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ABSTRACT

Objective: To evaluate the activity of benzydamine, lidocaine, and bupivacaine, three drugs with
local anesthetic activity, against Candida albicans and non-albicans strains and to clarify their
mechanism of activity.

Methods: The minimal inhibitory concentration (MIC) was determined for 20 Candida strains
(18 clinical isolates and two American Type Culture Collection strains). The fungistatic activity
was studied with the fluorescent probe FUN-1 and observation under epifluorescence microscopy
and flow cytometry. The fungicidal activity of the three drugs was assayed by viability counts.
Membrane alterations induced in the yeast cells were evaluated by staining with propidium iodide,
by quantitation of intracellular K leakage and by transmission electron microscopy of intact yeast
cells and prepared spheroplasts.

Results: The MIC ranged from 12.5-50.0 pg/mL, 5.0-40.0 mg/mL, and 2.5-10.0 mg/mL for
benzydamine, lidocaine, and bupivacaine, respectively. The inhibitory activity of these concentra-
tions could be detected with the fluorescent probe FUN-1 after incubation for 60 minutes. A very
fast fungicidal activity was shown by 0.2, 50, and 30 mg/mL of benzydamine, lidocaine, and bu-
pivacaine, respectively.

Conclusions: At lower concentrations, the tested drugs have a fungistatic activity, due to yeast
metabolic impairment, while at higher concentrations they are fungicidal, due to direct damage to
the cytoplasmic membrane. Infect. Dis. Obstet. Gynecol. 8:124-137, 2000. (C) 2000Wiley-Liss, Inc.
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andida albicans is a common causative agent of
mucosal fungal infections, 1,z which are diffi-

cult to treat and tend to recur. 1,3 There has been an

increasing rate of candidosis, particularly due to a

growing number of immunocompromised patients,
e.g., due to iatrogenic measures and to persons in-
fected by human immunodeficiency virus. The in-
creasing use of antifungal drugs, both for prophy-
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TABLE I. MICs and LCs0s for benzydamine, lidocaine, bupivacaine, and fluconazole of Candida strains

MIC Benz. LCso Benz. MIC Lid. LCso Lid. MIC Bup. LCso Bup. MIC Flu.
Strains Isolates (lg/mL) (lg/mL) (mg/mL) (mg/mL) (mg/mL) (mg/mL) (lg/mL)
C. albicans M36 Vaginal 12.50 5.0 2.50 >64
C. albicans H33 Vaginal 6.25 5.0 2.50
C. albicans SCO Vaginal 6.25 2.5 1.25
C. albicans M9 Vaginal 6.25 2.5 1.25
C. albicans Ser5 Vaginal 12.50 5.0 2.50 16
C. albicans H65 Vaginal 12.50 2.5 1.25 >64
C. albicans M28 Vaginal 25.00 2.5 1.25 2
C. albicans H38 Vaginal 12.50 5.0 2.50
C. albicans 10231 ATCC 12.50 36.38 5.0 19.96 2.50 20.06
C. albicans H37 Bronchial wash 12.50 49.14 10.0 32. 5.00 3.621 >64
C. glabrata H30 Vaginal 25.00 54.59 40.0 354.07 10.00 263.83 >64
C. glabrata H 16 Vaginal 50.00 87.59 10.0 49.45 5.00 39.56 64
C. krusei H9 Blood 25.00 58.70 10.0 22.14 2.50 15.12 >64
C. krusei H32 Blood 25.00 54.38 10.0 20.73 2.50 12.72 >64
C. tropicalis 13803 ATCC 12.50 48.21 10.0 61.23 2.50 25.30 4
C. tropicalis H 18 Blood 25.00 67.73 5.0 46.63 2.50 16.59 4
C. guilliermondi MAT 24 Vaginal 12.50 40.31 10.0 51.62 2.50 28.61 4
C. guilliermondi MAT 23 Vaginal 25.00 58.29 10.0 54.40 5.00 31.68 2
C. lusitaniae H22 Vaginal 25.00 74.42 10.0 54.40 5.00 102.15
C. lusitaniae H54 Bronchial wash 50.00 88.23 5.0 27.93 2.50 16.88

aBenzydamine, Benz.; lidocaine, Lid.; bupivacaine, Bup.; fluconazole, Flu.

