use. These programs also can provide early evaluations of spectrum of activity and 
postmarketing trends required by regulatory agencies, and the programs may help drug companies to select appropriate dosing reg-
imens and the appropriate geographic regions in which to perform clinical trials. Furthermore, these surveillance programs provide 
useful information on the potency and spectrum of new antimicrobial agents against indications and organisms in which clinicians 
have little or no experience. In summary, large ARS programs, such as the SENTRY Antimicrobial Surveillance Program, contribute 
key data for new drug development.
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The worldwide spread of antimicrobial resistance continues 
to challenge physicians and drug development researchers, 
and it has been recognized as a global public health threat [1]. 
Because of the geographical diversity, complexity, and contin-
uously evolving dynamics of resistant organisms and complex 
resistance mechanisms, structured surveillance is a key tool for 
planning actions to manage this problem [2]. Antimicrobial 
resistance surveillance (ARS) programs may have many dif-
ferent objectives, including the following: (1) detecting the 
emergence of novel resistance phenotypes and mechanisms 
of resistance; (2) recognizing, understanding, and predicting 
trends in resistance; (3) monitoring the impact of the introduc-
tion/clinical use of new antimicrobial agents; (4) identifying 

outbreaks of resistant organisms; (5) guiding infection control 
and public health measures; and (6) providing data for new 
drug applications (NDAs) or other submissions to regulatory 
agencies, such as the US Food and Drug Administration (FDA) 
and European Medicines Agency (EMA).

Based on their main objectives, the ARS programs can be 
grouped in 2 major categories: public health ARS programs and 
industry-sponsored ARS programs. Certainly these 2 groups 
have some overlaps, but public health ARS programs predom-
inantly focus on health care and infection control, whereas the 
industry ARS programs focus mainly on drug development 
(Table 1).

Although some public health ARS programs focus on spe-
cific organisms or organism groups and may collect selected 
organisms for further evaluation, most major public health 
ARS programs collect data directly from health care or public 
health facilities and combine the data in a large database [3–5]. 
Public health ARS programs provide very valuable information 
needed to identify infection-related problems, to measure the 
impact of prevention efforts, and to decrease the incidence of 
health care-associated and community-acquired infections. 
Examples of major public ARS programs are the Centers for 
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Disease Control and Prevention’s (CDC) National Healthcare 
Safety Network [6], the European Antimicrobial Resistance 
Surveillance Network [7], and the World Health Organization’s 
Global Antimicrobial Resistance Surveillance System [8]. 
Although public health ARS programs represent very valu-
able programs, most have some limitations, including the use 
of  different antimicrobial susceptibility testing methods and/
or breakpoint interpretative criteria at participating centers, 
and they may only capture categorical results (susceptible [S]/
intermediate [I]/resistant [R]). Furthermore, laboratories may 
test different agents within a drug class, or they may perform 
selected testing (cascade testing, which is not testing or report-
ing the susceptibility results for broad-spectrum or new antimi-
crobials if the isolate is susceptible to narrow-spectrum and/or 
old agents) and have a decentralized quality assurance system. 
All of these factors can introduce bias. We reviewed the main 
characteristics of industry ARS programs and how they con-
tribute to new drug development.

INDUSTRY ANTIMICROBIAL RESISTANCE 
SURVEILLANCE PROGRAMS

Antimicrobial resistance surveillance programs sponsored by 
industry are generally performed to comply with requirements 
from regulatory agencies responsible for commercial approval 
of antimicrobial agents, such as the FDA, EMA, and others 
(Table 1). These agencies require that drug manufacturers 
evaluate the in vitro activity and spectrum of an antimicrobial 
agent, including its active components and major metabolites, 
against a collection of relevant bacteria early in clinical devel-
opment, usually when submitting an investigational new drug 
application. Companies should provide data of candidate(s) 
tested against a series of clinically relevant and contemporary 
collection of organisms to allow assessment of in vitro activity 
and potential clinical indication(s). Regulatory agencies also 
require that drug companies perform premarketing surveil-
lance as part of the NDA package and to benchmark a given 
agent before clinical use, as well as postmarketing surveillance 

to monitor potency, spectrum, and emergence of resistance 
over time (usually 5 or more years) after clinical approval and 
introduction into the market (www.fda.gov/downloads/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/
UCM182288.pdf) [9]. Thus, industry ARS programs are usu-
ally designed to fulfill these regulatory commitments.

