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Viral genomes have evolved to maximize their potential of overcoming host defense
mechanisms and to induce a variety of disease syndromes. Structurally, a genome
of a virus consists of coding and noncoding regions, and both have been shown to
contribute to initiation and progression of disease. Accumulated work in picornaviruses
has stressed out the importance of the noncoding RNAs, or untranslated 5′- and 3′-
regions (UTRs), in both replication and translation of viral genomes. Unsurprisingly,
defects in these processes have been reported to cause viral attenuation and affect viral
pathogenicity. However, substantial evidence suggests that these untranslated RNAs
may influence the outcome of the host innate immune response. This review discusses
the involvement of 5′- and 3′-terminus UTRs in induction and regulation of host immunity
and its consequences for viral life cycle and virulence.

Keywords: picornaviruses, 5′- and 3′-UTRs, RNA functional elements, foot-and-mouth disease virus (FMDV),
modulation of innate immunity, RNA viruses

INTRODUCTION

Viral–host interactions dictate the progression of disease. To successfully infect host cells,
picornaviruses evolved an extensive repertoire of methods to enter a host cell, replicate their
genome, and disarm the host defense mechanisms. The latest include: (i) shutting down host
protein synthesis, (ii) interfering with the recognition of pathogen recognition receptors (PRRs),
and (iii) disrupting the host innate immune system signaling cascades. Many of these tasks are
accomplished by viral proteins, which–through interactions with both viral and host proteins –
facilitate infection. A telling example are picornavirus proteinases, such as 2Apro, Lpro, and 3Cpro

proteins, which are important for processing of the viral polyproteins. In addition, 2Apro has
been shown to antagonize the host immune response by cleaving melanoma differentiation-
associated 5 (MDA5), mitochondrial antiviral signaling (MAVS), and TIR domain-containing
adapter-inducting interferon-β (TRIF), which inhibits IFN-β and type III interferon responses
(Wang et al., 2013; Feng et al., 2014; Lind et al., 2016; Lei and Hilgenfeld, 2017), and degrades
poly(A)-binding protein (PABP) and eukaryotic initiation factor 4G (eIF4G) to shutoff host
translation machinery (Kerekatte et al., 1999; Glaser and Skern, 2000). On the other hand, 3Cpro

cleaves interferon regulatory factors (IRFs) (Lei et al., 2013), TRAF family member-associated
NF-κB activator (TANK) (Wang et al., 2015; Huang et al., 2017), inhibitor of kappa B kinase γ

(IKKγ) (Wang et al., 2012, 2014), and inhibits the innate immune system cascades by modulating
retinoic acid-inducible gene I (RIG-I), MDA5, and MAVS (Papon et al., 2009; Qian et al., 2017;
Rui et al., 2017). The foot-and-mouth disease virus (FMDV) Lpro degrades the p65/RelA subunit
of NF-κB (de Los Santos et al., 2007, 2009) and binds ADNP (host transcription factor), which can
interfere with the expression of IFNs and interferon stimulated genes (ISGs) (Medina et al., 2017).
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Research and data obtained from analyses of clinical and field
samples provide ample evidence that the noncoding regions of
the picornavirus genome can contribute to viral pathogenicity.
Their 5′- and 3′-UTRs fold into many secondary and tertiary
structures due to base pairing, giving rise to stem–loops (SLs),
clover-like structures, or pseudoknots (PKs), as well as internal
ribosome entry site (IRES) elements (Martinez-Salas et al., 2018).
Point mutations, deletions, or insertions in these regions have
been shown to be associated with attenuated phenotypes in vivo,
and lower viral replication and translation rates. While some of
these structures are already known to interact with host proteins,
additional motifs and/or specific sequences present within these
noncoding elements may influence both recognition of viral
elements by host PRRs and activation of the host innate immune
response system. Taken together, the above examples illustrate
a remarkable structural/functional plasticity of picornaviruses
and the ability of these viruses to counteract the host antiviral
strategies.