lactic and therapeutic purposes, has led to

the emergence of resistant strains.4,s This situa-
tion calls for the search for alternative antifungal
drugs.
Many nonantibiotic drugs including antidi-

uretic, antidiabetic, [3-blockers, psychotherapeutic,
and nonsteroidal anti-inflammatory molecules pos-
sess an antimicrobial action, which has generally
been regarded as a side effect6 and therefore ne-

glected for potential clinical use. Benzydamine, li-
docaine, and bupivacaine are known nonantibiotic
antimicrobials. Topical use of these anesthetic
drugs may be useful in the management of cuta-

neous and vaginal candidosis. We studied the ac-

tivity and mechanism of action of benzydamine,
lidocaine, and bupivacaine against C. albicans and
non-albicans strains.

MATERIALS AND METHODS
Candida Strains

Twenty Candida strains were used: 18 clinical iso-
lates and two American Type Culture Collection
(ATCC) strains (Table 1). The yeasts were kept at

-70C in Brain-Heart broth (Difco Laboratories,
Detroit, MI) with 5% glycerol until tested. For
each experiment, the strains were subcultured
twice on Sabouraud agar (Difco) for 24 hours at

35C and either resuspended in saline (stationary

growth phase cells) or subcultured in Sabouraud
broth to the middle of the exponential growth phase.

Antifungal Drugs
Benzydamine was obtained from Lepori Angelini
(Rome, Italy). Lidocaine and bupivacaine were

purchased from Sigma (St. Louis, MO).

Incubation of Yeast Cells With Drugs
Yeast cells in stationary phase were resuspended in
10 mmol/L sodium N-2-hydroxyethylpiperazine-
N-2-ethanesulfonic buffer (HEPES, pH 7.2),
supplemented with 2% glucose (GH solution), at a

density of x 106-5 x 106 cells/mL, with or without
serial concentrations of the drugs (see legends to

figures). Incubations were carried out at 35C, with

shaking at 200 strokes/min. At the end of the in-
cubation, the cells were centrifuged for 10 minutes
at 1800g, and the antifungal activity of the drugs
was assayed by viability counts and by staining
with the fluorescent probes Propidium Iodide (PI)
and FUN-I, as described below.

Determination of Minimal
Inhibitory Concentrations

The minimal inhibitory concentrations (MICs) of
the antifungals were determined by a macrodilu-
tion test, according to the reference method
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(M27-A protocol) of the National Committee for
Clinical Laboratory Standards.7

Yeast Cell Counts
The total number of yeasts in the suspensions was

determined in a Neubauer hemocytometer (Agar
Scientific Ltd, Stansted, UK). Enumeration of vi-
able yeast cells in the untreated control suspen-
sions and in those exposed to local anesthetics or

sodium azide was carried out by counting colony-
forming units (CFU) after plating serial dilutions
(in saline) of the suspensions on Sabouraud agar
plates. The number of colonies was counted after
48 hours of incubation at 35C.

Studies of Membrane Damaging
Two independent procedures were used to assess

the capacity of benzydamine, lidocaine, and bupiv-
acaine to damage the fungal cytoplasmic mem-

brane. One relied on the use of the membrane-
impermeable fluorescent dye PI. Previous

experiments have been carried out to optimize the
flow cytometric conditions that were used in the
current study (Pina-Vaz et al, in press). That is,
optimal results were obtained when using 106 yeast
cells/mL, stained with lpg/mL of PI, for 30 min-
utes in 0.05 mol/L sodium HEPES buffer, pH 7.2,
at room temperature in the dark. Incubation with

lpg/mL of PI under the above-mentioned condi-
tions had no toxicity to Candida cells (as deter-
mined by viability counts) and stained 100% of
Candida cells killed by boiling for 30 minutes

