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Abstract
Researchers increasingly use passive sensing data and frequent self-report to implement personalized mobile health (mHealth)
interventions. Yet, we know that certain populations may find these technical protocols burdensome and intervention uptake as
well as treatment efficacy may be affected as a result. In the present study, we predicted feasibility (participant adherence to
protocol) and acceptability (participant engagement with intervention content) as a function of baseline sociodemographic,
mental health, and well-being characteristics of 99 women randomized in the personalized preventive intervention Wellness-
for-Two (W-4-2), a randomized trial evaluating stress-related alterations during pregnancy and their effect on infant
neurodevelopmental trajectories. The W-4-2 study used ecological momentary assessment (EMA) and wearable electrocardio-
graph (ECG) sensors to detect physiological stress and personalize the intervention. Participant adherence to protocols was 67%
for EMAs and 52% for ECG bio-sensors. Higher baseline negative affect significantly predicted lower adherence to both
protocols. Women assigned to the intervention group engaged on average with 42% of content they received. Women with
higher annual household income were more likely to engage with more of the intervention content. Researchers should carefully
consider tailoring of the intensity of technical intervention protocols to reduce fatigue, especially among participants with higher
baseline negative affect, which may improve intervention uptake and efficacy findings at scale.
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With technological innovation, researchers increasingly eval-
uate personalized mHealth interventions to improve well-
being (Yim et al., 2020). By harnessing smartphone capabil-
ities, we obtain more precise measurement in real time with
ecological momentary assessments (EMAs; Smyth & Stone,
2003). Investigators employ novel wearable passive sensing
technology, such as electrocardiograph (ECG) bio-sensors, to
capture physiological indicators of health. While pointing to
high adherence rates across wearable device studies,
Chandrasekaran et al. (2020) also suggest usage may be more
common among younger and wealthier individuals
(Chandrasekaran et al., 2020). Regarding EMA adherence,
van Genugten et al. (2020) find these protocols similarly fea-
sible but note that participants with greater baseline negative
affect are more likely to report perceived burden (van
Genugten et al., 2020).

We examined the feasibility of EMA and ECG bio-sensor
wear-time protocols and the acceptability of the personalized
intervention component of the Wellness-for-Two (W-4-2)
randomized trial. Wakschlag et al. (2021) designed the W-4-
2 trial to assess the efficacy of a personalized intervention
tailored to deliver timely content based on maternal stress,
for improving infant neurodevelopment Wakschlag et al.
(2021). The W-4-2 research team adapted the Mothers and
Babies (MB) intervention that includes 12 individual sessions
targeted to women at 10–22 weeks gestation to reduce prena-
tal distress (Muñoz et al., 2007). By adding just-in-time (JIT)
content to supplement the intervention, the W-4-2 team rein-
forced material covered during the 12 sessions to further im-
prove efficacy (Barrera et al., 2021). The W-4-2 team de-
signed the JIT component with daily signals provided by
ECG data collected by a wearable biosensor device and self-
reported perceived stress from EMAs (Wakschlag et al.,
2021).

Recent meta-analyses investigating predictors of adherence
tomHealth interventions in various clinical or healthy samples
determined an average study duration period of between 7 and
12 days with an average of 5 prompts per day. None of the
studies was able to determine a relationship between protocol
duration or sample characteristics and compliance (de Vries
et al., 2021; Williams et al., 2021; Wrzus & Neubauer, 2022).
Compared to those studies that did not use incentives for the
data collection protocols, those that did had significantly
higher rates of compliance (Wrzus & Neubauer, 2022). Two
of these studies recommended that objective measurements
such as wearable devices be used in parallel with EMAs, so
as to avoid reliance on self-report data (de Vries et al., 2021;
Wrzus & Neubauer, 2022). However, Wrzus and Neubauer
(2022) noted that more research is needed to address whether
incorporating such objective measurements with wearable
technology affects compliance rates to interventions using
EMA technology (Wrzus & Neubauer, 2022).

In the present study, we sought to explore predictors of
feasibility and acceptability of the technical components of
the W-4-2 intervention for pregnant women. We operational-
ized feasibility as adherence to the EMA and bio-sensor pro-
tocol wear-time requirements necessary for optimal interven-
tion functionality. We operationalized acceptability as en-
gagement with the supplementary JIT intervention content.
We sought to identify which baseline sociodemographic,
mental health, or well-being characteristics predicted better
adherence to and engagement with the technical components
of the W-4-2 JIT intervention. We hypothesized that partici-
pants’ age, income, education, and baseline affect would pre-
dict adherence and engagement.

As a result of our analyses, we hope to refine the delivery of
interventions for pregnant women, develop JIT intervention
better suited for those less likely to adhere to measurement
protocols, and subsequently improve efficacy at scale.
Research involving pregnant women is a priority to improve
maternal and child health outcomes and address related dis-
parities. According to the 2022 National Academies of
Sciences, Engineering, and Medicine report, pregnant women
continue to constitute an underrepresented population in clin-
ical research (National Academies of Sciences, Engineering,
and Medicine, 2022). Our findings will contribute to the de-
velopment of mHealth interventions designed to address the
adverse effects of maternal stress, so they are more convenient
and accessible (Brown et al., in press).