In contrast to public health ARS programs, which typically 
collect health care and clinical data, industry ARS programs 
frequently collect the organisms and perform the testing in a 
central laboratory (Table 1). Many important testing aspects are 
standardized to avoid introducing method and quality assur-
ance bias. For example, only 1 isolate per infection episode is 
included in the program, and all organisms of the same group 
are tested against the same antimicrobial agents (no cascade test-
ing). Other characteristics of industry ARS programs include 
rigid quality control and storage of the organisms for further 
phenotypic and/or genotypic characterization as needed.

Most industry ARS programs are related to a specific anti-
microbial agent or drug company, with very few exceptions, 
such as the SENTRY Antimicrobial Surveillance Program and 
the British Society for Antimicrobial Chemotherapy (BSAC) 
Resistance Surveillance Program. The SENTRY Program (www.
jmilabs.com/antimicrobial-surveillance/) collects and processes 
bacterial and fungal isolates causing a variety of infection types 
in a large number of medical centers worldwide. The organisms 
are consecutively collected (prevalence mode) to provide a real 
scenario of the distribution of species causing infections and a 
current representation of susceptibility phenotypes. Isolates are 
centrally processed for viability, purity, and bacterial identifi-
cation and susceptibility tested by the reference broth microdi-
lution method against numerous antimicrobial agents. Isolates 
of interest are subjected to further molecular characterization 
by next-generation sequencing and bioinformatics tools. Some 
results are made publicly available in an interactive website 
(https://sentry-mvp.jmilabs.com). The BSAC Program collects 
isolates from bacteremia and respiratory tract infections from 
many medical centers in the United Kingdom and Ireland, and 
results are available at www.bsacsurv.org [10]. Both SENTRY 
and BSAC programs are sponsored by a consortium of pharma-
ceutical companies.

CONTRIBUTION OF ANTIMICROBIAL RESISTANCE 
SURVEILLANCE PROGRAMS TO NEW DRUG 
DEVELOPMENT

Establishing the Need

The need for a new antimicrobial agent is generally driven by 
the emergence and broad dissemination of a new pathogen 
and/or resistance mechanism that is not well controlled by clin-
ically available drugs. For example, the emergence and wide 
dissemination of methicillin-resistant Staphylococcus aureus 
or multidrug-resistant (MDR) Gram-negative bacilli, mainly 
carbapenem-resistant Enterobacteriaceae (CRE), prompted the 

Table 1. Main Characteristics of Industry and Public Antimicrobial 
Resistance Surveillance (ARS) Programs

Industry ARS Programs Public ARS Programs

Designed to comply with require-
ments from regulatory agencies

Focus on health care and infection 
control

Collect organisms for testing in a  
central laboratory

Collect data and combine them in a 
large database

Test all organisms against  
the same antimicrobials and by  
the same methodology

Antimicrobial agents and methodology 
vary among participating centers

Store all organisms for further 
characterization

Possibly store only selected 
organisms 

Provide valuable information on the 
emergence, spread, and molec-
ular characterization of resistant 
organisms

Provide valuable information needed 
to identify infection-related problems 
and to measure the impact of preven-
tion efforts and public health policies

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM182288.pdf
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM182288.pdf
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM182288.pdf
http://www.jmilabs.com/antimicrobial-surveillance/
http://www.jmilabs.com/antimicrobial-surveillance/
https://sentry-mvp.jmilabs.com
http://www.bsacsurv.org
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development of a series of drugs to address these problems. 
However, it is difficult to differentiate the emergence of resis-
tance mechanisms responsible for sporadic cases that can gen-
erate a large number of scientific publications and reports from 
those occurrences that disseminate broadly and affect a large 
number of patients.