(Pina-Vaz et al., in press). For each sample, the
percentage of PI-positive cells was determined by
flow cytometry as described in detail below. From
these values, the concentration of the assayed
drugs resulting in 50% PI-positive cells was calcu-
lated according to a linear regression equation. The
PI staining was found to be an adequate indicator
of cell death (see "Results"). Therefore, we con-

sidered those drug concentrations causing half of
the cells to be stained as representing median le-
thal concentration (LC50).
The second method we used to study cytoplas-

mic membrane damage estimated the leakage of
intracellular K from the yeast cells. Because the
intracellular accumulation of K is higher in yeasts
in the exponential growth phase,8 Candida cells
grown at 35C in Sabouraud broth supplemented
with 0.5% KzHPO4 were harvested at the middle of

the exponential growth phase. The yeasts were

washed twice with saline and exposed at 35C for
10 minutes to the assayed drugs dissolved in saline
at indicated concentrations. After 5 and 10 minutes,
treated and control suspensions were filtered

through 0.45 pm Millipore filters (Millipore, MA).
The filtrates were assayed for K using a K+-
sensitive glass electrode connected to a Spotlyte
analyzer (Menarini Diagnostics). The values are

presented as the percentage of K leaked in com-

parison to that from cells boiled for 30 minutes.9’1

Viability counts and the percentage of cells stained

by PI were also determined in the suspensions
used for the K leakage assays. The leakage of K
was also analyzed for Candida cells treated with 20
mM sodium azide, or with 2pg/mL of amphotericin
B, for 10 minutes.

Assays of Metabolic Vitality
The processing of the fluorescent probe FUN-1 by
the yeast cells was used to detect nonlethal meta-

bolic alterations. Two methods to assess FUN-1
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Fig. I. Single parameter histograms of FUN-I stained C.
albicans, ATCC strain 10231 cells after hour of incubation
with benzydamine (A) or bupivacaine (B). a: autofluores-
cence (without FUN-I); b: untreated control; : treatment

with 12.5 tsg/mL of benzydamine; d: treatment with 2.5
mg/mL of bupivacaine.
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Fig. 2. Percentage of unviable (A, C, E) and Pl-positive, (B, D, F) C. albicans, ATCC strain 10231 cells exposed for 30 rain
to increasing concentrations of benzydamine (benz.) (A, B), lidocaine (LID) (C, D) or bupivacaine (BUP) (E, F).

processing were used. Biochemically active cells,
stained with this fluorescent membrane-permeable
dye, exhibit under fluorescence microscopy or-

ange/red cylindrical intravacuolar structures

(CIVS), while nonviable cells or viable cells with
severely impaired metabolism do not show these
structures. 11 Metabolically impaired yeast cells
show an increased intracellular accumulation of the
probe, which can be detected by flow cytometry, lz

Untreated and treated yeast suspensions in GH so-

lution were incubated with 0.5 pM of FUN-1 (Mo-
lecular Probes Europe BV, Leiden, Netherlands)
for 30 minutes at 30C in the dark. To evaluate
CIVS formation, the FUN-1 stained cells were
mounted on microscope glass slides with the anti-

fading Vectashield Mounting Medium (Vector
Laboratories, Burlingane, CA). The percentage of
yeasts with CIVS was determined by observing 200
cells under epifluorescence microscopy in a Leitz
Laborlux K (Leica, Buffalo, NY) microscope fitted
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with a mercury 50-W lamp, a BP 450-490-nm ex-

citation filter and a LP 515-nm emission filter. To
quantify the intracellular concentration of FUN-I,
flow cytometry was used as described below.

Flow Cytometry
The suspensions were analyzed at 620 nm (FL3)
for PI and at 575 nm (FL2) for FUN-l, in a Beck-
man Coulter XL-MCL (Hialeah, FL) flow cytom-

eter, equipped with a 15-mV argon laser with and

without the fluorochrome (autofluorescence, as a

control).

Spheroplast Formation

Spheroplasts of C. albicans, ATCC strain 10231,
were obtained by enzymatic digestion of the cell
wall with Lyticase (Boehringer Mannheim, Cat. No
1372464, Mannheim, Germany). 13 Incubation was

made at 35C in YEPD medium (1% yeast extract,

2% bacto peptone, and 2% glucose), containing
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Fig. 3. Percentage of Pl-positive cells in suspensions of Candida strains exposed for 60 min to different concentrations of

benzydamine (A), lidocaine (B), or bupivacaine (C).

