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Abstract: miRNAs are non-coding RNA sequences of approximately 22 nucleotides that interact
with genes by inhibiting their translation through binding to their 3′ or 5′ UTR regions. Following
their discovery, the role they play in the development of various pathologies, particularly cancer,
has been studied. In this context, miR-7 is described as an important factor in the development of
cancer because of its role as a tumor suppressor, regulating a large number of genes involved in the
development and progression of cancer. Recent data support the function of miR-7 as a prognostic
biomarker in cancer, and miR-7 has been proposed as a strategy in cancer therapy. In this work, the
role of miR-7 in various types of cancer is reviewed, illustrating its regulation, direct targets, and
effects, as well as its possible relationship to the clinical outcome of cancer patients.
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1. Introduction

Cancer is defined by the WHO as a broad group of diseases that can affect any part
of the body, characterized by the rapid proliferation of abnormal cells that extend beyond
their usual limits and can invade adjacent parts of the body or spread to other organs
through a process called metastasis. Metastases are the leading cause of cancer death [1].

Cancer is influenced by several factors including the activation of proto-oncogenes
through chromosomal translocations such as the presence of the Philadelphia chromosome,
which is the result of the translocation of the BCR-ABL genes present in most patients with
chronic myeloid leukemia (CML) [2]. Additionally, mutations can inactivate genes that give
rise to cancer suppressors [3], for example, the mutation and consequent inactivation of
p53, which leads to an accumulation of mutant protein, making it a hallmark of cancer [4].
Several miRNAs have been functionally classified as oncomiRs or tumor repressors because
they act as transcriptional regulatory factors, depending on the target they regulate [5].

1.1. Emergence of MiRNAs

In 1993, Dr. Ambros’ group described for the first time the presence of a small non-
coding RNA in the lin-4 locus that induced inhibition of lin-14 protein expression; lin-14
is a protein involved in controlling the transition between the initial larval stages of the
nematode life cycles and is characterized by a complementary sequence to the 3′ UTR region
of lin-14 [6]. These findings were confirmed by Dr. Gary Ruvkun’s group, who described
the pairing between the non-coding transcript of lin-4 and the 3′ UTR sites of lin-14 [7].
These groups laid the foundations for the current study of microRNAs (miRNAs), a term
that was coined in 2001 by Dr. Víctor Ambros [8], who, through the use of bioinformatics,
also reported that these molecules could be numerous and diverse [9]. Later studies
demonstrated that many of these miRNAs exist in invertebrates and vertebrates, and some
RNAs that are similar to miRNA let-7, characterized by Caenorhabditis elegans, are highly
conserved. These findings suggested a new mechanism of post-transcriptional regulation
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mediated by small RNAs [10] that could participate in the regulation of many signaling
pathways [8], and they are expressed much more frequently than previously reported. The
miRNAs are expressed in different species, such as mice [11], humans [12,13], and flies [14],
complementing what was previously reported [15], in C. elegans [9]

1.2. MiRNAs Biogenesis

One mature microRNA can be codified in different sites in the genome; for example,
lin-4 and let-7 are derived from independent transcription units [10]. On the other hand,
some miRNAs are found in pre-mRNA, although these are not the most common [15].
Interestingly, some miRNAs are found in groups, and their pattern implies a multicistronic-
type transcription [10]. In particular, most microRNA genes in humans are isolated [16].

miRNAs are synthesized in the cell nucleus from a long primary miRNA transcript
(pri-miRNA) and subsequently processed by the ribonucleases Drosha and DGCR8/Pasha,
a type III RNase [17], generating a precursor transcript or pre-miRNA [18]. The structure
that results from the processing by Drosha has as its characteristic an end that stands out in
the 5′ region from ~2 to 3 nt [19]. The pre-miRNA with the 5′ overhang end is recognized by
the Exportin 5 complex, which exports the pre-miRNA to the cytosol, where it is processed
by the ribonuclease Dicer in a complex formed by the TRBP and PACT proteins [20], gener-
ating miRNA doublets approximately 22 nucleotides long [21]. Subsequently, a chain of
the doublet that corresponds to the presence of the 5′ overhang [22,23] is deposited within
a protein called Argonaute (Ago), generating the ribonucleoprotein inhibitor complex
(miRISC) originating a functional mature miRNA (Figure 1). Previously, it was thought
that the other chain of the doublet was degraded; however, different reports have provided
evidence that it has the functional activity of regulating genes [24]. The assembly of the
miRISC is associated with specific messenger RNAs based on their sequence complemen-
tarity (consensus region) with the 3′ non-coding region of the mRNA (3′-UTR), coding
sequences, or the 5′ non-coding region (5′-UTR). The miRISC can be identified based on the
perfect or semi-perfect complementary pairing between the microRNA and the mRNA [25],
and this association regulates the expression of the gene at the post-transcriptional level
by suppressing either the stability, the translation of the mRNA, or both, depending on its
complementarity with the binding site or target site. If the complementarity is sufficient, a
cut is induced; however, if the complementarity is partial, the cut is not induced, and it will
be located in the complementary sites and translation will be prevented by inhibition in the
ribosome [26–28]. The mechanism is illustrated in Figure 1.
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Currently, 2300 true miRNAs have been described in the human genome [29], some
of which are similar in the seed region and thereby considered a family. This is deter-
mined according to the regulation of the mRNA and the functional consequences of the
altered expression of the miRNA, in addition to the seed region and the similarity among
miRNAs [30].