Method

Participants

We recruited participants through 6 university-affiliated ob-
stetric care clinics in the metropolitan Chicago area.
Participants were (1) at least 18 years of age; (2) English
language proficient; (3) currently pregnant and between 18
and 22 weeks gestation; and (4) had a smartphone device.
We recruited participants from 6/20/2019 to 8/11/2021, ini-
tially by approaching eligible patients after their prenatal care
appointments in the clinic. After the onset of the COVID-19
pandemic, we shifted to remote recruitment by contacting po-
tentially eligible women via email who were scheduled for
prenatal visits in the clinic. In total, we approached 3,156
women to participate in the study. We screened 344 partici-
pants, of whom 316were eligible. In total, we randomized 100
pregnant women receiving care across these 6 clinics during
their first to second trimester to either the W-4-2 intervention
(49) or usual care (51). Of those 100 randomized pregnant
women, 1 participant withdrew their consent for participation
and asked that their data not be used in future publications. A
total of 99 women were included in this analysis. Research
staff collected and managed study survey data and
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randomization procedures using REDCap electronic data cap-
ture tools hosted at Northwestern University (Harris et al.,
2009).

The W-4-2 trial is currently still underway, and we are
actively following participants through the second year of
their child’s life. As such, the present analysis focuses only
on data captured at baseline prior to availability of study ef-
fects. The datasets generated during and analyzed during the
current study, a copy of the SAS v 9.3 coding file, and an
output reflecting a condensed codebook are available in the
OSF repository, DOI 10.17605/OSF.IO/RUQ3M.

Intervention

The W-4-2 trial adapted a well-validated, prenatal wellness
intervention by adding a personalized approach (Muñoz
et al., 2007). We designed this personalized strategy using
two measurement methods to monitor stress based on the hy-
pothesis that altering the gestational environment via stress
reduction would have the greatest effects when based on
women’s real-time biopsychosocial state rather than a one-
size-fits-all approach (Brown et al., in press).

Participants randomized to the W-4-2 intervention group
received the Mothers and Babies Course (Muñoz et al.,
2007)—a manualized intervention based on cognitive-
behavioral therapy (CBT) and attachment theory.
Participants completed the 12 sessions on a weekly basis.
Participants were given the option to double-up on sessions
in a given week for ease of scheduling purposes.
Interventionists delivered content from each of themanualized
12Mothers and Babies sessions in one-on-one format. Within
each session, interventionists focused on content aligning with
3 CBT modules—pleasant activities, thoughts, and contact
with others—and content related mostly to promoting
parent-child attachment (Muñoz et al., 2007). We designed
each session to be delivered in approximately 20 min, with
sessions conducted in-person, by phone, or video conferenc-
ing depending on participant preference and availability.

For each of the 12 intervention sessions, a participant could
receive up to 5 JIT intervention content messages. These text
messages included either a brief, static message; a link to a
brief 1–2 item survey; or a link to external content such as a
worksheet, video, a guided meditation, or a mindfulness prac-
tice. Of the 5 inter-session JIT messages within a session-
specific bank, 1 inter-session JIT message may have been
included more than once for emphasis. We designed these
JIT messages to reinforce the content from the most recent
of the 12 sessions they received and provide an opportunity
to practice the skills covered. On a given day, a participant
who was determined to be stressed would only receive 1 JIT
message from a particular session. If a participant’s most re-
cent session was doubled up due to scheduling, they would

receive 1 JIT message from each of the prior sessions (Barrera
et al., 2021).

Participants received a JIT message if more than 50% of
their prior day ECG wear-time minutes were determined to be
stress-positive, or if their EMA perceived stress scale 4-item
(PSS-4) score was above the population average for women of
4.7 (Cohen & Williamson, 1988). We used the PSS-4 solely
for this stress detection system, and not in this study’s analy-
ses, where we used the 10-item version of the PSS (PSS-10). If
a participant did not complete any EMAs, nor provide any
ECG data on a given day, the JIT intervention stress detection
algorithm would deliver JIT content the next day based on a
50-50 chance determination. To reduce burden, we would not
deliver inter-session JIT intervention content on a given day if
a participant received content the day before. We made these
modifications to our stress detection system based on our pilot
study findings that, for pregnant women, 50% of their gesta-
tional experience may constitute a stressful day (Wakschlag
et al., 2021).

We decided to use compensation to enhance compliance
with the protocols after a review of pilot study data. In the pilot
study, we sent participants 5 EMAs per day. Based on exit
interview data, and data from a usability survey administered
after the intervention, participants from the pilot study indicat-
ed that receiving 4 EMAs per day was more feasible. We also
used the pilot study data to further develop our stress detection
algorithm. From those analyses, we found that we needed at
least 2 EMA responses for the self-report component of the
machine-learning system to function properly. In the pilot
study, participants responded to 47% of EMAs received. We
developed automated weekly compliance SMS updates to en-
courage or reinforce compliance (e.g., “Well done! You have
reached your goal every day this week for responding to
EMAs.”; Wakschlag et al., 2021).

In the present study, we determined each participant to be
compliant with the EMA protocol based on whether they pro-
vided responses to at least 3 of the 4 EMAs sent per day. The
cumulative percentage of EMA compliance was therefore re-
flective of the number of days in the 14-week intervention
period that a participant met the threshold of completing at
least 3 of the 4 EMAs received on a given day. Given that
there does not currently exist consensus on the duration nec-
essary to determine a stressful event, we evaluated the ECG
data based on all available data provided (King et al., 2019).
As a result, we determined each participant to be compliant
with the bio-sensor on a given day if they had any valid stress
positive or stress negative data after applying all noise-
filtering processes.