yeast cells grown to middle of exponential phase
(about x 107 cells/mL). The cells were collected
by centrifugation at 1800g for 10 min, washed once

with water and once with 1.4 mol/L sorbitol before
the pellets were resuspended at a concentration of
x 107-5 x 107 cells/mL in 0.04 M HEPES buffer

(pH 7.4), 0.5 M MgC1z, and 0.5% mercaptoethanol
(Sigma) in 1.4 M sorbitol. Lyticase was added at a

concentration of 10 units/107 cells, and the suspen-
sion was incubated at 30C with gentle, occasional
shaking. Spheroplast production was monitored by
phase contrast microscopy, assessing the lysis of

yeast cells exposed to 5% sodium dodecyl sulfate
(SDS). Yeasts unexposed to Lyticase did not lyse
with SDS. When most Candida cells were con-

verted into spheroplasts, the suspension was can-
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Fig. 4. Exponential phase C. albicans, ATCC strain 10231 cells exposed for I0 min to 0.3 mg/mL of benzydamine (Benz), 50
mg/mL of lidocaine (LID), 30 mg/mL of bupivacaine (BUP) or 20 mM sodium azide (Na azide). In the same suspensions, three
parameters were determined, i.e., the percentage of nonviable cells (determined by CFU counts) (A), the percentage of
PI-positive cells (B), and K efflux (as percent of the total intracellular K/) (C).

trifuged at 1800g for 10 minutes and the pellet re-

suspended in GH medium supplemented with 1.4
M sorbitol with indicated concentrations of the as-

sayed antifungal drugs.

Transmission Electron Microscopy

To analyze the ultrastructural alterations induced
by the tested drugs, C. albicans blastoconidia and

spheroplasts were studied. Blastoconidia of un-

treated and treated cells of C. albicans strain ATCC
10231, were prefixed with 2.5% glutaraldehyde in
0.1 M cacodylate buffer, pH 7.2, followed by wash-
ing in the same buffer. The cells were then fixed
with 1.5 % potassium permanganate in water for
hour, 14 followed by washing with water and post-
fixation with aqueous 1% uranyl acetate for 30
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minutes. 1S Samples of control and treated sphero-
plasts were prefixed with 2.5% glutaraldehyde (1
volume of 25% glutaraldehyde stock solution
added to 9 volumes of spheroplast suspensions).
After at least 4 hours at room temperature, the
samples were washed with 0.1 M cacodylate buffer,
pH 7.2, and fixed overnight at room temperature
with 1% OsO4 in 0.1 M acetate-veronal buffer, pH
7.0, supplemented with 10 mM calcium chloride. 16

After washing with water, the cells were postfixed
with aqueous 1% uranyl acetate for 30 minutes at

room temperature, is Fixed intact cells and sphero-
plasts were dehydrated in ethanol and embedded
in Epon (TAAB Aldermaston, Berks, UK).7 Ultra-
thin sections were cut with an LKB Ultratome III
microtome (LKB-Produkter AB, Stockolm-Bromma,
Sweden) and contrasted with uranyl acetate followed
by lead citrate. 16 To improve visualization of ribo-
somes in the spheroplasts, sections were treated
with 3% hydrogen peroxide for 10 minutes before
lead citrate staining. 7 Observations and micro-
graphs were done with a Zeiss EM 10C electron
microscope (Carl Zeiss, Oberkochen, Germany).

Statistical Analysis
Correlation coefficients (r) were calculated using
the Anova program (program Statistica for Win-
dows, Stat Soft, CA).

RESULTS
The three drugs tested inhibited growth of all Can-
dida strains studied, with MICs ranging from 6.25
to 50.0 lag/mL for benzydamine, from 1.25 to 40.0
mg/mL for lidocaine, and from 2.5 to 10 mg/mL for
bupivacaine (Table 1). The correlation coefficients
between the MIC of each drug for the 20 strains
studied were good when comparing lidocaine with

bupivacaine (r 0.905), but not for benzydamine
vs. lidocaine (r 0.212) and not for benzydamine
vs. bupivacaine (r 0.328). Short exposure of C.
albicans strain ATCC 10231 to the MIC of each of
the three drugs did not result in any cell death and
did not make the cells permeable to PI or induce
any significant K leakage (not shown). However,
under these conditions, the drugs significantly im-
paired the vitality of the Candida cells, as was

shown by FUN-1 experiments. Thus, yeast cells
exposed for 1 hour to the drugs at the MIC did not

form CIVS (not shown), while an increase in the
intracellular fluorescence was detected by flow cy-
tometry (Fig. 1).