1.3. MiRNAs in Cancer

Recent evidence has confirmed that miRNAs are involved in processes such as cell
proliferation, migration, apoptosis, and senescence [31]. For this reason, they have been
assigned an important role in the development of various pathologies, including cancer.
miRNAs and their characteristics, such as the presence of CpG islands in the promoters
of miRNA genes, suggest that methylation has an important effect [32]; if these miRNAs
act as tumor suppressor genes, their hypermethylation and subsequent transcriptional
silencing would favor tumor progression [33]. An example is the reduction in miR-34 from
the hypermethylation of its promoter, which was identified in primary samples of chronic
lymphocytic leukemia (CLL), myeloma, and lymphoma [34]. Paradoxically, miRNAs can
also regulate the epigenetic machinery [35], and there is evidence suggesting that miR-29b
can regulate DNA methylating agents such as DNMT1 and DNMT3 [35]. On the other
hand, CpG islands in miRNA promoters are believed to be sites that are more susceptible
to affectation by various factors involved in cancerogenesis, since it has been reported that
miRNA encoding genes are frequently located in fragile sites or genomic regions typically
associated with cancer, called cancer-associated genomic regions (CAGRs) [36].

On the other hand, the regulation of miRNAs is characterized by the fact that their
genes have more than one transcription start site [37], which may be located in intronic
sequences of some coding genes. Because their transcription is shared with that of the
promoter of the coding gene [38], this has allowed a better understanding of the impact
of miRNAs on certain functions and their participation in the pathogenesis of cancer [39].
However, many miRNAs are reported to play a bifunctional role as oncogenes and tumor
suppressors in different types of cancer [40]. Based on these behaviors, miRNAs have been
proposed as diagnostic and prognostic biomarker candidates and potential therapeutic
targets in various types of cancer [41], including hematologic malignancies [42]. Recent
research has established miRNAs as predictors of chemo- and radio-sensitivity in cancer,
and their ability to reverse chemo- or radio-resistance in cancer cells has also been demon-
strated [43] by inhibiting or re-expressing them [44]. Reversing the alteration of a specific
miRNA by means of synthetic or antagonistic miRNAs was demonstrated to normalize
the network of regulatory genes and signaling pathways, revert the phenotype of tumor
cells [45], and inhibit tumor cell proliferation and tumor invasion and metastasis [44].
Some of the miRNAs that are involved in cancer are: miR-125b, miR-145, miR-21, and
miR-155 in breast cancer [46]; mir-17, -18a, -19a, -20a, -19b-1, and -92a-1 in lymphoma [40];
and miRNA 7 [47].

2. MiR-7 in Cancer

After the analysis carried out by the Lagos–Quintana group in 2001 where miRNAs
1 to 33 were studied, some of these were suggested to play an important role in the de-
velopment of cancer, as well as act in a tissue-specific manner. miR-7 was mentioned for
the first time in this publication [10] and was later reported to be encoded in three differ-
ent loci: 9q21, 15q26, and 19q13, giving rise to three products, pri-miR-7-1, pri-miR-7-2,
and pri-miR-7-3, which end in the same sequence as mature miR-7, as shown in Figure 2.
Furthermore, it is known to be evolutionarily conserved [48].
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miR-7 has a high expression in healthy brain, spleen, and pancreas tissue [49]. Several
reports have described this miRNA’s mechanisms of regulation; one of them indicated that
the transcription factor HOXD10 is capable of interacting with the promoter region of the
putative miR-7 -1 gene to induce the expression of miR-7 [50]. Another transcription factor
involved is FOXP3, which induces the expression of miR-7 [51]. Thus, it has also been
reported that c-Myc is positively regulates the expression of miR-7 by binding its promoter
region [52]. Other proteins involved in pathways such as splicing factors were shown to
have regulatory activity toward miR-7, such as the SD2/ASf factor, which interacts with
the pri-miR-7 transcript to promote cleavage by Drosha [53]. Mechanisms involved in the
immune response were also related to the regulation of miR-7 expression; such is the case
of TLR9, the signaling of which increases the expression of HuR, increasing the expression
of miR-7 in turn [54]. A regulation of TLR9 by miR-7 was observed in lung cancer, affecting
the regulation of the PIK3R3/AKT pathway [55].

On the other hand, a study carried out on various types of cancer indicated that the
promotion of the expression of miR-7 together with the reduction in the expression of
miR-21, both by viral vectors, resulted in an antitumor effect that encompasses invasion,
migration, cell proliferation, and increased survival [56]. In this way, the role of miR-7 in
the development of different types of cancer was documented, as shown in Table 1.

Table 1. miR-7 targets and functions of target genes in cancer. Taken and modified from “microRNA-7:
A tumor suppressor miRNA with therapeutic potential” [48].

Target Function Type of Cancer References

EGFR
Promotes cell survival, proliferation,

tumorigenesis, resistance to therapeutic
targets and radiotherapy

Head and neck, Glioblastoma multiforme,
cervical, lung, breast, and prostate [2–6]

RAF1 Promotes cell survival Lung, breast, and HNC [3,5,7]

PAK1
Promotes cell survival, proliferation, cell

motility, invasion, growth,
and tumorigenesis

Breast, squamous cell carcinoma of the
tongue, Schwannoma [6,8,9]

IRS-1 Promotes proliferation Glioblastoma multiforme, breast
and cervical [8,10]

IRS-2 Promotes cell survival, proliferation,
motility, and invasion

Glioblastoma multiforme, lung, breast,
prostate, squamous cell carcinoma of the

tongue, and Schwannoma melanoma
[3,8–11]

ACK1 Promotes cell proliferation,
and tumorigenesis Schwannoma [6]

PI3KCD Promotes cell survival, proliferation,
tumorigenesis, and metastasis Hepatocellular carcinoma [12]

mTOR Promotes cell survival, proliferation,
tumorigenesis, and metastasis Hepatocellular carcinoma [12]

http://mirdb.org/cgi-bin/mature_mir.cgi?name=hsa-miR-7-5p
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Table 1. Cont.