PICORNAVIRIDAE GENOME
COMPOSITION

Picornaviruses comprise a large group of viruses that cause a
variety of human and animal diseases, including respiratory
infections, paralysis, hepatitis, and meningitis (Atmar et al., 2012;
Tapparel et al., 2013). Currently, the International Committee
on Taxonomy of Viruses (ICTV) identifies 35 genera of
picornaviruses, with 24 genera consisting of a single viral
species (Table 1). Picornaviruses are strictly cytoplasmic viruses,
meaning that all processes following the viral entry (viral
translation, replication, and assembly of viral RNA/proteins)
occur in the host’s cytoplasm. Picornavirus genome (ssRNA+)
ranges from 6.7 (Aquamavirus) to 9.9 kB (Sicinivirus) and
it functions as an mRNA. For example, the FMDV genome
gets translated from the second of two in-frame AUG codons,
resulting in a single polyprotein that is processed by viral
encoded proteinases leader (Lpro), 3Cpro, and the peptide bond
skipping 2A into the mature structural and nonstructural (NS)
proteins. FMDV codes for 4 structural proteins and 10 NS
proteins. Viral RNA replication in infected cells is a two-step
process carried out primarily by the viral RNA-dependent RNA
polymerase (3Dpol), in conjunction with other viral or cellular
proteins. The RNA is transcribed into complementary minus
strands, which are then used as templates for the synthesis
of the progeny plus strands via a multi-stranded replicative
intermediate (RI) complex. The negative-sense RNA serves as
a template for the synthesis of multiple copies of genomic
RNA, some of which are translated and others that become
packaged into virus particles. Due to the lack of proofreading
activity of the polymerase, errors are frequently generated during
replication and every new genome contains approximately
10−4 substitutions per nucleotide (nt) (Escarmis et al., 2008).
Therefore, the virus population consists of quasispecies; a
collection of genetically diverse members that can rapidly
adapt to new environments by selection. The single open-
reading frame (ORF) of a picornavirus genome is divided into

three regions: P1, which encodes structural proteins, and P2
and P3, which encode viral NS proteins (Figure 1A). The
ORF is flanked by 5′- and 3′-UTRs. The genomic RNA of
picornaviruses is linked to a viral protein genome-linked (VPg)
at its 5′-terminus, which acts as a primer during viral RNA
synthesis.

The 5′-UTRs of picornaviruses range between 415 nts
(Passerivirus) (Woo et al., 2010) and 1,451 nts (Cardiovirus)
(Duke et al., 1992), which, depending on a viral species, can
comprise up to 17% of the genome (Table 1). The 5′-UTR has
a higher G+C content compared to the rest of picornavirus
genome, which is important for stability of the secondary
structures and adaptation to environment (Tapparel et al., 2007).
Besides, the 5′-UTR region is characterized by a high degree of
sequence homology among picornavirus species. For example,
related rhinoviruses have over 60% of homology within the
first 600 nts of the 5′-UTR (Stanway, 1990), whereas FMDV
isolates share 80–85% nucleotide identify for the S and L
fragments of the 5′-UTR (Carrillo et al., 2005). Structures
present in the 5- UTR of picornaviruses are important for
many events of the viral life cycle. For example, accumulated
evidence revealed the importance of the poliovirus (PV) 5′-UTR
for viral replication, translation, viral–host protein interactions,
and virulence (Andino et al., 1990; Rohll et al., 1994; Rieder
et al., 2000; Barton et al., 2001; Lyons et al., 2001; Vogt
and Andino, 2010). All Picornaviridae have an IRES in their
5′-UTRs, which is important for cap-independent recruitment
of the host translation machinery (reviewed in Martinez-Salas
et al., 2015). Other structures commonly found in the 5′-UTRs
of Picornaviridae include SLs, a cloverleaf structure, and PKs
(Figures 1B–D). The cloverleaf, first described in PV, is a
cis-acting RNA replication element required for initiation of
negative- and positive-strand synthesis (Andino et al., 1990; Rohll
et al., 1994; Rieder et al., 2000; Barton et al., 2001; Lyons et al.,
2001; Vogt and Andino, 2010). Deleting its fourth nucleotide
destabilizes viral RNA and causes a pronounced decrease in
the synthesis of the negative strand (Barton et al., 2001). Some
members of Picornaviridae, such as mengovirus or FMDV
contain a poly(C) track near the 5′-terminus, which has been
shown to be important for virulence (Duke et al., 1990) and viral
growth (Rieder et al., 1993), respectively. The 5′-end of many
genera of picornaviruses folds into SL structure(s) (Table 1).
Aichi virus is predicted to form three SLs within the first 120 nts
of its genome, with the first SL (SL-A) being important for
virus replication (Sasaki et al., 2001). Cre (cis-acting element) has
been shown to be critical for replication of positive-strand RNA
viruses (Pogue and Hall, 1992; Pogue et al., 1994; McKnight and
Lemon, 1998; Mason et al., 2002). In Picornaviridae, cre elements
can be found within the protein-coding region of the genome
of rhinoviruses (McKnight and Lemon, 1998), enteroviruses
(Goodfellow et al., 2003; Paul et al., 2003; Rieder et al., 2003),
cardioviruses (Lobert et al., 1999), or within the noncoding
regions (Mason et al., 2002). For example, the 5′-UTR of FMDV
contains a short (S) hairpin loop cre structure upstream of the
IRES. The FMDV cre was demonstrated to be essential for RNA
genome replication (Mason et al., 2002, 2003), and it was also
shown to function in trans (Tiley et al., 2003). The cre hairpin
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TABLE 1 | Known untranslated structural features within the Picornaviridae.