Treatment of C. albicans, ATCC strain 10231,
with increasing concentrations of the anesthetics
resulted in a dose-dependent fungicidal effect
(Fig. 2A, C, and E). Staining with PI showed that
the number of PI-positive cells correlated well with
the number of nonviable cells (Fig. 2B, D and F).
Figure 3 (A, B, and C) shows the effect of a 60-
minute exposure of some of the Candida strains
investigated to increasing concentrations of the
drugs. The drug concentrations resulting in LCso
were calculated for each strain (Table 1). The cor-

relation coefficient between the LCs0 of each drug
for the 12 strains tested was r 0.073 when com-

paring benzydamine with lidocaine, r 0.001 for
benzydamine vs. bupivacaine, and r 0.955 for li-
docaine vs. bupivacaine.
The concentrations of the three drugs causing

an extensive rate of killing (Fig. 4A) and perme-
ability to PI (Fig. 4B) in C. albicans, ATCC 10231,
cells induced a quick and extensive leakage of in-
tracellular K (Fig. 4C). A similar pattern of K
leakage was seen with the membrane-active anti-

fungal amphotericin B, with 85.7% and 94.1% of
intracellular K being lost after treatment of C. al-
bicans ATCC 10231 cells with 2 lag/mL of the an-

tibiotic for 5 and 10 minutes, respectively. Treat-
ment of C. albicans, ATCC strain 10231 cells, with

20 mM sodium azide for 10 minutes resulted in
extensive cell death (Fig. 4A) but did not make the
cells permeable to PI (Fig. 4B), nor did it induce a

significant K leakage (Fig. 4C). Candida glabrata
strain H30 was the strain most resistant to the three
drugs assayed. When it was treated with high con-

centrations of lidocaine, no K leakage was seen

(not shown).
Transmission electron microscopy showed that

exposure of C. albicans, ATCC strain 10231, to cidal
concentrations of the anesthetics induced severe

alterations of the cytoplasmic organelles (Fig. 5).
Exposure of blastoconidia of C. albicans, ATCC

strain 10231, to Lyticase--under the described
conditions--resulted in detergent-sensitive sphe-
roplasts, which often had loose cell wall remnants

(Fig. 6A). Only occasionally completely wall-free
protoplasts were found. Spheroplasts not exposed
to the drugs were intact and showed numerous ri-
bosomes and normal intracellular organelles, i.e.,
the nucleus and the mitochondria (Fig. 6, A and B)
and intact cell membranes with a continuous triple-
layered profile (Fig. 7A). On the contrary, when
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Fig. 5. .. Transmission electron microscopy of untreated C. albicans, ATCC strain 10231, cells after fixation with glutaral-
dehyde/permanganate/uranyl. N, nucleus; M, mitochondria; R, endoplasmic reticulum; V, vacuole. Section contrasted with
uranyl-lead (x 13,900). B. A Candida cell from the same sample as in Fig. 5A but treated for 60 min with 0.3 mg/ml_ of

benzydamine. Notice the severe intracytoplasmic disorganization, including the absence of mitochondria and endoplasmic
reticulum. Section contrasted with uranyl-lead. (x 13,900).

treated for 10 minutes with fungicidal concentra-

tions of the drugs most sphcroplasts were lysed
(Fig. 6, C, D, and E), showing severely damaged
cell membranes with gross fractures or extensive
solubilization (Fig. 7, B and C). Ultrastructural im-

ages of plasma membrane splitting were seen in
some drug-exposed yeast cells (Fig. 7C).

DISCUSSION

Local anesthetic drugs possess antibacterial and an-

tifungal properties.9,18-22 However, their antifungal
mechanisms have not yet been elucidated.