Target Function Type of Cancer References

P70S6K Promotes cell survival, proliferation,
tumorigenesis, and metastasis Hepatocellular carcinoma [12]

BCL-2 Promotes resistance to apoptosis,
proliferation, and tumorigenesis Lung [13]

XIAP Promotes cell survival and proliferation Cervical [14]

YY1 Promotes cell survival, proliferation,
and tumorigenesis Colorectal [15]

CCNE1 Promotes cell survival Hepatocellular carcinoma [15,16]

PA28γ gamma Promotes cell survival, proliferation,
and tumorigenesis Lung [17]

FAK
Promotes cell proliferation, cell survival,

tumorigenesis, and cell mobility and
regulates EMT

Glioblastoma multiforme and breast [18,19]

KLF4 Promotes metastasis and self-renewal of
stem-type cancer cells Breast [20]

IGF1R Promotes cell survival, proliferation,
migration, invasion, and metastasis

Squamous cell carcinoma of the
tongue, gastric [9,21]

MRP1 Promotes resistance to chemotherapy Breast [22]

ERF Represses checkpoints in the cell cycle Lung [23]

2.1. MiR-7 in Lung Cancer

Lung cancer is mainly composed of small cell and non-small cell cancer based on its
microscopic appearance, with non-small cell cancer (NSCLC) being the most frequent. It is
worth mentioning that it is the leading cause of cancer deaths in the United States [57]. In
NSCLC, miR-7 was related to the ability to inhibit tumor growth. In a murine model, it was
shown that tumor growth and metastasis of lung cancer cells were significantly reduced
after inducing the expression of miR-7, which caused a reduction in the signaling of the Akt
and ERK in pathways. Furthermore, the downregulation of NDUFA4, a new target of miR-7,
was shown to contribute to the same effects of miR-7 expression generated by the TTF-1
promoter [58]. The same effect was demonstrated using drugs that had previously been
effective in treating some types of cancer, excluding lung cancer—specifically NSCLC—in
results published by Zeng’s group. They evaluated lung cancer cell lines (A549, NCL-H460)
and A549 transfected with a mimic or an inhibitor of miR-7 and demonstrated that the
compound Breviscapine (BVP), which is a crude extract of erigeron (Erigeron breviscapuos)
and contains a large number of flavonoids, significantly reduced the growth of lung cancer
cell lines and induced apoptosis. In addition, this study proved that cells treated with the
drug showed elevated levels of Bax and miR-7. This suggested that the elevation in miR-7
expression promotes the BVP sensitivity of NSCLC cells by suppressing proliferation and
promoting apoptosis [59]. Another drug that was shown to increase miR-7 is docetaxel,
an antineoplastic drug defined as an antimitotic agent that inhibits the formation of mi-
crotubules. In NSCLC cell lines, docetaxel increases the expression of miR-7, and, in turn,
this overexpression suppresses proliferation in vitro [60]. The expression of miR-7 also
induces inhibition of cancer cell growth, which may be associated with the decrease in
the expression of the protein associated with tumor growth CGGBP1, one of the reported
targets of miR-7 [61].

Some other targets specifically reported in non-small cell lung cancer are PAX6, a
highly conserved transcription factor implicated in NSCLC; miR-7 induces the inhibition
of PAX6 expression, thereby reducing the proliferation potential, migration, and invasion
of NSCLC cells via ERK/MAPK [62]. In addition, miR-7 has been reported to inhibit
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FAK, negative regulation of which is also reflected in inhibiting the activation of the
ERK/MAPK pathway, for which both PAX6 and FAK were proposed as new targets for
NSCLC treatment [63]. Another reported target is p28α, the overexpression of which has
the same effect in NSCLC cell lines as miR-7 downregulation [64]. Thus, the reduced
expression of miR-7 was not only found in cell lines, but also in NSCLC tissues [64], while
in A549 cells, as well as in NSCLC tissue, miR-7 was shown to inhibit metastasis by NOVA2
targeting [65].

In elucidating the mechanism by which miR-7 acts in tumorigenesis, DNA sequencing
has been utilized to determine whether there are mutation sites in the miR-7-2 promoter in
lung cancer tissues, and changes such as GC at site -617 and an AG change at site -604 are
associated with poor prognosis in cancer patients [66]. The abovementioned mechanisms
are illustrated in Figure 3.
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Another area under investigation is the role played by miR-7 in resistance to treatment.
Studies conducted with paclitaxel (PTX), an antineoplastic drug that inhibits microtubule
formation and is the drug of first choice in the treatment of NSCLC, demonstrated that
overexpression of miR-7 in NSCLC cell lines increased sensitivity to paclitaxel, suppressed
cell proliferation, and increased apoptosis. On the other hand, miR-7 inhibition decreased
the anti-proliferative and pro-apoptotic effects of PTX, and miR-7 upregulation enhanced
the PTX-sensitivity of NSCLC cells, probably owing to the downregulation of EGFR ex-
pression [67]. Data on gefitinib, another drug used in the treatment of NSCLC, which is a
tyrosine kinase inhibitor targeting epidermal growth factor receptors or EGFRs, showed
that gefitinib treatment coupled with miR-7 significantly decreased the IC50 of gefitinib,
inhibited cell growth, increased G0/G1 cell cycle arrest, and increased apoptosis [68]. In a
very interesting way and consistent with what was mentioned above, in a study carried
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out on lung cancer cell lines, it was shown that the lncRNA LNC00240 acts as a miR-7-5p
sponge and, as a consequence, induces EGFR overexpression [69].