Carbapenem-resistant Enterobacteriaceae isolates producing 
acquired carbapenemases were initially identified in the 1980s 
[11, 12]; however, despite a large number of anecdotal reports 
in the late 1990s and early 2000s, the frequency of CRE infec-
tions remained low in most regions of the world until the wide-
spread dissemination of Klebsiella pneumoniae carbapenemase 
(KPC)-producing strains in the last decade [13]. Data from the 
SENTRY Program indicates that the overall frequency of CRE 
in the United States increased from 0.1%–0.3% in 1999–2003 
to 0.7% in 2004 and 1.2% in 2005, remained between 1.4% and 
2.0% from 2005 through 2015, and then declined in 2016 and 
2017 (Figures 1 and 2). In summary, data from the SENTRY 
Program and other large ARS programs documented the con-
tinued increase in the frequency of CRE, initially in the United 
States and then worldwide in the late 2000s, that stimulated the 
development of novel drugs to address these difficult-to-treat 
organisms [14–18].

In contrast to CRE, vancomycin-intermediate S. aureus 
(VISA) and vancomycin-resistant S. aureus (VRSA) isolates 
remain rare. The first VISA clinical isolate was reported from 
Japan in 1996 [19], and the first VRSA isolate was reported from 
the United States in 2002 [20]. Many VISA and VRSA cases were 
reported in the early 2000s, but data from the SENTRY Program 
and other large ARS programs have documented that vancomy-
cin, and newer antistaphylococcal drugs such as linezolid and 
daptomycin, remain very active against S. aureus worldwide, 

with >99.9% susceptibility rates [21–24]. Thus, clinical approval 
of many anti-Gram-positive agents in the last decade, combined 
with commercial reasons and data from ARS programs, moti-
vated many pharmaceutical companies to prioritize developing 
antimicrobials to treat MDR Gram-negative organisms over 
those to treat S. aureus and other Gram-positive infections. 
These priority changes resulted in an important shift, with sev-
eral anti-Gram-positive agents being approved in the early years 
of the decade (eg, ceftaroline in 2010 and dalbavancin, orita-
vancin, and tedizolid in 2014) and anti-Gram-negative agents 
being approved more recently (eg, ceftolozane-tazobactam in 
late 2014, ceftazidime-avibactam in 2015, meropenem-vabor-
bactam in 2017, and plazomicin in 2018).

Other important information that can be provided by ARS 
programs and contribute to drug development is the frequency 
of bacterial species causing different infection types; however, 
a given ARS program needs to be designed to obtain this data 
(ie, needs to collect organisms or data by prevalence mode or 
1 isolate per patient per infection episode, consecutively col-
lected). Increasing prevalence of organisms not covered by 
currently available antimicrobials may indicate the need for 
developing new agents. For example, data from the SENTRY 
Program indicate that the frequency of Stenotrophomonas 
maltophilia isolated from patients hospitalized with pneumo-
nia increased from 3.0% to 4.4% worldwide and from 3.2% 
to 4.7% in North America when comparing 2005–2006 with 
2015–2016 [25]. More recent results indicate that S. malto-
philia represents the fifth or sixth most common organism 
isolated from patients with pneumonia in US medical centers 
[26, 27]. These data certainly support the clinical development 
of antimicrobial agents for treating infections caused by this 
generally MDR organism.
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Figure 1. Carbapenem-resistant Enterobacteriaceae (CRE) rates in the United States (SENTRY Program, 1999–2017).
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Providing Information on the Frequency of Clinically Relevant Resistance 
Mechanisms

Information on the mechanisms of resistance responsible for 
significant changes in the antimicrobial susceptibility patterns 
of clinical isolates are crucial for planning drug development 
strategies. The best example is the “recent” development of a 
series of novel β-lactamase inhibitors after the increased prev-
alence of carbapenemase-producing, mainly KPC-producing, 
Enterobacteriaceae.