Using a combination of complementary meth-
odologies, we found the drugs to have a marked
antifungal activity on C. albicans that ranged from
growth inhibition to complete loss of viability.
Growth inhibition can bc detected by conventional
protocols for MIC determination, as demonstrated
in our study. We found that the fungistatic activity
of the anesthetics could also be detected, with ad-
vantages, by use of FUN-1. Yeast cells exposed to

MIC of the drugs showed both inhibition of con-

version of the FUN-1 monomer into CIVS and an

increase in diffuse intracellular fluorescence, as

demonstrated by flow cytomctry. These alterations
were already detectable after an incubation period

of hour, thereby allowing for a more rapid assay as

compared with the conventional protocol for MIC
determination requiring 24 hours.
The following results point to the mechanism of

the fungicidal action of the drugs being due to di-
rect damage to the yeast cytoplasmic membrane.
Thus, Candida cells exposed to fungicidal concen-

trations of the drugs quickly become permeable to

the membrane-impermeable fluorochrome PI.
This probe has previously been used to evaluate
membrane permeability in yeasts and is considered
a good marker for cell death associated with mem-
brane alterations,e,e4 Quantitation of K leakage
from microorganisms, both from bacteria9,es and

yeasts, l,e6-e9 has also been used to evaluate mem-
brane damage by various compounds. Yeast cells in
the exponential growth phase are known to accu-

mulate K intracellularly, with concentrations as

high as 220 mM.s This cation is quickly lost to the
extracellular milieu when the selective membrane

permeability is lost. ,e6-e9 A very quick and exten-

sive K leakage was induced by fungicidal concen-

trations of the local anesthetics, with more than
90% of the intracellular cation being lost during the
initial 10 minutes after exposure to 0.3, 50, or 30

mg/mL of benzydamine, lidocaine, or bupivacaine,
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respectively. This indicates that the fungicidal ef-
fect results from a direct damage to the cell mem-
brane, rather than from a metabolic impairment
leading to secondary membrane damages. In sup-
port of this interpretation is our observation that
exposure of the Candida cells to fungicidal concen-

trations of the metabolic inhibitor sodium azide in-
duced K leakage at a much slower rate as com-

pared to the three local anesthetics. As expected,
the membrane-active antimicrobial agent ampho-
tericin B also induced an extensive and rapid K
leakage. The extensive loss of intracellular K may
not bc the sole factor responsible for the fungicidal
activity of the drugs, as the membrane disorgani-
zation resulted in multiple perturbations that even-

tually could be lethal.
Additional support for a direct membrane dam-

aging action of fungicidal concentrations of the an-

esthetics was evident from the quick lysis of sphe-

Fig. 6. /,. Untreated spheroplasts of C. albicans, ATCC
strain 10231. Notice the loose partially digested cell walls
(W), the intact protoplast with nucleus, mitochondria, and
vacuoles. Section stained with uranyl-lead. (x 9600). B.
Spheroplast from the same sample as in Fig. 6A. Section
treated with 5% hydrogen peroxide for 10 minutes followed
by lead staining.2s Notice the abundant ribosomes in the
cytoplasmic matrix and 3 mitochondria (M). (x 50,600). C.
Spheroplasts from the same preparation as in Fig. 6A but
exposed to 0.3 mg/mL of benzydamine for 15 min. Notice
several lysed spheroplasts (*) with collapsed cell walls. The
nonlysed spheroplasts have a very altered ultrastructure.
Section stained with uranyl-lead. (x 16,000).

roplasts in an osmotically protective medium, when
exposed to fungicidal concentrations of the drugs.
Bacterial protoplasts are quickly lysed by treatment

with phenethyl alcohol, tetrazolium salts, or local
anesthetics, molecules that are known to directly
disorganize bacterial cell membranes.9’es The ul-
trastructural studies revealed a second support for
the assumption, which was the severe membrane
alterations, with fracturing and solubilization, seen

after 10 minutes of exposure to fungicidal concen-

trations of the drugs.
The poor correlation found between the MIC or

LC.s0 of bcnzydamine and those of lidocaine and
bupivacaine suggests that although the drugs kill
Candida by acting on a common target (the cell
membrane), the mechanisms for the membrane
damage would differ in regards to benzydaminc on

the one hand and lidocainc and bupivacaine on the
other.
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Fig. 6. Continued. 13. Spheroplasts from the same prepa-
ration as in Fig. 6A but exposed to 30 mg/mL of lidocaine.
Notice the altered ultrastructure of the yeast protoplast,
with very distorted and swollen mitochondria (M), as well
as absence of ribosomes and nucleus. Cell walls are partially
digested. Section stained with uranyl-lead. (x 32,000). I=.
Spheroplasts from the same preparation as in Fig. 6A