2.2. MiR-7 in Hepatocellular Cancer

Hepatocellular cancer (HCC) or liver cancer is more common in men than in women.
Liver cancer can be classified as intrahepatic cholangiocarcinoma or bile duct cancer,
angiosarcoma or hemangiosarcoma, or hepatoblastoma. HCC is usually successfully
treated with chemotherapy and surgery; however, complications can occur and are more
frequent when the cancer originates outside the liver [70].

In HCC, miR-7 is characterized as anti-oncogenic; however, the mechanism is not
clear [71]. Studies have been published in which several mechanisms of action were pro-
posed: one of them included the complex formed by nuclear factor 90 (NF90) and nuclear
factor 45 (NF45), which acts as a negative regulator of miR-7 processing. The expression of
NF90 and NF45 were found to be significantly elevated in primary tumors compared to ad-
jacent non-tumor tissues. After the elimination of NF90 and analysis by miRNA microarray
as well as quantitative RT-PCR, results included an elevated expression of mature miR-7
and the decreased expression of pri-miR-7-1 [72]. On the other hand, it has been reported
that elements such as voltage-dependent anion channel 1 (VDAC1), which plays an im-
portant role in carcinogenesis, play prognostic roles in patients with hepatocellular cancer,
and miR-7 was suggested to suppress VDAC1 expression [73]. Another factor related to
a poor prognosis is maspin, the expression of which is reduced in patients with hepatitis
B virus and correlates with a poor prognosis. Maspin is involved in tumor suppression
by promoting cell adhesion and apoptosis, particularly in patients with hepatocellular
carcinoma (HCC). Maspin is negatively regulated by hepatitis B virus protein x (HBx).
High expressions of miR-7, 107, and 21 were related to the negative regulation of maspin,
which was suggested to confer aggressiveness and chemoresistance mediated by HBx in
HCC [74].

The involvement of miR-7 was also found in the cell cycle, since cyclin E1 (CCNE1)
was identified as an important mediator of the G1/S transition, and reports indicated that
this is a direct target of microRNA-7. The overexpression of miR-7 has the effect of silencing
CCNE1, thus promoting the tumor suppressor effects attributed to the expression of the
CCNE1 oncogene [75]. Finally, it was also reported that miR-7 is capable of negatively
regulating SPC24 and, as a consequence, acting as a tumor inhibitor since it suppresses
proliferation and migration and promotes apoptosis [76]. The abovementioned mechanisms
are illustrated in Figure 4.
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2.3. MiR-7 in Breast Cancer

Breast cancer manifests itself as abnormal cell growth forming a tumor that can be felt
as a lump. The tumor is considered malignant when it is capable of invading surrounding
tissues or if it is capable of generating metastases. It is considered almost exclusively a
disease of women; however, it can also occur in men, and early detection generally leads to
a good prognosis [77].

Various roles for miR-7 have also been reported in breast cancer. Particularly in triple-
negative patients, there is usually treatment failure. One of the main characteristics is the
elevation in the expression of IL-6, and treatment with antibodies against IL-6 inhibits the
migration induced by lapatinib, which is a drug that promotes metastasis in triple-negative
breast cancer cells. RAF-1/MAPK, JNK’s, p38 MAPK and AP-1 activator protein signaling
mechanisms are activated in response to lapatinib treatment to induce IL-6 expression.
It was reported that miR-7 binds to the 3′UTR region of RAF-1, inhibiting its activity,
which leads to the negative regulation of this pathway by miR-7, acting as an antitumor
mechanism [78].

miR-7 is also involved in the oncogenic isoform of the HER2 gene, known as HER2∆16,
which is present in 50% of HER2+ breast cancer patients. Reports have indicated that this
isoform leads to metastasis and resistance to chemotherapy. It was recently shown that
HER2∆16 alters the expression of some miRNAs. Using an array comparison of miRNA
expression profiles of the MCF/7 and MCF7/HER2∆16 cell lines, 16 miRNAs were found
to be significantly altered by two or more folds. miR-7 showed a greater increase, at 4.8-fold
in the MCF7/HER2∆16 lines. The restoration of miR-7 expression promotes G1 cell cycle
arrest and reduces colony formation and cell migration to levels similar to MCF7, while
the suppression of miR-7 in MCF7 results in promotion of colony formation, but not in
cell migration. The mechanism involved includes EGFR and Src Kinase, which represent
targets for therapeutic intervention and refraction and metastasis of breast cancer with
HER2∆16 [79].

Another signaling pathway in which miR-7 participates is WISP2 (WNT1-inducible-
signaling pathway protein 2); silencing WISP2 signaling in the MCF7 cells of human breast
adenocarcinoma impairs cytotoxic T-lymphocyte (CTL)-mediated cell death through a
mechanism that involves the induction of Kruppel-like factor-4 (KLF-4) and miR-7 decrease.
Using a WISP2 inhibitor results in a significant reversal of the epithelial-to-mesenchymal
transition. KLF4 expression was found to be related to the inhibition of miR-7, which is
responsible for CTL-mediated lysis. WISP2 has a role in tumor susceptibility through EMT
via the TGF-β signaling pathway, KLF4 expression, and miR-7 inhibition, thus proposing
WISP2 as an activator of CTL-induced death and suggesting that the loss of its function
promotes immune surveillance evasion and tumor promotion [80]. On the other hand, in
stem-type breast cancer cell lines with metastatic capacity to the brain, a profile of miRNAs
was made that showed a reduced expression of miR-7, which promotes the expression of
KLF4 factor in induced pluripotent stem cells. It was reported that miR-7 expression can
decrease KLF4 expression and suppress breast cancer cell metastasis [81].