Picornavirus genus Representative virus examples Specific 5′-UTR features Specific 3′-UTR features

Ampivirus Ampivirus A IRES N/A

Aphthovirus Bovine rhinitis A Hairpin SL secondary fragment, poly(C) track,
series of pseudoknots (PKs) (except in bovine
rhinitis viruses), IRES, cre in FMDV, PPT in
FMDV

Two SLs (SL1 and SL2) structures in FMDV

Bovine rhinitis B

Equine rhinitis A

Foot-and-mouth disease (FMDV)

Aquamavirus Seal picornavirus Hairpin SL, PPT, IRES N/A

Avihepatovirus Duck hepatitis A virus IRES, PPT Less than four hairpin loops predicted

Avisivirus Avisivirus A, avisivirus B and C (chicken
picornavirus 2&3)

IRES, PPT N/A

Cardiovirus Encephalomyocarditis virus (EMCV) Poly(C) track in EMCV, PKs in EMCV, IRES, PPT Three SLs in mengovirus

Theiler’s murine encephalomyelitis virus
(TMCV)

Cosavirus Cosavirus A1 IRES N/A

Dicipivirus Canine picodicistrovirus IRES, PPT N/A

Enterovirus Coxsackievirus (CVB) Cloverleaf PV, a second “cloverleaf-like
structure” in enterovirus E and F, IRES, PPT

Variable; two hairpin SLs in PV, three SLs in
CVB B4, on SL in human rhinovirus 14Poliovirus (PV)

Bovine enterovirus 1

Rhinovirus

Erbovirus Equine rhinitis B virus IRES N/A

Gallivirus Gallivirus A IRES, PPT Multiple SLs predicted, 48 nt “barbell-like
structure”

Harkavirus Falcovirus A1 Cloverleaf, PPT, IRES SL1 and SL2 predicted

Hepatovirus Hepatitis A 5′-SL, IRES, PKs, PPT N/A

Hepatovirus C

Hepatovirus D

Hunnivirus Bovine hungarovirus SLs, IRES, PPT Two SLs predicted

Ovine hungarovirus

Kobuvirus Aichivirus A IRES, PPT Multiple SLs predicted, Aichivirus A is predicted
to have a long barbell-like structureKagovirus 1

Bovine kobuvirus

Kunsagivirus Kunsagivirus A IRES Single SL predicted

Limnipivirus Bluegill picornavirus 5′-Terminus SL in bluegill picornavirus, IRES,
PPT

Poly(C) track in bluegill picornaviruses

Carp picornavirus

Megrivirus Turkey hepatitis IRES N/A

Duck megrivirus

Mischivirus Mischivirus A, B1, C1 IRES Multiple SLs predicted

Mosavirus Mosavirus A1 5′-SL predicted, IRES, PPT N/A

Oscivirus Oscivirus A IRES N/A

Parechovirus Human parechovirus IRES Single SL in human parechovirus, two SLs in
Ljungan virusLjunganvirus1

Sebokele virus

Pasivirus Pasivirus A IRES Single SL swine pasivirus predicted

Passerivirus Passerivirus A IRES N/A

Potamipivirus Eel picornavirus IRES N/A

Rabovirus Rabovirus A 5′-SL, IRES, predicted PKs, PPT N/A

Rosavirus Rosavirus A1 Predicted cloverleaf structure, IRES, PPT Predicted to form multiple SL structures

Sakobuvirus Feline sakobuvirus IRES, predicted PKs, PPT SL with a “barbell-like” structure

Salivirus Salivirus A Predicted SLs, IRES, PPT N/A

Sapelovirus Avian sapelovirus Predicted SLs, IRES Three SLs predicted in porcine sapelovirus

Porcine sapelovirus

Senecavirus Seneca Valley virus IRES, two additional SLs predicted Two SLs predicted to form a “kissing-loop”
structure

Sicinivirus Sicinivirus A Predicted SLs at 5′-UTR, IRES, PPT Two SLs, “barbell-like” structure