During the consent process, we informed participants that
they would receive compensation for, among other study-
related procedures, their compliance rates for both EMAs
and ECG bio-sensor wear-time over the 14-week intervention
period, based on a tiered system (tier 1=0–35%, tier 2=35–

Affective Science



70%, tier 3=70%+). For EMA compliance, participants earned
the following amounts for each tier: 1=$20; 2=$35; 3=$50.
For the bio-sensor, participants earned the following amounts
for each tier: 1=$30; 2=$52; 3=$75. We provided compensa-
tion at the end of the 14-week intervention period.

EMAs

For 7 days leading up to a participant’s scheduled baseline,
tech training, and randomization appointment, we invited all
participants to respond to EMAs via text message. Participants
received 4 EMAs per day based on their indicated sleep-wake
schedule with accommodationsmade if they reportedworking
night shifts. Within each EMA, we asked participants to report
on their perceived stress level (Perceived Stress Scale [PSS-4];
Cohen et al., 1983), and on the extent to which they felt two
positive (happy, excited) and three negative (worried, irrita-
ble/angry, sad) emotions on a scale of 0 = not at all to 4 = very
much, in the past hour. From this week-long run-in period, we
calculated a baseline, pre-intervention level of average daily
positive and negative affect.

Once randomized, all participants were invited to complete
the 4 times daily EMA protocol for a 14-week period. At the
end of each week, participants received automated SMS feed-
back about their adherence to the EMA protocol for that week.

ECG Bio-sensor and Machine-Learned Model

Participants randomized to the study were asked to wear the
BioStampRC ECG bio-sensor (mc10, Lexington, MA, USA),
a flexible wearable patch for gathering raw electrocardiograph
(ECG) data at 250Hz. The BioStampRC device included a
patch-like adhesive to be affixed on the left side of a partici-
pant’s chest. From this device, we were able to capture data on
heartrate variability. King et al. (2019) demonstrated the
BioStampRC device’s effectiveness in using heartrate vari-
ability to predict physiologic and perceived stress among a
sample of pregnant women King et al. (2019).

After completing the baseline assessment and prior to ran-
domization, we invited participants to complete an in-person
or remote tech training appointment. We designed the proto-
col for this visit to review how to use the bio-sensor prior to
randomization. After the onset of the COVID-19 pandemic,
we shifted to remote tech training appointments. In such cases,
we shipped the BioStampRC device, adhesives, and the study
tablet for syncing data on the remote, secure cloud storage
directly to participants. During these tech training sessions,
we reviewed with participants how to properly affix the adhe-
sive and discussed the wear-time protocol, including when to
wear the device and what to do while showering or exercising.
Specifically, we discussed with participants that the
BioStampRC adhesives were waterproof and technically able
to withstand moisture exposure from prolonged use during

exercise and bathing. However, we also informed participants
that women in the pilot study reported such exposure tended
to make the adhesives stickier and harder to remove, and thus
we recommended they remove and reapply during exercise
and bathing. We asked participants to wear the device during
the day for up to 12 hours and to sync their data on the study
tablet at each day’s end in order for that day’s data to be used.
Over the course of the 14-week intervention period, we asked
participants to wear the BioStampRC device on a 2-week on,
1-week off cycle (which amounted to 65 days in total) to
minimize discomfort associated with the adhesive (Liu et al.,
2018).

We designed a novel physiologic stress detection model
using machine-learning to detect stress from ECG data on
heartrate variability from inter-beat intervals assigned to each
1-min segment of data. We developed an algorithm to process
the resulting ECG signaling as either physiologic stress-
positive or stress-negative for each minute of wear time (Ng
et al., in press). We adapted a process model to filter out
invalid wear-time data (e.g., from skin stretching around the
adhesive or from changes in movement and posture; Zhang
et al., 2018). Furthermore, we employed a process previously
used to evaluate heartrate variability data and filter out any
observed findings outside of a normal human range
(Manikandan & Soman, 2012). As a result, we were able to
determine whether a participant experienced any physiologic
stress-positive minutes during the day if they returned valid
wear-time after the sync process. This machine-learning mod-
el combined with self-reported perceived stress from EMA
data composed the stress detection system that dictated wheth-
er to send JIT intervention content to participants.

We provided ongoing support from interventionists and the
study team for any participants who experienced technical
difficulties. Data managers from the study team reviewed the
wear-time data daily in an interactive dashboard. In the event
of any missing data, study staff contacted participants up to 3
times per week offering to troubleshoot any issues with the
sensor or discuss any other related issues. As a result of this
troubleshooting, we documented any instances of technical
issues or skin irritation problems experienced by participants
throughout the 14-week intervention period.

Feasibility

We assessed feasibility in terms of a participants’ compliance
with the EMA and ECG bio-sensor wear-time protocols. First,
we calculated the percentage of any EMAs completed of those
that were sent to a given participant. Then, we evaluated par-
ticipants’ EMA responses over the 14-week intervention pe-
riod and considered a participant compliant at the daily level if
they responded to at least 3 of the 4 EMAs received that day.
Regarding the ECG wear-time, we considered a participant
compliant at the daily level if they synced their device as
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instructed at the end of each day and had valid wear-time data.
We calculated each participant’s compliance with the bio-
sensor protocol as the percentage of days they provided valid
wear-time data at the end of the day out of the 65 days we
asked them to wear the device. If a participant reported tech-
nological issues or skin irritation from the BioStampRC adhe-
sive that prevented them from wearing the device, a “credit”
was applied toward their compliance for that day for the pur-
poses of compensation. However, for the purposes of this
analysis we used the raw, uncredited compliance percentages.
We reported the number and percentage of participants en-
dorsing any technical issues (e.g., issues with study tablet,
problems syncing data) or skin irritation in our analyses.