The SENTRY Program has incorporated the molecular char-
acterization of selected organism subsets since the early years 
of the program [28–33]. In addition to identifying and describ-
ing novel resistance genes [33–36], the SENTRY Program has 
monitored the occurrence of many resistance genes over time 
[37–47].

The cfr gene, which mediates resistance to oxazolidinones, 
including linezolid and tedizolid, was first reported in a human 
staphylococcal isolate in the United States by the SENTRY 
Program in 2007 [48]. The emergence of this gene raised con-
cerns about the future clinical utility of oxazolidinones against 
staphylococci and other Gram-positive pathogens. Thus, the 
SENTRY Program continued to monitor the occurrence of 
cfr and optrA that mediate oxazolidinone resistance in Gram-
positive organisms surveyed, documenting that the prevalence 
of these genes remained very low worldwide, with the occur-
rence of only sporadic cases and locally/regionally contained 
outbreaks [47, 49].

The first KPC-producing CRE in the United States was iso-
lated in North Carolina in the late 1990s as part of the CDC’s 
Project Intensive Care Antimicrobial Resistance Epidemiology, 

another example of the importance of ARS programs [50]. This 
initial case was followed by a report of 19 cases of KPC-2-
producing strains from 7 hospitals in the New York area [51]. 
Although there were many reports of KPC-producing strains 
in the early 2000s, data from the SENTRY Program indicated 
that the occurrence of KPC cases showed a substantial increase 
only in 2004–2005 and remained centered in New York and 
surrounding areas for many years [44, 46]. Furthermore, con-
temporary SENTRY Program data has demonstrated that, 
although blaKPC represents 95% of the carbapenemase genes 
among CRE from US medical centers, its occurrence declined 
in 2016–2017 [52].

In summary, the emergence of novel mechanisms of resis-
tance is usually followed by a large number of publications 
about the topic, and β-lactamases represent good examples. 
β-lactamases that hydrolyze carbapenems efficiently, such as 
the serine carbapenemase SME and the metallo‐β‐lactamase 
(MBL) IMP, were initially detected in Enterobacteriaceae in the 
1980s [53, 54]. Since then, a number of new class A variants (eg, 
KPC and GES enzymes), class B MBLs (eg, IMP, VIM, SPM, 
and NDM), and class D carbapenemases (eg, OXA-23, OXA-24, 
and OXA-48) have been extensively reported. However, based 
on data from large ARS programs, the occurrence of most of 
these carbapenemases, with exception of KPC, remain low and/
or restricted to specific geographic locations [55–57].

Source of Organisms for Early Drug Discovery

Surveillance programs that collect microorganisms, such as 
the SENTRY Program, as opposed to those that capture only 
data, provide a source of valuable microorganisms that can be 

Figure 2. Carbapenem-resistant Enterobacteriaceae rates among nations surveyed by the SENTRY Program in 2017.
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selected for use in drug discovery efforts. A large collection of 
global isolates provides greater opportunity to find less com-
mon or emerging isolates/phenotypes. From these surveillance 
data sets, specialized isolate sets with known susceptibility phe-
notypes and genotypes can be created to screen antimicrobial 
libraries. Compounds demonstrating potential activity are used 
to provide scaffolds for further exploration through chemical 
modifications against the selected pathogens. This primary 
screening effort can consist of testing against only a few bacte-
rial isolates. Larger groups of bacterial isolates chosen to include 
a variety of important phenotypes and genotypes consisting of 
a few dozen to hundreds of organisms are generally tested as a 
secondary screen. If this testing proves favorable, then tertiary 
screening of isolates representative of the larger population of 
organisms (including susceptible and various resistance types) 
can be performed. Tertiary screening can be done on mini-
mal organism groups (20–50 organisms per organism species 
or resistant subset), allowing for the generation of minimum 
inhibitory concentration (MIC)50 and MIC90 values for bacteria 
groups and their resistant subsets. Compounds that demon-
strate a promising activity profile during tertiary testing are 
candidates for testing against a broader contemporary sur-
veillance set of organisms where minimally 100 organisms per 
genus/species and preferably 250 or more are tested [9].