Teschovirus Teschovirus A IRES N/A

Torchivirus Tortoise picornavirus IRES N/A

Tremovirus Avian encephalomyelitis virus 5′-SL, two PKs, PPT, IRES Three SLs predicted

The currently known 5′ and 3′ UTR features are listed along with the genus and specific strain they are described in. SL, stem loop; PPT, polypyrimidine track.
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FIGURE 1 | Schematic representation of a picornavirus genome. (A) Depiction of FMDV genome, where the RNA elements of the 5′- and 3′-UTRs are drawn in blue
and black, respectively. The protein coding region of the genome is depicted as gray boxes, which correspond to individual genes. (B–D) Examples of secondary
structural variation within the 5′-UTR region of different picornaviruses. The types/numbers of loops and the IRES are drawn in blue. (E–H) Examples of picornavirus
3′-UTR secondary structure diversity, shown in black.

has a conserved AAACA sequence in the apical loop region that is
also present in genomes of other picornaviruses (Steil and Barton,
2009).

Picornaviruses recruit various host proteins to mediate viral
translation and RNA replication. For example, the PV cloverleaf
binds PCBP1 and PCBP2, which facilitates its interaction
with the viral 3CD protein (Gamarnik and Andino, 1997),
and in the case of PCBP2, is required for both translation
and viral RNA synthesis initiation in infected cells (Walter
et al., 2002). Moreover, cleavage of PCBP2 by the PV 3CD
proteinase contributes to viral translation inhibition. The 5′-
UTR of enterovirus 71 (EV71) interacts with hnRNP K protein,
which is important for viral replication (Lin et al., 2008). The
cloverleaf and the IRES of coxsackievirus B3 (CVB3) are known
to interact with PTB-associated splicing factor (PSF) (Dave et al.,
2017). FMDV 5′-UTR is known to associate with RNA helicase
A (RHA), and that interaction impacts the life cycle of the virus
(Lawrence and Rieder, 2009). Interestingly, during the course
of FMDV infection, RHA co-precipitated with viral proteins 2C
and 3A as well as cellular PABP, shown in close proximity to
each other via immunofluorescent microscopy (Lawrence and
Rieder, 2009). Also, the IRES of picornaviruses interacts with
La, Sam68 (68 kDa Src-associated protein in mitosis), PTB, and
Srp20 host proteins (Hunt and Jackson, 1999; Ray and Das, 2002;
Bedard et al., 2007; Lawrence et al., 2012; Rai et al., 2015), which
improves translation. Upstream of N-ras (Unr) RNA-binding
protein is required for initiation of IRES-driven translation in
human rhinovirus and PV (Hunt et al., 1999; Boussadia et al.,

2003). On the other hand, interactions of AUF-1, Gemin5, and
FBP-2 with the 5′-UTR of picornaviruses negatively regulate
translation (Lin et al., 2009; Cathcart et al., 2013; Piñeiro et al.,
2015; Francisco-Velilla et al., 2016). The functional significance
of these interactions for the progression of infection in host cells
is still not fully understood.

The 3′-UTR of picornaviruses is much shorter compared to
the 5′-UTR and it is most often in the range of 100–300 nts. Some
picornaviruses, however, have unusually S or long (L) 3′-UTRs.
Kunsagiviruses have a 3′-UTR that consists of around 25 nts
(Boros et al., 2013), while the 3′-UTR of a rosavirus is predicted
to be 795 nts in length (Phan et al., 2011). Although a SL is a
characteristic feature of the Picornaviridae 3′-UTRs, the length
and the number of these loops vary among species (Figures 1E–H
and Table 1). For example, the feline sakobuvirus has only one
predicted SL (Ng et al., 2014), FMDV has two separate SLs
(Serrano et al., 2006), and mengovirus is predicted to form three
SLs (Duque and Palmenberg, 2001). The SLs of different viruses
can form additional arrangements; for example, the two 3′-UTR
SLs of Seneca Valley virus form a “kissing loop,” shown to be
important for enterovirus replication (Mirmomeni et al., 1997;
Hales et al., 2008) (Figure 1F). Some Picornaviridae genera –
such as Kobuvirus, Gallivirus, Sakobuvirus, or Sicinivirus – have
a characteristic “barbell” shape of a SL (Figure 1G). The precise
function of this structure is unknown, although it was suggested
to be important for viral replication (Boros et al., 2012). Similar
to the 5′-UTR, the secondary structures within the 3′-UTR
are important for picornavirus replication, and virus-induced
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pathogenesis (Merkle et al., 2002). In PV, the circularization of
the viral genome and replication depend on binding of host
proteins to the 3′-UTR (Herold and Andino, 2001). In FMDV,
evidence for distant RNA–RNA interactions between the 3′-UTR
and the 5′-UTR has been suggested, as well as for the 5′-terminus
S fragment binding to PCBP and p47 cellular proteins (Serrano
et al., 2006).