Acceptability

We analyzed intervention participants’ (n=48) acceptability of
W-4-2 in terms of their engagement with the JIT content re-
ceived. We operationalized engagement as the percentage of
unique, interactive, inter-session JIT intervention content that
they clicked on via their smartphone, over the 14-week period.

Survey Data

All participants completed surveys at baseline, post-
intervention (after 14 weeks), approximately 1 month before
delivery, and at 5 postnatal time-points (1, 3, 7.5, 12, and 24
months after delivery).

For the present study, we focused on sociodemographic
and mental health data from the baseline survey battery. As
part of the baseline survey, participants provided socio-
demographic characteristics including age, race (White,
Black, Other), ethnicity (Hispanic vs non-Hispanic), educa-
tion (greater than a college degree, less than or equal to a
college degree), combined annual household income (greater
than or equal to $100,000/year, less than $100,000/year), de-
pressive symptomatology (PROMIS-8b Depression battery;
Pilkonis et al., 2011), and perceived stress (Perceived Stress
Scale [PSS-10]; Cohen et al., 1983). Importantly, while we
reported racial and ethnic identity descriptive data for the en-
tire sample of randomized women, we did not include these
predictors for any analyses in light of recent recommendations
around conducting psychological research using these vari-
ables as predictors (Morris et al., 2020).

Statistical Analyses

Feasibility of the EMA and Bio-sensor Protocols

We reported descriptive data on our sample using counts and
percentages for each categorical baseline predictor variable

and means and standard deviations for each continuous base-
line predictor variable.

For feasibility analyses using EMA and ECG wear-time
compliance, we first looked at the distributions of the contin-
uous variables (% of EMAs completed of those received, % of
days a participant provided sensor data of those requested).
After reviewing these distributions with Q-Q plots and histo-
grams, we identified that both outcomes were bimodal, with
participants tending to comply near both ends of the spectrum.
In light of these findings, we decided to use tiers of compli-
ance for EMAs and the ECG bio-sensor as feasibility outcome
variables. In this way, we could provide results from statistical
analyses that predicted the association between sample char-
acteristics and higher tiers of compensation. While analytical-
ly, researchers currently recommend using continuous mea-
sures of compliance, our method best approaches the question
of what participants find the intervention more or less feasible
and acceptable given the nature of our data (de Vries et al.,
2021; Williams et al., 2021; Wrzus & Neubauer, 2022). We
provided descriptive data including counts and percentages
for each tiered compensation variable.

We conducted bivariate analyses to test the associations
between each baseline predictor variable and the EMA com-
pliance tiers, as well as between each baseline predictor and
the sensor compliance tiers. We reported counts and percent-
ages for categorical variables and medians and interquartile
ranges for continuous variables by each compliance tier.
Given that our dependent variable for these analyses was a
3-level ordinal variable, we conducted non-parametric tests.
For categorical predictor variables, we conducted Wilcoxon-
Mann-Whitney tests. For continuous variables, we conducted
Spearman’s correlation tests.

Then, we tested multivariable prediction models of both
compliance outcomes. For these analyses, we used ordinal
logistic regression to test the association between baseline
predictor variables and the compliance tiers. We reported pro-
portional odds ratios and 95% confidence intervals adjusting
for all baseline predictors.We interpreted estimates in terms of
the odds of each predictor variable’s association with the
highest tier of compliance compared to the low and middle
tiers.

Acceptability of the JIT Intervention Content

Among participants randomized to the intervention, we exam-
ined the distribution of the continuous engagement variable
(% of unique, non-static inter-session JIT intervention content
clicked on). We confirmed that this distribution met the as-
sumption of normality using Q-Q plots and histograms. Then,
we conducted bivariate analyses to test the associations be-
tween each baseline predictor variable and the continuous
engagement outcome. We used independent t-tests for
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dichotomous predictor variables and Pearson’s correlation
tests for continuous predictor variables.

Lastly, we conducted a multivariable prediction model to
test the associations between baseline predictor variables and
engagement. We used ordinary least squares (OLS) regression
adjusting for each baseline predictor variable to predict en-
gagement. We reported unstandardized beta coefficients and
95% confidence intervals.

Results

Participants

Within Table 1, we provided descriptive data on the sample of
99 women randomized in the study. Participants were on av-
erage 33 years old; most of them identified as White (71%)
and non-Hispanic (87%); were highly educated (59% had
more than a college degree); and reported high levels of so-
cioeconomic status (74% reported combined household annu-
al incomes greater than $100,000). The participants’ average
baseline depressive symptom t-scores were just below the
population mean (mean t-score 48.42); their average baseline
positive affect was 2.17 and their average baseline negative
affect was 0.66 both on a scale of 0–4; and their average
perceived stress on the PSS-10was 14.69, near the mean score
among a sample of pregnant women (Solivan, et al., 2015).

On average, participants responded to 67% of the EMAs
they were sent and wore and synced their sensors according to
protocol on average 52% of days over the 14-week interven-
tion period. Regarding technical issues with the bio-sensor,
42% of participants reported ever having technical issues re-
lated to their sensor, and 24% endorsed ever having skin irri-
tation associated with the adhesives. On average, 56% of par-
ticipants complied with the EMA protocol (i.e., responding to
at least 3 of the 4 EMAs in a day) at least 70% of the time,
which was the criterion for top-tiered EMA compliance.
Regarding the bio-sensor, 41% of participants complied with
the BioStampRC protocol (i.e., providing non-missing, valid
wear-time data and syncing to the cloud server at the day’s
end) at least 70% of the time, which was the criterion for top-
tiered sensor compliance. Participants randomized to theW-4-
2 intervention engaged with the unique, non-static, inter-
session JIT intervention content they received 42% of the
time, on average, over the 14-week period.