Early Data on Spectrum of Activity

Regulatory agencies require that drug companies evaluate the 
activity of an antimicrobial agent against a relevant collection of 
bacteria in early clinical development. The choice of pathogens 
studied and the sample size of such isolate collections required 
to support an NDA are guided by the target product profile and 
intended indications for the antibacterial agent [9]. Results of 
early studies on the in vitro spectrum provide a benchmark 
to monitor future changes in the susceptibility of clinically 
important organisms to the novel agent after its approval and 
clinical application.

The development requirement for the early assessment ac-
tivity of an antibacterial agent is described in the guidance for 
microbiology data for systemic antibacterial agents provided by 
the FDA [9]. This guidance describes the requirement for a suf-
ficient number of clinically relevant bacteria to assess the poten-
tial clinical efficacy of the agent for the intended indication. The 
guidance also provides suggestions for the number of genera 
and species that should be tested. Sample sizes of ≥100 isolates 
are suggested for most organism groups. For Enterobacteriaceae, 
≥300 isolates are suggested. However, the adequate number of 
organisms varies according to drug class, clinical indications, 
and spectrum of the antimicrobial agent.

Although the organism collection for early evaluation of 
spectrum does not need to be large, it should be temporally rel-
evant (less than 3 years old), broadly distributed geographically, 
and representative of the susceptibility patterns for currently 

used antibacterial agents for the organisms found in the target 
product profile. If development in the United States is a goal, 
then the sample collection should include a majority of iso-
lates from the United States (at least 75% of the sample). For 
European development, the sample collection should contain 
isolates from a variety of countries and regions with a represen-
tative sample from within the European Union. Furthermore, 
it is crucial to evaluate subsets of clinical organisms express-
ing resistance to other drugs of the same class and to evaluate 
organisms expressing resistance mechanisms that are clinically 
relevant for the geographic regions to which the drug will be 
submitted for approval. Only large global ARS programs with 
centralized testing can provide these types of organism collec-
tions for drug development [58–61].

Large ARS programs also play an important role in the devel-
opment of drugs with narrow or limited spectrums by provid-
ing a large collection of target organisms that would be very 
difficult to obtain in a single investigation. For example, mure-
pavadin is a novel peptide compound that is being developed 
for treating Pseudomonas aeruginosa infections [62]. By using 
the SENTRY Program organism collection (JMI Laboratories), 
we were able to evaluate the in vitro activity of this compound 
against 785 extensively drug-resistant (XDR) P. aeruginosa con-
temporary clinical isolates collected from >100 medical centers 
over 2 years [63]. Because only approximately 10% of P. aerugi-
nosa isolates display an XDR phenotype, it would be necessary 
to test 10 times more isolates via routine testing to obtain results 
on the same number of XDR isolates.

Dose Selection and Recommendations for In Vitro Susceptibility Testing 
Criteria

Antimicrobial susceptibility surveillance data provide key 
information to interpret the results of pharmacokinetic/phar-
macodynamics (PK-PD) target attainment studies and are used 
to support dose selection decisions for phase 3 clinical trials and 
recommendations for in vitro susceptibility testing criteria for 
antibacterial agents during drug development [64, 65].

Results of PK-PD target attainment analyses based on non-
clinical PK-PD target and population PK models developed 
using phase 1 data represent an important model for support-
ing dose selection early in the development program. It has 
been demonstrated that the magnitude of PK-PD targets asso-
ciated with different levels of reduction in bacterial infection 
burden, as generated using data from in vivo studies, is similar 
to the magnitude of PK-PD indices associated with successful 
responses among infected patients enrolled in clinical trials 
[66]. The concordance between nonclinical and clinical PK-PD 
targets for efficacy across numerous classes of agents provides 
the basis for applying PK-PD principles to reduce risk in drug 
development [2, 67, 68].