Recent studies suggest that multiple highly ordered secondary
structures are present throughout the genome of picornavirus
and related RNA viruses including protein-coding region
(Mauger et al., 2015; Pirakitikulr et al., 2016; Logan et al., 2017)
and UTRs, in addition to those described earlier. Logan et al.
(2017; Pirakitikulr et al., 2016) identified putative packaging
signals (PPSs) in RNA structural motifs of 5′-UTR and ORF
that play a role in packaging of viral RNA genome in a
capsid of picornaviruses. Atomic-scale resolution of bimolecular
structure in native state due to recent advances in cryo-electron
microscopy, and new computational and laboratory tools, could
uncover novel physical and functional aspects of RNA structural
elements (Hesketh et al., 2015; Pirakitikulr et al., 2016).

VIRAL INFECTION VS. THE INNATE
IMMUNE RESPONSE: A FIGHT FOR
DOMINANCE

Once a picornavirus enters a host cell and starts amplifying
its genome, the host defense mechanisms activate the immune
pathways to combat the invader. Although both arms of the
immune system, innate and acquired, are ultimately needed to
fend off a viral infection and prevent future outbreaks, the innate
immune system is the first line of defense. Behind this remarkable
response lies an orchestrated sequence of events responsible for
recognition of the invaders, initiation of intracellular signaling
cascades, and activation of the acquired immunity, all of which
are crucial for the establishment of an antiviral state in the host.
The recognition of a pathogen is of great importance, since
a host can only initiate an antiviral immune response once it
detects non-self entities. Pathogen-associated molecular patterns,
or simply PAMPs, are small pieces of viral genome that can be
single-stranded (ssRNA) – representing either a part of a viral
genome, or a viral replication product – or double-stranded
(dsRNA). These conserved structures are recognized by PRRs:
Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-
I-like receptors (RLRs) (Takeuchi and Akira, 2009). Following
the recognition of viral particles, a cascade of molecular events
activates downstream components of the innate immune system.
For example, the TLR family members activate IFN-β signaling
via TIR-containing adaptors, such as myeloid differentiation
primary response 88 (MyD88) (Takeda and Akira, 2005) and
they also mediate NF-κB activation (Jiang et al., 2004). TLRs –
RIG-I and MDA5 – interact with MAVS to activate IFN
type I (Takeuchi and Akira, 2009). NLRs can initiate the
response of the innate immune system by interacting with the
apoptosis-associated speck-like protein (ASC), which leads to
induction of IL-1β and IL-18 (Keller et al., 2008; Lu et al.,
2014).

Picornaviruses are thought to trigger the innate immune
response primarily via an MDA-5 receptor (Kato et al., 2006).
This well-studied MDA-5 function is thought to be accomplished
through recognition of L dsRNA fragments, representing either
a part of a viral genome or a viral replication product (Kato
et al., 2006; Feng et al., 2012). The generation of the minus
(−) RNA strand, and the formation of dsRNA, known as the
replicative form (RF), triggers a significant IFN α/β response
(Feng et al., 2012). Furthermore, purified picornavirus RF is
capable of binding to, and activating, the MDA-5 receptor
in vitro (Feng et al., 2012). Experiments described by Pichlmair
et al. (2009) suggest that structural features, such as branched
dsRNA, may also contribute to MDA-5 activation. Nonetheless,
it has been shown that other PRRs are also affected during a
picornavirus infection. For instance, RIG-I is degraded during
EMCV infection (Papon et al., 2009) and expression of full-
length RIG-I reduces EMCV replication (Yoneyama et al., 2004).
Cleavage of RIG-I during infection has been described for other
members of the Picornaviridae family, such as PV, rhinovirus
types 1a and 16, and echovirus type 1 (Barral et al., 2009a).
Furthermore, mice lacking TLR-3 have higher mortality rates
than wild-type mice after PV infection (Abe et al., 2012).
Picornaviruses have also developed a variety of mechanisms to
subvert the host adaptive and innate responses. They include: (i)
degradation of cytoplasmic sensors that induce IFN expression
(Barral et al., 2007; Barral et al., 2009a,b), (ii) inhibition of
protein secretion affecting IFN and other cytokines (Doedens
et al., 1997; Dodd et al., 2001; Neznanov et al., 2001; Choe et al.,
2005), and (iii) inhibition of antigen presentation in the context
of major histocompatibility complex (MHC) class I molecules,
which impairs the cytotoxic T-cell (CTL) response (Deitz et al.,
2000).