Bivariate Analyses

In Tables 2 and 3, we presented bivariate associations between
participants’ baseline characteristics and feasibility of the
technical components of the intervention as measured by
EMA and bio-sensor compliance. Participants’ baseline neg-
ative affect scores were associated with both their EMA and

sensor compliance tier. Participants in the lowest EMA com-
pliance tier were more likely to report higher baseline negative
affect than those in the higher tiers median (inter-quartile
range) negative affect: tier 1=0.85 (0.52), tier 2=0.72 (0.62),

Table 1 Descriptive data from the randomized sample inW-4-2 (n=99)

Variable Total

Age n, % with valid data 99 (100%)

Mean (sd) 33.2 (4.7)

Race n, % with valid data 97 (98%)

White 69 (71%)

Black 12 (12%)

Other 16 (17%)

Ethnicity n, % with valid data 99 (100%)

Non-Hispanic 86 (87%)

Education 98 (99%)

> College degree 58 (59%)

Combined annual income 99 (100%)

≥ $100,000 74 (75%)

Arm n, % with valid data 99 (100%)

Intervention 48 (48%)

Positive affect n, % with valid data 91 (92%)

Mean (sd) 2.17 (0.67)

Negative affect n, % with valid data 91 (92%)

Mean (sd) 0.66 (0.48)

PROMIS Depression t-score
n, % with valid data

97 (98%)

Mean (sd) 48.42 (7.19)

PSS-10 n, % with valid data 99 (100%)

Mean (sd) 14.69 (6.66)

Sensor protocol 99 (100%)

Compliance %, mean (sd) 52% (34%)

Tech issues, n (%) 42 (42%)

Skin irritation, n (%) 24 (24%)

Compliance compensation tiers

0–40% 39 (39%)

40–70% 20 (20%)

70+% 40 (41%)

EMA protocol 99 (100%)

% of EMAs completed mean (sd) 67% (32%)

Compliance compensation tiers

1=0–40% 30 (30%)

2=40–70% 14 (14%)

3=70+% 55 (56%)

Engagement (intervention only) 45 (94%)

% of JIT content* accessed, mean (sd) 42% (23%)

Abbreviations: sd standard deviation, PROMIS Patient-Reported
Outcomes Measurement Information System, PSS Perceived Stress
Scale, EMA ecological momentary assessment, JIT just-in-time
* JIT content assessed only includes the non-static, interactive, and unique
messages participants were sent that they clicked on
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tier 3=0.43 (0.48), Spearman’s ρ= −0.43. p < .0001. Similarly,
participants in the lowest sensor compliance tier were more
likely to report higher baseline negative affect than those at the
higher tiers median (IQR) negative affect: tier 1=0.72 (0.54),
tier 2=0.41 (0.86), tier 3=0.50 (0.45), Spearman’s ρ= −0.27
p=.01. We found similar results for both EMA and bio-sensor
compliance tiers for baseline PSS-scores in Tables 2 and 3,
such that participants who reported higher stress were less
likely to comply with protocols at higher tiers. No other base-
line predictors were associated with either the EMA or sensor
compliance tiers.

In Table 4, we presented bivariate associations between
participants’ baseline characteristics and acceptability of the

intervention as measured by engagement with the JIT content.
Participants reporting combined annual incomes greater than
or equal to $100,000 engaged on average with 47% of inter-
vention content they received, while those reporting less than
$100,000 engaged on average with 23% (p<.0001). No other
baseline predictors were associated with engagement with the
intervention content received.

In our sample, baseline PSS-10 scores were highly corre-
lated with baseline positive affect (r= −0.43, p<.0001), base-
line negative affect (r=0.52, p<.0001), and depressive symp-
toms (r=0.62, p<.0001). Furthermore, we considered PSS-10
scores as a main outcome of the forthcoming W-4-2 efficacy
results to be presented in future analyses. To avoid collinearity

Table 2 Bivariate feasibility analyses describing associations between each baseline predictor variable and EMA compliance tier (1=0–40%, 2=40–
70%, 3=70%+)

Predictor Total EMA compliance tiers p

1 2 3

Age n, % with valid data1 99 (100%)

Median (IQR) 33 (6.0) 33.0 (6.0) 34.0 (4.0) 32.0 (7.0) .47

Race n, % with valid data 97 (98%)

White, n (%) 69 (71%) 16 (23%) 12 (17%) 41 (60%)

Black, n (%) 12 (12%) 6 (50%) 2 (17%) 4 (33%)

Other, n (%) 16 (17%) 6 (38%) 0 (0%) 10 (62%) --

Ethnicity n, % with valid data 99 (100%)

Non-Hispanic, n (%) 86 (87%) 24 (28%) 12 (14%) 50 (58%)

Hispanic, n (%) 13 (13%) 6 (46%) 2 (15%) 5 (39%) --

Education2 98 (99%)

≤ College degree, n (%) 40 (41%) 15 (38%) 4 (10%) 21 (52%)

> College degree, n (%) 58 (59%) 15 (26%) 10 (17%) 33 (57%) .44

Combined annual income2 99 (100%)

<$100,000, n (%) 25 (25%) 11 (44%) 2 (8%) 12 (48%)

≥ $100,000, n (%) 74 (75%) 19 (26%) 12 (16%) 43 (58%) .21

Arm n, % with valid data2 99 (100%)