Another report indicated that in breast cancer cell lines and through qRT-PCR, a
high expression of miR-7 is directly related to a better response to chemotherapy with
paclitaxel/carboplatin through the suppression of MRP1 and BCL2 [82]. The mechanisms
mentioned above are illustrated in Figure 5.
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2.4. Role of MiR-7 in Gliomas

Gliomas are among the ten most common causes of death related to cancer. Although
there is no test to detect it early, timely diagnosis and treatment improve the outcome.
Recent progress has been made in the scientific understanding and in methods of diagnosis
and treatment [83]. Alterations in energy metabolism were observed in gliomas involving
Akt signaling in aerobic glycolysis programs; however, the mechanisms regulating aerobic
glycolysis and Akt activity are not known. One of the proposed mechanisms includes
the regulation of IGF-1R, which is part of the signaling pathway upstream of Akt. The
increase in the expression of miR-7 was reported to inhibit colony formation and the glucose
metabolic capacity of glioma cells, an effect similar to that produced by the “knockdown”
of IGF-R, which is consistent with data indicating that miR-7 is capable of binding to the
3′UTR region of IGF-R, causing its decrease. Expression data of miRNAs downloaded
from the Genomic Atlas of Cancer database were analyzed [84]. Thus, the expression
profiles of 20 mature miRNAs were also studied in patient biopsies with the finding that
miR-7 is less expressed in tumors compared to healthy control samples [85]. In addition
to the Akt pathway, miR-7 is involved in the regulation of the RAF/ampk (MEK) and
ERK pathways, two of which are initiated by EGFR, which in glioblastoma is reported to
be a regulator of cell proliferation, survival, migration, and invasion. An increase in the
expression of miR-7 decreases the expression of PI3K, phosphorylation of AKT, RAF-1,
and phosphorylated MEK1/2, and causes a slight reduction in the expression of EGFR.
An induced expression of PI3K or RAF-1 reverses the effects of miR-7. Therefore, miR-7
was proposed as a potential tumor suppressor because it is capable of regulating several
related oncogenes in the EGFR pathway [86]. Additionally, the overexpression of miR-7-5p
was found capable of inhibiting SATB1 (SATB homeobox 1) and reversing the effects of
promoting cell migration and invasion in glioblastoma cells [87]. Another target of miR-
7-5p in glioblastoma is YY1 (Ying Yang 1), the silencing of which has direct effects on the
reduction in the chemoresistance of cells to temozolomide [88].

Furthermore, the first trials using miRNA as part of a therapy were performed
with promising results; the administration of miR-7 encapsulated in cationic liposomes
in xenografts arrested growth, and metastatic nodules decreased the effectiveness in a
sequence-specific manner. miR-7 has been applied in the treatment of glioma, and the
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results have shown it to be a promising potential anti-tumor and anti-metastatic treatment
for human glioma [89]. All the mechanisms mentioned above are illustrated in Figure 6.
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2.5. Role of MiR-7 in Colorectal Cancer

Colorectal cancer (CRC) can occur in the colon or rectum, hence the name; most cases
of this type of cancer begin with a growth called a polyp in the inner lining of the colon.
Adenocarcinomas represent about 95% of colorectal cancers [90]. Colorectal cancer studies
conducted on 196 malignant and 14 normal tissues, analyzing the expression of miR-7
levels with real-time PCR, found that miR-7 was significantly elevated in colorectal cancer
compared to normal colorectal mucosa. From this study, it was determined that a high
expression of miR-7 is significantly associated with poor survival in patients with CRC
(p = 0.01) [91]. In addition, it was determined by in vitro assays that EGFR and RAF-1 are
targets of miR-7 [92]. Additionally, it was reported in colorectal cancer that the 3′UTR region
of YY1 had binding sites for miR-7, which was confirmed by reporter plasmid assays, and
that miR-7 was downregulated in colorectal cancer cell lines and in the ectopic expression
results on the suppression of cancer cell proliferation, apoptosis induction and cell cycle
arrest. In parallel, the “knockdown” of YY1 suppresses cell proliferation and induces
apoptosis, indicating the inverse functions of miR-7 and YY1 in CRC cell lines, where YY1
promotes CRC proliferation and miR-7 inhibits it by inhibiting YY1 expression. Based
on this, miR-7 was proposed as a tumor suppressor by suppressing YY1 in its oncogenic
role. YY1 can promote cell growth by inhibiting p53 and promoting the Wnt signaling
pathway [93]. Therefore, the precursor of miR-7 was proposed as a possible therapy. In
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contrast, in another study carried out on CRC tissues and cells, it was determined that a low
expression of miR-7-5p in CRC tissue predicts a low 5-year survival, while in cells, it was
determined that the overexpression of this microRNA is directly related to the inhibition of
cell proliferation and migration. This represents a controversial finding on the expression
of miR-7 in CRC, which should be addressed and based on the targets of miR-7 in this
context. Additionally, it was reported that KLF4, a target of miR-7, acts as an oncogene
in colorectal cancer, so the inhibition of KLF4 expression by miR-7 is a mechanism and a
potential molecular target for the treatment of colorectal cancer [94]. TRIP6 is another target
of miR-7 that was related to the regulation of metastasis and inhibition of cell proliferation;
however, in colorectal cancer cells, it was reported that miR-7 is decreased as a consequence
of hypermethylation of TRIP6, while the restoration of miR-7 expression has a direct impact
on the inhibition of cell proliferation and migration [95]. Interestingly, it was reported
that, in biopsies of patients diagnosed with colorectal cancer, the expression of miR-7-5p
together with miR-10a-5p can serve as a marker of poor prognosis [96]. The mechanisms
mentioned above are illustrated in Figure 7.
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2.6. Role of MiR-7 in Prostate Cancer