5′- AND 3′-VIRAL UTR RNAs INFLUENCE
THE COURSE OF INFECTION

Why would viruses maintain long, noncoding regions that fold
into complex, secondary structures? From the standpoint of
viral replication, this would seem counterintuitive as it could
increase the time needed to synthesize a single viral molecule
and potentially delay infection. On the contrary, recent studies
strongly suggest that the viral noncoding regions can help evade
the host immune system. In particular, specific motifs and/or
secondary structures contained in these regions may hold a key
to viral pathogenicity.

One of the most recent pieces of evidence that emphasized
the importance of 5′-UTRs in the activation of the host
immune system comes from work on FMDV, a member of the
Aphthovirus that causes acute disease in cloven-hoofed animals.
Its 5′-UTR consists of a S fragment, followed by a poly(C) track, a
L fragment made up of PKs, cre, and IRES (Mason et al., 2003;
Carrillo et al., 2005). Newer findings revealed that the 360 bp
hairpin-like loop, called the S fragment, plays a role in innate
immunity (Kloc et al., 2017). Kloc et al. (2017) engineered 13
deletions from the upper part of the S fragment hairpin loop
and suggested a correlation between the extent of the deletions
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and the ability to initiate an innate immune system response.
Deleting over 164 nts from the upper part of the S fragment
loop of the virus enhanced the activation of IFN-β, ISGs, and
pro-inflammatory cytokines in vitro (Figure 2). In the context
of an infectious virus, the mutant virus carrying the S fragment
164 nts deletion was attenuated in mice and these immunized
animals were fully protected against the challenge with the wild-
type FMD virus (Kloc et al., 2017). Importantly, all generated
viruses that had 164 nts, or fewer, deleted from the upper part
of the S fragment loop were viable, which is in agreement with
naturally occurring S fragment FMDV variants of serotypes O,
C, and A. In fact, Valdazo-González et al. (2013) described an
FMDV isolate with a 70-nt deletion in the S fragment located at
positions 148–217 of O/HKN/15/2010. Serotype A isolates found
in Argentina in 1959 and 1961 (Carrillo et al., 2005), serotype
C isolate from the United Kingdom (Carrillo et al., 2005), and
serotype A viruses from India found in 2009 (Subramaniam
et al., 2011), all have deletions in the S fragment upper-loop, yet
they remain infectious. This evidence strongly suggests that the
S fragment of the 5′-UTR can tolerate some deletions without
compromising pathogenicity. Furthermore, in vitro generated
RNA transcripts of the full S fragment induced antiviral state in
cell culture and in vivo (Rodríguez-Pulido et al., 2011a,b; Kloc
et al., 2017). Interestingly, in vitro produced S4 RNA transcript,
containing the 164 nts deletion, induced higher expression levels
of selected innate immune response genes than the full-length
S fragment, further reinforcing the importance of the upper-
loop of the S fragment in immune system response. Evidence
suggests that the virus with the shorter S fragment upper-loop
carries a different molecular signature that could make it more
susceptible to induction of an innate immune response in the
host cell. It is not possible to exclude that viral or host proteins
that may bind to the upper-loop of the S fragment are involved
in these phenomena. In fact, FMDV, like other members of
the Picornaviridae family, is known to depend on 5′-UTR–
host protein interactions for viral replication, translation, and

pathogenesis (Walter et al., 2002; Perera et al., 2007; Lawrence
and Rieder, 2009). New studies will be necessary to shed
light on the mechanism behind an enhanced innate immune
response to the FMDV virus with the shortened S fragment
loop.

The 3′-UTR of FMDV also plays a role in the activation
of innate immunity. Composed of two SLs and a poly(A)
track (Belsham, 2005), the 3′-UTR is important for both viral
replication and virulence (García-Nuñez et al., 2014). In vitro
transcribed 3′-UTR elicits a potent IFN-β response in transfected
porcine cells, while deleting 3′-UTR from the FMDV genome
diminishes IFN-β induction (Rodríguez-Pulido et al., 2011a).
Importantly, disrupting the secondary structure of 3′-UTR
negatively affects the immune response (Rodríguez-Pulido et al.,
2011a), suggesting that the secondary structures of the noncoding
regions could act as PAMP motifs.