Intervention, n (%) 48 (48%) 15 (31%) 10 (21%) 23 (48%)

Control, n (%) 51 (52%) 15 (29%) 4 (8%) 32 (63%) .29

Positive affect n, % with valid data1 91 (92%)

Median (IQR) 2.20 (0.88) 2.29 (0.73) 2.08 (0.59) 2.17 (1.00) .49

Negative affect n, % with valid data1 91 (92%)

Median (IQR) 0.58 (0.60) 0.85 (0.52) 0.72 (0.62) 0.43 (0.48) <.0001*

PROMIS Depression t-score1

n, % with valid data
97 (98%)

Median (IQR) 48.4 (8.9) 50.1 (11.3) 49.8 (11.0) 47.9 (8.0) .13

PSS-10 n, % with valid data1 99 (100%)

Median (IQR) 14.0 (10.0) 18.5 (9.0) 14.0 (14.0) 13.0 (9.0) .0003*

Abbreviations: IQR interquartile range, PROMIS Patient-Reported Outcomes Measurement Information System, PSS Perceived Stress Scale, EMA
ecological momentary assessment, JIT=just-in-time
1P-values are derived from the non-parametric Spearman’s correlation test
2P-values derived from the non-parametric Wilcoxon-Mann-Whitney test
* Statistically significant at alpha of .05
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in our multivariable models, we did not include baseline PSS-
10 scores in the multivariable prediction analyses.

Multivariable Models

In Table 5, we presented multivariable models testing the
relationship between each baseline characteristic and the fea-
sibility outcomes (compliance with EMA and bio-sensor pro-
tocols by tier) and the acceptability outcome (engagement
with the unique, non-static JIT intervention content). We
found that for every 1-unit increase in average baseline nega-
tive affect, participants were on average 86% less likely to
comply at the top tier of EMA compliance versus the com-
bined middle and low tiers (p<.05). Similarly, for every 1 unit

increase in average baseline negative affect, participants were
on average 66% less likely to comply at the top tier of sensor
compliance versus the combinedmiddle and low tiers (p<.05).
We found these associations while holding the effects of all
other predictor variables constant. No other baseline predic-
tors were associated with either feasibility outcome in the
multivariable analyses.

Regarding engagement, as shown in Table 5, we found that
compared to participants reporting annual household incomes
less than $100,000, those reporting incomes at or above
$100,000 engaged on average with 22% more of the unique,
non-static inter-session JIT intervention content received
(p<.05). We found this association while holding the effects
of all other baseline predictor variables constant. No other

Table 3 Bivariate feasibility analyses describing associations between each baseline predictor variable and the ordinal bio-sensor compliance tier
(1=0–40%, 2=40–70%, 3=70%+)

Predictor Total Sensor compliance tiers p

1 2 3

Age n, % with valid data1 99 (100%)

Median (IQR) 33.0 (6.0) 34.0 (5.0) 33.0 (8.5) 32.0 (6.5) .19

Race n, % with valid data 97 (98%)

White, n (%) 69 (71%) 22 (32%) 14 (20%) 33 (48%)

Black, n (%) 12 (12%) 9 (75%) 3 (25%) 0 (0%)

Other, n (%) 16 (17%) 6 (37%) 3 (19%) 7 (44%) --

Ethnicity n, % with valid data 99 (100%)

Non-Hispanic, n (%) 86 (87%) 31 (36%) 18 (21%) 37 (43%)

Hispanic, n (%) 13 (13%) 8 (62%) 2 (15%) 3 (23%) --

Education2 98 (99%)

≤ College degree, n (%) 40 (41%) 16 (40%) 8 (20%) 16 (40%)

> College degree, n (%) 58 (59%) 23 (40%) 12 (20%) 23 (40%) 1.00

Combined annual income2 99 (100%)

<$100,000, n (%) 25 (25%) 13 (52%) 4 (16%) 8 (32%)

≥ $100,000, n (%) 74 (75%) 26 (35%) 16 (22%) 32 (43%) .18

Arm n, % with valid data2 99 (100%)

Intervention, n (%) 48 (48%) 19 (40%) 13 (27%) 16 (33%)

Control, n (%) 51 (52%) 20 (39%) 7 (14%) 24 (47%) .44

Positive affect n, % with valid data1 91 (92%)

Median (IQR) 2.20 (0.88) 2.27 (0.73) 1.95 (1.00) 2.09 (0.92) .96

Negative affect n, % with valid data1 91 (92%)

Median (IQR) 0.58 (0.60) 0.71 (0.54) 0.41 (0.86) 0.50 (0.45) .01*

PROMIS Depression t-score1

n, % with valid data
97 (98%)

Median (IQR) 48.4 (8.9) 49.8 (9.2) 49.0 (10.3) 48.4 (6.9) .32

PSS-10 n, % with valid data1 99 (100%)

Median (IQR) 14.0 (10.0) 17.0 (10.0) 16.0 (11.0) 12.0 (9.0) .01*

Abbreviations: IQR interquartile range, PROMIS Patient-Reported Outcomes Measurement Information System, PSS Perceived Stress Scale
1P-values are derived from the non-parametric Spearman’s correlation test
2P-values derived from the non-parametric Wilcoxon-Mann-Whitney test
* Statistically significant at alpha of .05
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baseline predictors were associated with our engagement out-
come in the multivariable analysis.