The prostate is a gland that only men have, and the abnormal growth of the cells
generates prostate cancer, which alters the gland’s growth. The prostate is normally
compared to a walnut in regard to size. Prostate cancer is more common in men of 40 years
or older [97].

miR-7 has been described as a tumor suppressor capable of annulling the stemness
of prostate cancer cells, inhibiting tumorigenesis by suppressing KLF4. The possible
mechanism is the regulation of the KLF4/PI3K/Akt/p21 pathways [98]. Studies were
conducted on PC3 and LnCap prostate cancer cell lines, where it was found by means of an
expression profile that miR-7 is increased in PC3 (11.3 times increased, p = 0.012). However,
in patients with a high expression of miR-7 in peripheral blood, a significantly decreased
survival rate was observed. Therefore, miR-7 is proposed as a potential biomarker in the
prognosis of prostate cancer [99].
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2.7. MiR-7 in Oral Cancer

Oral cancer is the neoplasm that occurs in any of the regions of the oral cavity; 90%
of these correspond to squamous cell carcinoma, and others include adenocarcinoma
derived from the minor salivary gland, sarcoma, malignant lymphoma, or metastasis
from other malignancies [100]. Recent studies on 85 samples of esophageal squamous cell
carcinoma as well as a database analysis revealed that there is a higher expression of miR-7,
compared to normal tissue. Thus, low levels of miR-7 are associated with poor prognosis.
A multivariate analysis showed that low miR-7 expression was an independent predictor
of poor survival. On the other hand, in vitro assays showed that the miR-7 precursor
suppresses the proliferation of esophageal squamous cell carcinoma, thus proposing miR-7
as a prognostic marker and therapeutic target [101]. In a study, blood sera from 105 patients
with esophageal carcinoma were evaluated, and the expression of miR-7 in patients with
esophageal squamous cell carcinoma was 4.74 times lower than that of healthy subjects,
again indicating its potential as a diagnostic factor. Its expression in patients who responded
to chemoradiotherapy treatment (CRT) was 2.34 times higher than in those who did not
respond, indicating its potential as a predictive biomarker for response [102].

2.8. MiR-7 in Thyroid Cancer

Thyroid cancer occurs when there is an uncontrolled growth of the gland; it originates
in thyroid follicular cells and can be classified as papillary, follicular, or Hurtle cell can-
cer, the latter having the worst prognosis, while the first two have a good prognosis and
generally respond well to treatment [103]. Several reports on thyroid cancer have estab-
lished the regulation of signaling pathways by miR-7; through reporter plasmid assays,
it was shown that miR-7 can bind to the 3′UTR region of CKS2. Using Western blot, it
was determined that microRNA-7 negatively regulates the expression of the CKS2 protein
and its downstream genes, such as Cyclin B1 and cdk1. A knockdown model of CKS2 by
siRNA in TPC1 and K1 cells suppresses cell proliferation, cell migration and invasion [104].
Thus, it was also found that miR-7 is capable of regulating PAK1 expression at the protein
level, but not at the RNA level. Furthermore, the restoration of miR-7 expression as well as
PAK21 knockdown were shown to be similarly related to a suppression of thyroid cancer
cell proliferation, migration, and invasion [105]. The mechanisms mentioned above are
illustrated in Figure 8.
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2.9. Role of MiR-7 in Melanoma

Melanoma is known as a cancer originating in melanocytes. Melanomas have a high
production of melanin, which produces a brown or black coloration. It usually occurs in
the extremities, trunk, and chest. Melanoma detected in its early stages usually has a good
prognosis; however, in advanced stages, it has a high probability of invading other tissues.
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It is divided into skin cancer and basal and squamous cell cancer, the latter having the best
prognosis [106].

Studies have been conducted specifically on the A375 and A375 melanoma cell lines,
which are resistant to vemurafenib (VemR), a drug that targets mutated BRAF-type protein
kinases. Low miR-7 expression was found through miRNA microarray analysis, and by
restoring miR-7 expression, Vem resistance was reversed. In addition, miR-7 mimic-induced
expression was shown to decrease the expression of EGFR, IGF-1R, and CRAF, which are
regularly overexpressed in VemR cells and decreased tumor growth [107]. Thus, the
expression of miR-7-5p was decreased compared to primary melanoma, and its increased
expression reduced the viability of tumor cells and the formation of colonies and induced
cell cycle arrest. It is also a potent inhibitor of melanoma growth and metastasis in part by
inactivating RelA/NFκB signaling [108].