The proposed mechanism for the fungicidal ac-

tivity of the drugs is in conformity with the lipo-
philic properties of membrane-active molecules
due to their lipophilic character. It is therefore ex-

pected that the antifungal activity of bupivacaine
was higher than that of lidocaine because the
former anesthetic is more lipophilic. The same

difference in the activity between the two local
anesthetics was also found in a previous study on

the inhibition of germ tube formation by C. albi-
cans. 19’22 A good correlation between the lipophilic
and antibacterial activity of local anesthetics has
also been described.9,18 These observations agree
with the accepted interpretation that anesthetic-
membrane interaction is of a hydrophobic charac-
ter, whereby the anesthetic molecule ultimately
penetrates the membrane bilayer and accommo-

dates in its hydrophobic interior.1,3z Membrane
splitting resulting from insertion of several lipo-
philic molecules, including the local anesthetic tet-

racaine, into the hydrophobic core of bacterial
membranes was described.3 This ultrastructural
alteration was seen in the present study in lido-
caine-treated Candida plasma membranes (Fig.
7C).
The results showing that the three local an,es-

thetics assayed possess an antifungal activity

but exposed to 20 mg/mL of bupivacaine. Notice the altered
ultrastructure of the yeast protoplast, with abnormal mito-

chondria (M), and with absence of ribosomes and nucleus.
Cell walls are partially digested. Cellular remnants are pres-
ent in the much enlarged periplasmic space. Section stained
with uranyl-lead. (x 35,000).

through a membrane-damaging action are in keep-
ing with what has been reported for other lipophilic
molecules. This is the case, among others, with

amphotericin B, lipophilic azoles,4 butenafine,"5

and phenothiazines."6,37

The observed good correlation coefficients be-
tween the MIC (indicator of fungistatic activity)
and LCso (indicating a fungicidal activity) of each
of the drugs for the 12 Candida strains tested would
suggest that the mechanisms for the fungistatic and
fungicidal activities of the drugs are similar, the
plasma membrane being a common target. How-
ever, when exposing yeast cells to the fungistatic
concentrations of the three drugs, no indication of
membrane damage was found, since there was no

permeability to PI nor production of K leakage.
This may be explained by the short incubation

time (10 minutes) used in the incubations prior to

the above two membrane integrity tests.

The present results show that the three drugs
now studied could be used topically to treat muco-

sal or cutaneous candidosis because concentrations
with antifungal activity can be obtained with the
commercial formulations available, mainly with

benzydamine, the most active of the three drugs
we tested. In fact, benzydamine is available in gels
with 3% and 5% of the drug,"8 and these concen-
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Fig. 7. ... High magnification of a spheroplast of control
cells showing the continuous, triple-layered cytoplasmic
membrane (arrow). W, partially digested cell wall. Section
stained with uranyl-lead. (x 72,000). I and C. Same condi-
tions as in Fig. 7A but the spheroplast had been exposed to

0.3 mg/mL of benzydamine (B) or 30 mg/mL of lidocaine (C)

for 15 min. Notice the extensive solubilization of the cyto-
plasmic membrane, with only small remnants left (arrows).
In C, the membrane remnants show zones with increased
membrane thickness, indicating membrane splitting (arrow
heads). W, partially digested cell wall. Sections stained with
uranyl-lead. (x 72,000).
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trations are 600 and 1000 times higher, respec-
tively, than the MIC for the least susceptible Can-
dida strain we studied. Benzydamine solutions for
oral and vaginal applications contain 0.15%,38 a

concentration that is 30 times higher than the MIC
of the least susceptible Candida strain. Commercial
formulations of lidocaine and bupivacaine contain
drug concentrations3s that are up to 40 times above
the MIC of most strains we studied. It should be
emphasized, additionally, that the analgesic prop-
erties of the three drugs we studied represent an
additional advantage for their topical use in the
management of Candida infections.
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