Discussion

Eysenbach (2005) expressed concern regarding the presenta-
tion of efficacy results, emphasizing the need for a more nu-
anced discuss regarding what worked and did not work in
mHealth interventions Eysenbach (2005). Dagher et al. (2022)
suggested bolstering efficacy results by striving recruit and
retain those historically left behind in mHealth research in-
cluding women with lower incomes Dagher et al. (2022).
We found pregnant women with higher baseline negative

affect were less likely to comply with monitoring technology
protocols in a personalized intervention to reduce prenatal
distress. Furthermore, those with lower incomes were less
likely to engage with JIT intervention content. Going forward,
interventionists should consider diverse perspectives, priori-
ties, and values of pregnant women during implementation
strategy development for optimal tailoring and personalization
of content. Findings presented here, even within this well-
resourced sample, suggest that a deeper understanding of
how best to optimize uptake for women from varied socioeco-
nomic contexts will be key for scalability. This should include
community-engaged partnerships and/or focus groups to en-
sure that lived experience, priorities, and values of women
from varied backgrounds are heard and incorporated.

Table 4 Bivariate acceptability analyses among intervention
participants (n=48) describing the associations between each baseline
predictor variable and engagement with W-4-2 intervention measured

as cumulative % of non-static inter-session JIT content received and
clicked on. Note: Of the 48 intervention participants, 3 participants did
not engage with any JIT content they received

Predictor (categorical) Total Engagement p
Mean (sd)

Race n, % with valid data 44 (92%)

White, n (%) 29 (66%) 43.51 (23.31)

Black, n (%) 8 (18%) 38.07 (20.55)

Other, n (%) 7 (16%) 43.09 (25.55) --

Ethnicity n, % with valid data 45 (94%)

Non-Hispanic, n (%) 43 (96%) 42.66 (22.99)

Hispanic, n (%) 2 (4%) 23.19 (14.35) --

Education1 45 (94%)

≤ College degree, n (%) 17 (38%) 46.76 (22.72)

> College degree, n (%) 28 (62%) 38.79 (22.92) .26

Combined annual income1 45 (94%)

<$100,000, n (%) 10 (22%) 22.53 (11.47)

≥ $100,000, n (%) 35 (78%) 47.31 (22.47) <.0001*

Predictor (continuous)2 Engagement p
r

Age n, % with valid data 45 (94%)

Mean (sd) 34.4 (4.5) 0.10 .52

Positive affect n, % with valid data 42 (88%)

Mean (sd) 2.08 (0.71) −0.04 .82

Negative affect n, % with valid data 42 (88%)

Mean (sd) 0.68 (0.48) −0.30 .05

PROMIS Depression t-score
n, % with valid data

44 (92%)

Mean (sd) 49.4 (7.8) 0.05 .76

PSS-10 n, % with valid data 45 (94%)

Mean (sd) 14.8 (7.3) −0.16 .30

Abbreviations: sd standard deviation, PROMIS Patient-Reported Outcomes Measurement Information System, PSS Perceived Stress Scale, JIT just-in-
time
1P-values are derived from independent t-tests
2 r and p-values derived from Pearson’s correlation tests
* Statistically significant at alpha of .05
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Participants in our study responded on average to 67% of
EMA prompts sent, a lower rate compared to a recent meta-
analysis (average adherence = 79%, sd = 14%; Wrzus &
Neubauer, 2022). Williams et al. (2021) suggest that inconsis-
tent reporting across studies may bias results toward studies
with higher compliance. Furthermore, they commented that
such inconsistencies may result in inadequacies of such
meta-analyses to accurately determine protocol features asso-
ciated with better or worse compliance (Williams et al., 2021).
Interventionists interested in improving well-being among
pregnant women will require protocols much longer than the
average of between 7 and 12 days reported in recent meta-
analyses (de Vries et al., 2021;Williams et al., 2021;Wrzus &
Neubauer, 2022). We hypothesize that such researchers may
improve EMA adherence by adopting less intensive protocols
still capturing a typical week. For instance, while reporting on
affective changes throughout gestation, Lazarides et al. (2021)
utilized a weekly, 4-day (2 weekdays, 2 weekends) EMA
protocol, and reported higher (86%) adherence Lazarides
et al. (2021). In W-4-2, participants likely perceived the com-
bination of the EMA and bio-sensor protocols together as
more burdensome, adversely affecting compliance.

Participants in our study wore the bio-sensor, synced their
device, and provided sufficient, valid wear-time data, on av-
erage, 52% of the 14-week intervention period. Throughout
the W-4-2 study, we provided daily consultation for partici-
pants who did not provide wear-time data. Our study staff
provided services for those 42% of participants who endorsed
at any time a technical issue with the bio-sensor. While we
resolved these issues, they do represent an obstacle for re-
searchers considering adding objective wearable technology

for their interventions. Throughout the study, 24% of our
sample endorsed skin irritation with the adhesive preventing
them from using the bio-sensor. Future interventionists inter-
ested in combining objective and self-report data could benefit
from enhanced staff training protocols, fidelity analyses, and a
“warm hand-off” to reduce the prevalence of such issues re-
lated to the wearables.

In the future, researchers may consider using sensor data
and smartphone behavior to predict likelihood of response to
an EMA (Liao et al., 2018). With such predictive, machine-
learning based analyses, we can limit the number of EMAs to
which participants need to respond for a given protocol, fur-
ther personalizing interventions. Such research may reduce
the necessary number of consecutive days participants need
to wear devices and respond to EMA prompts. While such
enhancements are possible, they do require a fully sustainable
and usable system of subjective and objective data (Ng et al.,
in press).We hope that the present analysis can be informative
for future interventions to ensure optimal system usability.