Evidence gathered in Enteroviruses suggest that their
5′-UTRs contribute to the establishment and/or maintenance
of persistent infection. Enteroviruses constitute one of the
most common human pathogens and are responsible for
many diseases, including respiratory infections, poliomyelitis,
myocarditis, hand-foot-and-mouth disease, aseptic meningitis,
or hemorrhagic conjunctivitis. Although still controversial,
persistent enterovirus infections have been associated with
chronic diseases, such as type I diabetes, chronic myocarditis, and
dilated cardiomyopathy (Chapman and Kim, 2008; Bopegamage,
2016). The 5′-UTR of enteroviruses contain secondary structure
domains, where cloverleaf constitutes domain I, while depending
on enterovirus genome, IRES occupies domains II–VI (Nicholson
et al., 1991) or II–VII (Bailey and Tapprich, 2007).

Coxsackievirus B, a member of the Enterovirus genus, is
known to cause myocarditis, which, in its acute form, can result
in dilated cardiomyopathy and even lead to death (Mason,
2003). It has been shown that CVB2 viral RNA containing
5′-terminal deletions can be detected in mouse and human
cardiac tissue in the absence of cytopathic effect (CPE) (Kim

FIGURE 2 | Schematic diagram comparing the activation of the innate immune system in host cells infected with either a WT A24-FMDV virus or an A24-FMDV-S4

mutant virus that contains a 164-nt deletion within the S fragment. The predicted S fragment loops of each virus are depicted as drawings and the upregulated
genes of the innate immune system are indicated using red arrows.
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et al., 2005; Chapman et al., 2008; Smithee et al., 2015).
Specifically, the loss of nts 1–22 and 1–25 of stem within
the CVB2 cloverleaf was reported in heart tissues coming
from a fatal case of myocarditis patients (Oka et al., 2005).
Restoration of the deleted nucleotides in a CVB3/5NTRMito
construct reestablished the lytic phenotype in vitro and caused
myocarditis in animal studies (Chapman et al., 2008), which
strongly suggests the importance of the 5′-UTR regions for viral
pathogenicity. It is intriguing that persistent populations of CVB3
containing 15–48 deletions in the 5′-UTR were also reported in
human endomyocardial tissues (Bouin et al., 2016). Specifically,
Bouin et al. (2016) suggested that these low replicative 5′-UTR
deletions may cause persistent human cardiac infections and
potentially help a wild-type CVB3 virus infect the host by
genomic recombination processes (Holmblat et al., 2014; Bouin
et al., 2016). A murine model revealed that sequences within
the 5′-UTR SL II of CVB3 are determinants of cardiovirulence
and contribute to CVB3-induced heart disease (Dunn et al.,
2000, 2003). Furthermore, Beaulieux et al. (2005) developed a
model system of echovirus 6 chronic infection and revealed
two mutations in the 5′-UTR 6 months after the start of the
infection: a single mutation at nt 30 in the cloverleaf and
a mutation at 108 nts upstream of domain II of IRES. It
is thought that these 5′-UTR mutations may help establish a
persistent disease state, although the exact mechanism needs to
be elucidated.

Specific sequences in the 5′-UTR may be critical in the host
recognition of the viral genome, which is crucial for triggering
an immune response. Point mutation C97U in the 5′-UTR of
CVB2 has been shown to minimize myocarditis in a mouse model
system (Massilamany et al., 2015). Previous studies have also
shown the importance of nucleotide variations in the 5′-UTR,
particularly U-to-C substitution at position 234, in decreasing
cardiovirulence in mice (Chapman et al., 1997). Although this
hypothesis needs to be investigated, it is also possible that the
deletions and/or point mutations described in these studies
affect the secondary structures of domain I CVB cloverleaf
and/or contribute to the ability of the virus to escape the
immune responses of the host. Alternatively, these mutations
may disrupt viral/host protein binding, which could be important
for establishing infection.

Experimental evidence suggests that the 3′-noncoding region
of enteroviruses is important for viral pathogenicity, induction
of host regulatory immune response, and translation rate at the
IRES (Dobrikova et al., 2003; Lin and Shih, 2014). The enterovirus
3′-UTR typically folds into two SL structures, referred to as
domains X and Y (Pilipenko et al., 1992) (Table 1). However,
CVB3 and other members of the human enterovirus B family
contain an additional SL domain Z (SLD Z), which, along with
domain Y, can form a second superhelical domain (Merkle et al.,
2002) (Table 1). Deleting the SLD Z out of CVB3 does not
impact viral growth in cell culture, but diminishes the ability of
the virus to cause myocarditis and pancreatitis (Merkle et al.,
2002). While it is possible that the reduced virulence may be
caused by lower tissue-specific replication of the SLD Z deletion
virus, the potential induction of the innate immune system in
the absence of the SLD Z domain has also been proposed.