2.10. MiR-7 in Cervical Cancer

Worldwide, cervical cancer is a main cause of death in women. It was linked to the
presence of human papillomavirus, and infection by human papillomavirus was proven
to be a requirement for the development of the disease. Cytological studies such as Pap
smears are essential to early detection and thus to the efficacy of treatment [109]. In cervical
cancer, there is a low expression of miR-7, especially in metastatic tumors; however, the
ectopic expression of said miRNA significantly inhibits FAK in HeLa and C33A cells, a
protein involved in the regulation of cell proliferation and survival at the transcriptional
and protein levels, which correlates with the negative correlation of miR-7 and FAK in
cervical cancer tissues [30]. It was also reported to promote apoptosis and loss of cell
viability in these cell lines by inhibiting one of its targets, the XIAP protein [110].

2.11. Role of MiR-7 in Other Types of Cancer

Regarding other types of cancer, in pancreatic carcinoma miR-7 is involved in the
regulation of the ILF2 oncogene in the epithelial–mesenchymal transition in PANC-1 cells,
functioning as a supposed pro-tumor factor. Specifically, it was shown that curcumin
promotes miR-7 expression, which, in turn, suppresses ILF2 expression at the mRNA and
protein levels [111]. In adrenocortical carcinoma, the systemic administration of miR-7
through a novel therapy consisting of delivery vesicles (EGFREDVTM nanocells) allowed
us to observe that miR-7 inhibited cell proliferation in vitro and induced cell cycle arrest
in G1; it also reduced the growth of transplanted tumors from both cell lines and primary
cultures of adrenocortical carcinoma. The proposed mechanism of action is based on the
fact that miR-7 acts on the proto-oncogene RAF-1 and mTOR, and miR-7 therapy inhibits
cyclin-dependent kinase 1 (CDK1), which was increased in samples from patients with
adrenocortical carcinoma, inversely correlated with miR-7 expression [47].

In gastric cancer, “genome-wide screenings” were carried out where RelA and FOS
proteins were identified as targets of miR-7; repressing the expression of these proteins
in turn prevented proliferation and tumorigenesis in gastric cancer cells. Conversely, low
miR-7 expression correlated with high RELA and FOS expression and poor survival in GC
patients. miR-7 indirectly regulates RELA activation by targeting the IκB kinase IKKε. In
addition, IKKε and RELA can repress miR-7 transcription, which forms a feedback loop
between miR-7 and nuclear factor κB (NF-κB) signaling. The downregulation of miR-7
results in aberrant activation of NF-κB signaling by Helicobacter pylori infection [112].

In ovarian cancer, EGFR, which promotes tumor proliferation and migration, was
reported to be a direct and functional target of miR-7. miR-7 expression was shown to be de-
creased in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues,
whereas EGFR expression was positively correlated with metastasis in both EOC patients
and cell lines. miR-7 inhibits tumor metastasis and reverses the epithelial–mesenchymal
transition through AKT/ERK1/2 inactivation by targeting EGFR in epithelial ovarian
cancer [113].
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miR-7 expression was demonstrated in renal cell carcinoma tissues, and the negative
regulation of miR-7 inhibited cell migration in vitro, suppressed cell proliferation, and
induced apoptosis of renal cancer cells [114]. The mechanisms mentioned above are
illustrated in Figure 9.
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2.12. MiR-7 in Hematologic Malignancies

In hematological malignancies, genes have been found that are directly related to the
generation of malignancy. One of them is TET2 (Ten-Eleven-Translocation 2), which is
considered to be an important tumor suppressor that is frequently mutated. Through the
analysis of 3’UTR activity, miRNAs that inhibit TET2 expression were identified. Among
them, a high expression of miR-7 was found in acute myeloid leukemia, and it was shown
that miRNAs have potential for diagnosis [115]. On the other hand, in children with acute
lymphoblastic leukemia, an abnormal expression of miRNAs was identified by means
of miRNA expression profiles and confirmed by qRT-PCR, in relation to children with
thrombocytopenia as a control. In fact, this was proposed through a correlation with the
expression of miRNAs, finding that miR-7 together with other miRNAs could be involved
in early relapse, particularly when miR-7, miRNA-216, and let-7i are highly expressed [116].

On the other hand, it is known that blood microvesicles can contain various com-
ponents, including miRNAs. Analyses have been carried out in which the expression of
miRNAs was studied to establish standards that compare those from leukemia-derived
microvesicles and normal cells. Analyses of 888 miRNAs were performed, and most of the
miRNAs that are deregulated were found to be involved in signaling pathways associated
with leukemia, particularly MAPK and p53. Considering the translocation present in
leukemia, which involves chromosome 9, the functions of 12 miRNAs were examined,
among them miR-7, which are expressed in K562 cell vesicles and in K562 cells and are
proposed as potential therapeutic targets [117]. Another mutation in leukemias, particularly
chronic lymphocytic leukemia, is the p53 mutation. It was shown that there are several
p53-dependent miRNAs induced in response to DNA damage in CLL, proposing that
the miRNoma for the identification of the dependent DNA damage response machinery
stems from p53 [118]. In ALL (acute lymphoblastic leukemia) of T lymphocytes, it was
reported that the overexpression of miR-7 is capable of suppressing TAL1 levels and re-
ducing growth, mobility, and migration, as well as promoting the induction of apoptosis,
allowing it to play a potential role as tumor suppressor [119]

Additionally, it was reported that in lymphomas of the anaplastic lymphoma kinase-
positive anaplastic large cell lymphomas subtype, miR-7 -5p inhibits RAF1, similar to using
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siRNAs or vemurafenib. The latter is a chemical inhibitor of BRAF, causing an increase in
autophagy and potentiating the toxicity of crizotinib, a tyrosine kinase inhibitor [120]. In
MALT lymphoma patients, there is decreased expression of miR-7 and miR-153 compared
to patients with gastritis [121], which suggested, based on what was previously shown, the
crucial participation of miR-7 in the inhibition of lymphomagenesis. Interestingly, it was
reported that a decrease in the expression of miR-7 carried out by c-MYC resulted in an
overexpression of Fas-L in M1 macrophages, thus promoting greater apoptosis in tumor
stromal macrophages (tumor stromal macrophages). This low expression of miR-7 was also
related to poor clinical outcomes and with the evolution of low-grade follicular lymphoma
to aggressive follicular lymphoma [122].