We found negative affect, depressive symptomatology,
and perceived stress were negatively associated with our fea-
sibility outcomes, aligning with other research suggesting
these factors may be associated with decreased motivation
and lower intervention uptake (Sokolovsky et al., 2014).
Walsh et al. (2015) noted that, among pregnant adolescents,
compared to participants with lower baseline negative affect
scores, those participants with higher baseline negative affect
were less likely to complete their EMA protocol after the first
session Walsh et al. (2015). We hypothesize that participants
with greater baseline negative affect in our study may nega-
tively appraise the measurement process. This could then

Table 5 Multivariable ordinal logistic regression model results with
adjusted odds ratios (ORs) for measures of feasibility (EMA and ECG-
biosensor compliance tier: 1=0–40%, 2=40–70%, 3=70%+) and

multivariable OLS regression model results with unstandardized beta
(β) coefficients for measure of acceptability (engagement: cumulative
% of non-static inter-session JIT content received and clicked on)

Predictor Feasibility Acceptability

EMA compliance tiers (n=88) Sensor compliance tiers (n=88) Engagement
(n=41)

OR 95% CI OR 95% CI β 95% CI

Age 0.97 (0.87, 1.07) 0.96 (0.88, 1.05) −0.13 (−1.66, 1.40)
Combined annual income
(< $100K as ref)

1.65 (0.60, 4.52) 1.65 (0.65, 4.20) 22.37 (5.79, 38.94)*

Education
(≤ college degree as ref)

1.84 (0.73, 4.63) 1.04 (0.45, 2.40) −9.69 (−23.95, 4.58)

Positive affect 0.74 (0.32, 1.67) 0.67 (0.32, 1.42) −7.17 (−19.25, 4.91)
Negative affect 0.14 (0.04, 0.45)* 0.34 (0.12, 0.97)* −14.97 (−33.34, 3.41)
PROMIS Depression t-score 1.03 (0.96, 1.11) 1.01 (0.95, 1.08) 0.41 (−0.56, 1.38)
Arm (control as ref) 0.54 (0.21, 1.37) 0.80 (0.35, 1.84) -- --

Abbreviations: OR odds ratio, CI confidence interval, ref reference category, PROMIS Patient-Reported Outcomes Measurement Information System
* Statistically significant at alpha of .05
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translate to a lower inclination to participate in subsequent
data collection activities.

Intervention participants on average engaged with 42% of
the non-static JIT intervention content they received. We
found that greater household annual income was associated
with increased engagement with the intervention. Previous
research suggests that socioeconomically advantaged partici-
pants are more likely to report favorable usability ratings of
smartphones and apps (Rahmati et al., 2012). Future investi-
gators may pursue factor-level analyses exploring whether
socioeconomic status predicts uptake of specific intervention
content to determine if modifications to intervention content
may be necessary for broader reach.

We used SMS delivery for EMA dissemination and JIT
intervention content delivery. While SMS-based delivery is
the most prevalent modality for EMA-based interventions, it
is limited in its capacity to differentiate willful from accidental
non-compliance (Wrzus & Neubauer, 2022). Recent mHealth
interventions focusing on pregnant women have moved to-
ward app-based development to enhance usability. In a sam-
ple of studies, EMA compliance (74–84%) was higher than
what we saw in our study (Allen et al., 2018; Faherty et al.,
2017; Sanjuan et al., 2019). Participants reported greater en-
gagement with app-based platforms when user-friendly and
directly useful features were present that enabled them to in-
teract with and observe their results over time (Hartmann
et al., 2019). Our study team chose not to implement a dash-
board feature visualizing change in stress over time to avoid
providing participants in the control group access to features
that could produce intervention effects, potentially complicat-
ing efficacy findings. Researchers may benefit from an imple-
mentation science informed approach with qualitative feed-
back from focus groups of participants to inform enhance-
ments to intervention end-user focused design.

Given concerns about fatigue, Mishra et al. (2021) evalu-
ated adaptive, machine learning models to assess an individ-
ual’s receptivity when determining timing of JIT content dis-
semination Mishra et al. (2021). We recommend researchers
prioritize reducing fatigue to improve uptake among diverse
populations with greater negative affect. These participants
may be more sensitive to perceived burden and could stand
to gain the most from well-being interventions. Future re-
searchers may benefit from adaptive trial designs, testing in-
cremental utility of intervention components, and optimizing
intervention feasibility and acceptability to the broadest pos-
sible range of women.

We conducted the first of its kind personalized prenatal
stress and depression prevention intervention using biosens-
ing to tailor information input. Our sample was non-
representative and well-resourced. These preliminary findings
speak to both the promise of such technologies for maternal-
child health research and the need for population-based exam-
ination of these issues. Partnerships with community members

will be vital to delineating the optimized approach for women
in particular contexts. We believe this approach has potential
to advance personalized and scalable interventions to improve
well-being at this critical life-stage.

Given the high socioeconomic status of our sample, partic-
ipants may have been more likely to engage with technolog-
ical components of study protocols with little reinforcement
(Wrzus & Neubauer, 2022). Our results cannot speak to fea-
sibility and acceptability of technological enhancements
among a more socioeconomically diverse sample of pregnant
women. Future researchers can modify their experimental de-
signs with stratified or quota sampling to specifically address
differences in feasibility and acceptability by socioeconomic
status as well as by racial and ethnic identity. Despite these
limitations, we believe that the present study represents an
opportunity to inform decision-making among future
mHealth interventionists to reduce burden, enhance usability,
and improve uptake at scale.
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