A similar phenomenon was described in human EV71 (HEV71),
known to cause hand–foot-and-mouth disease – a common
infection in children under 5 years old – characterized by sores
in the mouth and blisters on hands and feet. Viruses that
lack 17 nts from the proximal part of the 3′-UTR of HEV71
have normal viral RNA synthesis and translation, but produce
small plaques and diminished viral titers during infection at
low MOI (Kok et al., 2012). Future tests in an animal model
system may reveal if these 3′-UTR deletion viruses cause disease
in vivo.

Cardioviruses, known to infect many mammalian species,
have been linked to myocarditis, type I diabetes, encephalitis,
neurological diseases, and multiple sclerosis-like symptoms
(Carocci and Bakkali-Kassimi, 2012). Studies in mengovirus, a
member of encephalomyocarditis virus (EMCV) species, suggest
the involvement of noncoding RNA in virulence. Duque and
Palmenberg (2001) engineered a precise deletion of the entire SL I
of the 3′-UTR and showed that it is nonessential for viral growth.
An infectious virus lacking SL I grows to similar titer levels as
the parental mengovirus and it has similar RNA synthesis and
translation profiles. Yet, most animals infected with the deletion
virus survive, or are only partially paralyzed, which is contrary
to wild-type virus infection (Duque and Palmenberg, 2001). This
evidence strongly suggests the involvement of the mengovirus
3′-UTR in neurovirulence. Deleting the entire SL I may affect
the secondary RNA structure of the 3′-UTR, which could be
responsible for the described phenotype. It is also possible that
the missing sequences may cause rearrangements, or loss of
potential virus or host protein binding within the region.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

The innate immune response is the first line of host defense
against infection and it is activated rapidly after exposure
to pathogen. Investigating how pathogen-derived molecules
activate the innate immune responses has been an active area
of research since the concept of PAMPs was first proposed.
Work in this field has only begun to explain how viruses have
developed methods to evade the innate immune system response.
In this review, we have discussed evidence in Picornaviridae that
suggests the importance of viral noncoding genomic elements,
or specific sequences or structures associated with them, in
escaping the innate immune system response or contributing to
the establishment of persistent infection state. In this respect, it is
important to recognize that particular viral 5′- and 3′-UTR motifs
may have been selected for during the course of evolution to help
ensure infection.

A recent study revealed that a virus can alter its structural RNA
elements to avoid recognition by the host (Hyde et al., 2014).
IFIT – an IFN-induced gene – is a cytosolic viral sensor that
detects viral 5′ppp RNA, which helps decrease viral replication
and consequently affects viral pathogenesis (Pichlmair et al.,
2011; Fensterl and Sen, 2015). In Alphaviruses, the secondary
structural motifs in the 5′-UTR counteract the antiviral activity of
IFIT (Hyde et al., 2014), which helps evade the recognition of the
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immune system and establish infection. Although it remains to
be determined how the secondary structure or specific sequence
of the Alphavirus 5′-UTR may affect binding to IFIT, it is
interesting to speculate that other viruses may also rely on their
noncoding RNA elements to escape the activation of the immune
system. The S fragment of the 5′-UTR of FMDV, described
earlier in the review, confirms this hypothesis. Viruses with
an artificially diminished S fragment loop trigger an enhanced
innate immune system response and do not develop disease in
a mouse model system, suggesting that a portion or a specific
sequence of the loop may help the virus evade the host immune
system.

Much remains to be learned about the strategies used by
viruses to improve their chances of infection and the molecular
mechanism behind these phenomena. Research on the role of
the noncoding regions in viral pathogenicity may help in the
development of novel antiviral drugs and vaccine strategies. In
this regard, defined structural domains that belong to 5′- or
3′-FMDV UTRs elicit an upregulated immune response in
mice and swine cells, and reduce the probability of subsequent
infections. Thus, these viral elements can be used as adjuvants to
currently available vaccine strategies, boosting the effectiveness
of the vaccine, or enhancing protection. As the result, further
investigation of the noncoding RNAs may open up new avenues
in antiviral research.
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