In addition, tumors from 16 lymphoma patients were scanned to analyze 851 human
miRNAs, finding a significant difference in 133 miRNAs (>2-fold; p < 0.05) between lym-
phoma and follicular hyperplasia. In particular, it was determined that miR-7 is increased
in follicular lymphoma but decreased in a subgroup of cases. Furthermore, high expression
was associated with improved response to chemotherapy [123]. Recently, our research
group reported the participation of miR-7 in the regulation of migration and chemore-
sistance in NHL cell lines, through the regulation of YY1 and KLF4. Additionally, in the
analysis of expression in biopsies of patients diagnosed with NHL (follicular lymphoma
and diffuse large B-cell lymphoma), we showed that there is a negative correlation between
the expression of both transcription factors YY1 and KLF4 vs. miR-7, which is indicative
of miR-7 regulation of these transcription factors. Therefore, as a whole, the results de-
scribed the participation of miR-7 with KLF4 and YY1 in the context of non-Hodgkin’s
lymphoma [124], which was consistent with what was reported in other types of cancer
(Table 1). The mechanisms mentioned above are illustrated in Figure 10.
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3. MiR-7 and Its Clinical and Therapeutic Potential in Cancer

As mentioned in this review and in others, miRNAs have potential as biomarkers and
as therapeutic agents or targets. In particular, miR-7 has been shown to act mainly as a
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tumor suppressor, inhibiting a large number of oncogenic targets, owing to the fact that
reduced levels of this miRNA were involved in the development [48]. It has an effect on
several of the hallmarks of cancer, such as initiation of malignancy, proliferation, migration,
invasion, survival and death [125], resistance to therapies, and its progression both in vitro
and in vivo (Table 2). However, miR-7 has also been reported to promote cancer [126].

Table 2. miR-7 roles in cancer.

Type of Cancer MiR-7 Expression
Levels Role Reference

Lung Low Inhibits tumor growth and metastasis
Promotes chemosensitivity [24,25]

Hepatocellular Low Tumor suppression by CCNE1 inhibition [26]

Breast High Cell cycle promotion [27]

Gliomas Low Inhibits oncogenes
Suppresses metastases [20,28]

Colorectal High Tumor suppressor through YY1 inhibition [92]

Prostate High Tumor suppression by inhibition of KLF4 [30]

Oral Low Proliferation suppression [31]

Thyroid ND Suppresses cell proliferation, migration and invasion [32]

Melanoma Low Reverses resistance, decreases tumor growth [33,34]

Cervix Low Promotes apoptosis, decreases cell viability. [14,35]

Pancreatic ND Suppression of the epithelial–mesenchymal transition [36]

Adrenocortical Low Reduction in cell proliferation [37]

Gastric ND Prevents cell proliferation and tumorigenesis [38]

Ovary Low Inhibits tumor metastasis and reverses
epithelial–mesenchymal transition [39]

Follicular lymphoma High Associated with better response to chemotherapy [40]

Lymphoblastic leukemia High Related to early relapse. [41]

Additionally, we performed a gene expression analysis of the data available in the
GEO database (GSE10846) and strictly delimited the clinical information reported by A.
Alizadeh et al. [127]. A Kaplan–Meyer survival analysis of miR-7 expression was conducted
relative to follow-up. In relation to the average of the expression, we divided the expression
of miR-7 into high and low, determining that the high expression of miR-7 was related to a
lower percentage of survival in NHL (Figure 11A). On the other hand, we analyzed miR-7
expression in pediatric acute lymphoblastic leukemia, using the database available in GEO
(GSE23024) [128]. We found that there is a higher expression of miR-7 in those patients with
resistance to prednisone (Figure 11B) but not to daunorubicin or vincristine. In addition, we
analyzed the GEO database (GSE124489) [129], and miR-7 expression in multiple myeloma
indicated a trend of higher miR-7 expression in newly diagnosed patients compared to
healthy donors (Figure 11C). As we previously reported [124], the expression of miR-7
was decreased in DLBCL dead patients compared with the living patients in the data
set GSE31312 [130] (Figure 11D) (figure analysis was published previously [124]). Taken
together, these data suggested that miR-7 plays a fundamental role in the development of
hematological malignancies.
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For all these reasons, miR-7 has been proposed as a potential strategy for cancer
therapy owing to the significant progress made in understanding the molecular mechanisms
of miR-7 and the regulatory networks it affects. There is sufficient evidence to suggest that
miRNA replacement therapy may be a new alternative to the treatment of various diseases,
including specific human cancers [48].

4. Conclusions

miR-7 is a miRNA with an important role in various processes related to cancer. This
was confirmed in several types of malignancies where miR-7 participated in the regulation
of signaling pathways, as well as in the regulation of transcription factors that serve as
biomarkers and therapeutic targets. miR-7 has been proposed as a biomarker as well as a
potential therapeutic target and tool for the treatment of various types of cancer.
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