The approach to assess PK-PD target attainment in the con-
text of in vitro surveillance data as a means of supporting dose 
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selection for the development of antibacterial agents or reassess-
ing dosing regimens of marketed agents has become increas-
ingly common in the last 15 years [65]. Such an approach is also 
used to establish and reassess interpretive criteria for in vitro 
susceptibility testing for antibacterial agents [69–72].

When establishing interpretive criteria, there are frequently 
limited numbers of bacteria from the pivotal clinical trials that 
exhibit MIC or disk zone diameter values near the potential sus-
ceptibility breakpoints, especially because the reason to select/
advance a new agent would likely be its lack of significant levels 
of current bacterial resistance. These limited numbers of organ-
isms become an even greater issue with the recent efforts by 
the FDA to streamline clinical trial size, such as in the Limited 
Population Pathway for Antibacterial and Antifungal Drugs 
(LPAD pathway) [73]. Isolates from surveillance data provide 
a reservoir of organisms through which such non-“wild-type” 
isolates can be found. These isolates are valuable in determining 
the PK-PD targets and in establishing and refining interpretive 
criteria and the corresponding diagnostic test systems (MIC 
and disk testing) throughout the useable life of an anti-infective 
agent [74].

Large ARS programs are also an important source of chal-
lenge organisms for the development and calibration of com-
mercial susceptibility testing methods, such as automated 
systems and stable gradient strip tests. When an antimicrobial 
agent is clinically approved, isolates expressing resistance or 
even decreased susceptibility may be difficult to obtain. These 
types of isolates are critical for the calibration of a commercial 
susceptibility test, and sometimes they can only be obtained 
from large ARS program collections.

Selecting the Most Appropriate Geographic Regions to Perform 
Clinical Trials

In the current environment of drug development, a greater 
interest is in drugs with narrow or limited spectrums [63]. 
Given the pathogen-specific nature of these drugs, they are 
unlikely to generate cross-resistance to other compounds or 
negatively impact the patient’s native bacterial flora, which 
are unintended sequelae of treatment with broad-spectrum 
agents. However, these compounds are planned for a limited 
population, and there are several challenges associated with 
conducting clinical trials to evaluate antimicrobial agents 
intended for use in a limited population of patients [75, 76]. 
Thus, the 21st Century Cures Act established the LPAD path-
way, and the FDA offers incentives, via the LPAD pathway, for 
developing antibacterial and antifungal drugs to treat serious 
or life-threatening infections in patients with unmet needs 
[73] (available at https://www.fda.gov/downloads/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/
UCM610498.pdf).

Even with FDA incentives, challenges remain. Two recent 
examples are the plazomicin and meropenem-vaborbactam 

clinical trials for the treatment of CRE infections in which both 
studies ended early due to difficult enrollments (both ended up 
with approximately 70 patients total for both treatment arms) 
[75, 76]. Because there are such a limited number of patients, 
clinical trials should be performed in geographic regions where 
the frequency of the target organisms is higher, and the large 
global ARS programs may provide this type of information to 
drug sponsors and regulators. Thus, if the drug is intended for 
treating CRE infections, it would be important to select regions 
with elevated CRE rates, such as some eastern European and 
Latin American countries. Figure 2 displays the CRE rates for 
the countries that participated in the 2017 SENTRY Program, 
data that can be very useful for recruiting medical centers to 
perform clinical trials on antimicrobials intended to treat CRE 
infections.

Furthermore, in these scenarios, there may not be sufficient 
clinical data to fully determine how effective the narrow-spec-
trum agent will be in patients infected with difficult-to-treat 
organisms. There would be reasons to provide data on char-
acterized isolates that likely can only come from surveillance 
collections; thus, leveraging surveillance programs for these 
infrequent types of isolates are likely to be an important com-
ponent of the NDA package [63, 77, 78].

Postmarketing Surveillance

Regulatory agencies require that the drug company perform 
postmarketing surveillance with the purpose of following the 
potency and spectrum of a new antimicrobial agent for sev-
eral years (usually 5) after it is approved and introduced into 
the market [9]. This requirement typically involves testing key 
target organisms from a geographically distributed network of 
hospitals for centralized laboratory reference testing.

The SENTRY Program served as a platform for postmarket-
ing surveillance programs of many antimicrobial agents, includ-
ing anidulafungin [79, 80], caspofungin [79, 80], cefepime [81], 
ceftaroline [82], ceftazidime-avibactam [83], ceftobiprole [84], 
ceftolozane-tazobactam [85], delafloxacin [86], dalbavancin 
[22], daptomycin [87], isavuconazole [88], linezolid [21], mero-
penem-vaborbactam [89], micafungin [90], oritavancin [91], 
plazomicin [92], posaconazole [79], tedizolid [93], telavancin 
[94], tigecycline [77], and voriconazole [95].

For example, the Linezolid Experience and Accurate 
Determination of Resistance (LEADER) and the Zyvox Annual 
Appraisal of Potency and Spectrum (ZAAPS) programs moni-
tored the in vitro activity of linezolid and key comparator agents 
in the United States (LEADER) and worldwide (excluding 
United States; Zyvox Antimicrobial Potency Study and ZAAPS) 
from 1999–2000 when it was approved until 2016 [49, 96]. 
The LEADER and ZAAPS programs involved approximately 
200 medical centers worldwide. The results of these 2 pro-
grams produced a large number of scientific publications and 
showed that the compound remained very active against target 

https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM610498.pdf
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM610498.pdf
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM610498.pdf
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Gram-positive organisms after >15  years of extensive clinical 
use [21]. These surveillance programs also identified the emer-
gence of many mechanisms of oxazolidinone resistance over the 
monitored years, but the frequency of those resistant genotypes 
remained low, stable, and geographically restricted [47].

Another example of a comprehensive postmarketing sur-
veillance program that uses the SENTRY Program platform is 
the INFORM Program in the United States [27, 83]. The pro-
gram has monitored the in vitro activity of ceftazidime-avi-
bactam and the frequency of clinically relevant β-lactamases 
and other β-lactam resistance mechanisms in >70 US medical 
centers since 2011, years before the compound was approved 
by the FDA in 2015. Moreover, screening β-lactamase genes on 
Enterobacteriaceae isolates with an extended-spectrum β-lac-
tamase phenotype began in 2012, initially by multiplex poly-
merase chain reaction and then by whole-genome sequencing. 
The implementation of molecular testing allows for monitoring 
the occurrence of clinically important β-lactamases and other 
resistance mechanisms that may affect the activity of ceftazi-
dime-avibactam and other β-lactams tested as comparator 
agents [44, 97]. It is also important to note that postmarketing 
surveillance provides useful information on the potency and 
spectrum of new antimicrobial agents for which clinicians have 
little or no experience.

CONCLUSIONS

Global ARS programs that use centralized testing, such as the 
SENTRY Program, play an important role in new antibacterial 
and antifungal drug development. The main characteristics of 
the most valuable programs include (1) consecutive collection 
of isolates to establish current and real-world distribution of 
species and susceptibility phenotypes, (2) coverage of a wide 
geographic area, (3) susceptibility tests using reference meth-
ods, (4) centralized testing and quality assurance, (5) molecular 
characterization of important organisms, and (6) storing organ-
isms for further studies. Results from these programs provide 
insights on the emergence, spread, and molecular characteri-
zation of resistant organisms. They provide information on the 
important resistance mechanisms for new drugs to target and 
provide organisms that can be used to evaluate the potential 
of new agents. Furthermore, these global ARS programs help 
drug development clinical scientists identify the geography and 
patient types to focus clinical trials and to monitor the impact 
of newly introduced agents to the market.
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